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Abstract

The application of genomics to medicine has accelerated the discovery of mutations underlying disease and has enhanced
our knowledge of the molecular underpinnings of diverse pathologies. As the amount of human genetic material queried
via sequencing has grown exponentially in recent years, so too has the number of rare variants observed. Despite progress,
our ability to distinguish which rare variants have clinical significance remains limited. Over the last decade, however,
powerful experimental approaches have emerged to characterize variant effects orders of magnitude faster than before.
Fueled by improved DNA synthesis and sequencing and, more recently, by CRISPR/Cas9 genome editing, multiplex
functional assays provide a means of generating variant effect data in wide-ranging experimental systems. Here, I review
recent applications of multiplex assays that link human variants to disease phenotypes and I describe emerging strategies
that will enhance their clinical utility in coming years.

Introduction: The Challenge of Going from
Variant to Function
Millions of human exomes and genomes have now been
sequenced, yet we have only observed a small fraction of
the rare variants in people alive today. Estimates of de novo
mutation rates suggest that every single nucleotide variant
(SNV) compatible with life occurs at least once per generation
(1). In the genome aggregation database (gnomAD), comprising
exomes and genomes from ∼141 000 individuals, the majority
of observed variants occur in exactly one individual and only
11.5% of possible synonymous SNVs occur at all (2). Improved
sampling of genetically diverse populations will undoubtedly
reveal new variants associated with phenotypes (3–5) but will
also yield more rare variants whose phenotypic consequences
are unknown. Similar to germline variants, large numbers of
somatic mutations have been observed across cancer genomes
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(6,7). A small fraction occurs repeatedly, yet vastly more are
unique variants with unknown effects on disease.

Through approaches ranging from direct-to-consumer
genetic testing and liquid biopsies to whole-exome and whole-
genome sequencing, more patients than ever before are
receiving genetic test results (8). The value of identifying a
causal germline variant has been well established for monogenic
diseases (9–11). Furthermore, targeted therapies available to
treat genetic diseases and cancers are giving clinicians the
means to capitalize on the knowledge of variant effect more
than ever before (12–16).

Yet, the translational potential of genomics remains limited
largely by our inability to predict which variants observed in
patients influence actionable phenotypes. For coding variants
in genes commonly sequenced, this problem is manifest in
hundreds of thousands of variants of uncertain significance

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/article/30/R
2/R

187/6334582 by Francis C
rick Institute user on 08 O

ctober 2021

https://academic.oup.com/
https://doi.org/10.1093/hmg/ddab219
http://creativecommons.org/licenses/by/4.0/


R188 Human Molecular Genetics, 2021, Vol. 30, No. 20

(VUS) in databases such as ClinVar (17). These are often missense
or splice variants that may alter a gene’s function in one of
several ways (e.g. loss-of-function and gain-of-function), or have
no discernible effect at all. In non-coding sequence, genome-
wide association studies (GWAS) have linked thousands of loci to
disease (18–20), yet pinpointing causal variants and discovering
the precise mechanisms through which they act remain major
bottlenecks to discovery (21). Missing heritability estimates sug-
gest that rare variants of large effect are often missed by current
ascertainment practices (22,23). This is further supported by
less-than-predicted diagnostic yields when genetic testing is
performed for many conditions (24,25).

The challenge of rare variant interpretation stems from
an incomplete molecular accounting of how changes to
deoxyribonucleic acid (DNA) sequence alter function on the
molecular, cellular and organismal levels. Classical genetics
approaches enable variant–phenotype associations without
requiring knowledge of mechanism, but despite growing cohorts
and genomic coverage, they still lack statistical power for
most rare variants (26). Computational models that lever-
age, for instance, sequence conservation (27–29), epigenetic
profiling (30,31) and/or biochemical properties of proteins
(32,33) have improved, but they do not display the accuracy
required for clinical variant classification without additional
evidence.

Functional assays allow researchers to assess variant effects
in isolation—e.g. determining how a missense mutation alters
enzymatic activity, or how a promoter variant impacts gene
expression. It is difficult to develop assays that guarantee
high clinical impact, however, largely because variants may
exert phenotypic effects through myriad molecular mech-
anisms. Furthermore, the incomplete penetrance, variable
expressivity and pleiotropy observed across genetic disease
highlight how complex making clinical predictions from
molecular phenotypes can be. Despite these challenges, if a
given element is linked to disease, functional data can be
highly informative. Accordingly, American College of Medical
Genetics and Genomics (ACMG) guidelines allow well-validated
experimental data to serve as strong evidence of pathogenicity
(34).

Until recently, efforts to classify variants experimentally
have scaled poorly. The vast majority of variants observed
in patients—even many known to be associated with human
phenotypes—have never been tested in a laboratory setting.
This may be starting to change, however, with the introduction
of functional assays to measure variant effects at scale
(35–37).

In this review, I describe how multiplex assays are enhancing
our understanding of variant function in disease, with a focus
on emerging strategies for increasing clinical impact. The chal-
lenge of variant interpretation often requires multiple assays
that measure different molecular and cellular phenotypes to
more fully unravel disease mechanisms. Relatedly, advances in
genome editing are allowing variants to be assayed in their
endogenous context more easily. Seamless integration of assay
data with catalogs of human variation linked to phenotypic data
will allow researchers to rapidly relate experimental findings
to clinical significance. Therefore, as multiplex assays continue
to shed light on the mechanisms underlying variant-phenotype
associations, it follows that soon many more rare variants will
become actionable, leading to tangible benefits for greater num-
bers of patients.

Multiplex assays: measuring variant effects
with deep sequencing
Multiplex assays serve to reveal how each of many DNA
sequences alter biological function. Sometimes broadly referred
to as multiplex assays of variant effect (MAVEs) (37), these
methods include deep mutational scanning (DMS), massively
parallel reporter assays (MPRAs) and saturation genome editing
(SGE), among others (35,38–40) (Fig. 1).

What makes multiplex assays highly scalable is that vari-
ants are engineered and tested in a pooled format, drastically
reducing cost and minimizing sample processing. This is pos-
sible because next-generation sequencing (NGS) is used in a
quantitative fashion to report on the functional effects of each
variant in a pool—i.e. to ‘readout’ the assay. As standard NGS pro-
tocols can provide billions of sequencing reads (41), sequencing-
based readouts have the statistical power to make hundreds of
thousands of quantitative measurements of variant effect.

Since multiplex assays were first demonstrated over a decade
ago, methods for engineering variant libraries and quantifying
results with NGS have matured substantially (37,42). There are
robust strategies to avoid experimental bottlenecks and analysis
frameworks to faithfully extrapolate variant effect measure-
ments from sequencing data (43–47). This has made it possible
for small teams of scientists to quickly test thousands to hun-
dreds of thousands of variants with minimal noise, though care
must be taken to preserve data quality.

Because multiplex assays rely on NGS to measure variant
effects, relatively simple assays have predominated to date.
Common approaches to link variants to their effects rely
on selection of phenotypes, such as cell growth (e.g. gene
essentiality and drug resistance) (40,48–52), fluorescence (e.g.
fluorescence-activated cell sorting (FACS)-based on target pro-
tein abundance or reporter expression) (53–56) or biochemical
properties (57). Pools of cells are sampled corresponding to
different timepoints, treatments or phenotypes, and sequencing
of each pool enables comparison of variant frequencies across
the experiment. For instance, if a variant becomes highly
abundant after a drug treatment, we may infer it confers
resistance. A common strategy for assays that look at regulatory
element function or splicing is to assess transcript abundances
through targeted RNA sequencing, often using molecular
barcoding. A distinct advantage of multiplex assays is that
experiments are internally controlled via inclusion of sequences
with known effects, facilitating systematic comparisons of all
variants in relation to those with established phenotypes.

Developing multiplex assays with high
clinical relevance
The most immediate clinical impact of multiplex assays is being
made via their application to coding sequences, largely because
so many missense variants of unknown function have been
encountered clinically. The groundwork for studying missense
variants at scale was established in 2010. Fowler et al. (57) intro-
duced deep mutational scanning to interrogate >600 000 vari-
ants in the human WW domain using phage display. Concur-
rently, Ernst et al. (58) used a similar strategy to test PDZ domain
variants. Since then, over a million variants across dozens of
different proteins have been engineered and assayed to exam-
ine effects on processes including protein stability, enzymatic
activity, binding interactions, folding and structure, allostery and
many more (51,55,59–65). The nuances of different assays have

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/article/30/R
2/R

187/6334582 by Francis C
rick Institute user on 08 O

ctober 2021



Human Molecular Genetics, 2021, Vol. 30, No. 20 R189

Figure 1. Principles of multiplex assays for interrogating human variant effects. Regions for mutagenesis are chosen from the genome with consideration of variants

associated with disease and various omics data sets. In experimental design (Step I), variant alleles are cloned into an assay-specific construct, such as a reporter vector

(MPRA), expression constructs (DMS), minigene cassettes (splice assays) or constructs to facilitate genome editing (SGE). Variants are then introduced to cells to create

a diverse population in which each variant is present in many cells (Step II). Cell-based and molecular assays compatible with NGS are used to readout the effect of

each variant in the pooled population. In analysis (Step III), sequencing counts are used to assign variants scores that can be compared to established pathogenic and

benign variants. Integrated analysis with other sources of data (e.g. protein structure) can lead to mechanistic insights.

been reviewed elsewhere (42), and a thorough listing is available
online (see https://www.mavedb.org) (66).

Recent deployments of functional assays to study protein
variants have proven to be highly accurate at predicting
pathogenicity when results are benchmarked to clinically
established annotations. A yeast complementation assay was
used to create a variant-effect map for CBS, the gene under-
lying classical homocystinuria (67). In addition to predicting
pathogenic variants more accurately than computational
models, the authors show that the degree of assay impairment
correlates with the age of disease onset and severity in patients.
Likewise, a study of >14 000 amyloid beta variants’ effects on
aggregation enabled accurate identification of all 12 familial
Alzheimer’s variants known to act dominantly despite the
assay being performed in yeast (68). The first DMS of MSH2,
a mismatch repair gene underlying Lynch syndrome in which
>2000 VUS have been reported, achieved over 95% concordance
with prior clinical interpretations of missense variants using
6-thioguanine selection (52). Our study of nearly 4000 BRCA1

variant effects using genome editing likewise showed >96%
concordance with established variant annotations (69). These
results underscore the value relatively simple assays can have
for prospective variant classification when applied to genes with
well-established phenotypes.

Searching for causal variants in non-coding
sequences
Multiplex assays have been used to ask both which non-coding
elements are functionally relevant and how specific variants
alter function. In homage to the first saturation mutagenesis
experiments studying the beta-globin promoter (70), MPRAs use
reporter constructs to ask how DNA sequences function to ini-
tiate transcription. They are particularly useful for testing can-
didate regulatory elements nominated via association studies or
biochemical annotation (71,72).
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In 2009, one of the first multiplex assays to use NGS as a
readout used in vitro transcription to test synthesized promoter
fragments (73). Since then, several renditions of MPRAs have
been performed using episomal- or integration-based cellular
expression systems (74,75). Strategies for quantifying effects
include expressed barcodes (38,39), reading out candidate ele-
ments from RNA directly (76) and using FACS to separate cell
populations based on expression (77). MPRAs have also been
carried out in primary cells, models of stem cell differentiation
and in vivo (38,78–80).

Identifying causal variants in GWAS-implicated loci can pro-
vide new insights into underlying pathways that drive disease
in humans (81). Once validated regulatory elements are linked
to downstream gene targets, for instance, via clustered regularly
interspaced short palindromic repeats (CRISPR) editing (82,83),
further functional characterization may reveal drug targets (84).
While there are relatively few regulatory regions known to har-
bor highly penetrant, pathogenic variants, MPRAs can iden-
tify which variants are critical in such regions. In one exam-
ple, Doan et al. (85) use MPRAs to implicate homozygous vari-
ants in human-accelerated regions underlying autism cases.
In an expansive effort, Kircher et al. (86) tested the functional
effects of >30 000 point mutations across 20 non-coding regions
implicated in disease, including the TERT and LDRL promoters
and the SORT1-associated enhancer. This approach accurately
identified causal variants across loci, thereby establishing the
broad utility of MPRAs to aid classification of rare non-coding
variants.

Multiplex assays are also showing great potential for
identifying splice variants of strong effect. These assays
have largely been performed using minigenes on plasmids
transfected into human cell lines and have relied on transcribed
barcodes, sequencing of variants from RNA or fluorescent
reporter systems (56,87–90). In one powerful example, Rosenberg
et al. (91) used splicing data from millions of degenerate
sequences to train a highly accurate model for predicting
splicing outcomes. A theme emerging from this work is
that many splice-disruptive variants occur relatively far from
canonical splice junctions, often extending deep into exons and
introns. Notably, profiling >27 000 rare variants from human
exomes revealed that nearly 4% disrupted splicing and that the
vast majority of these occurred outside of canonical splice sites
(56).

Beyond splicing, other multiplex assays to study RNA
function include mutating 5′ untranslated regions (UTRs) (92)
and synonymous codons (93) to study translation rates and
mutating 3′ UTRs to assess messenger RNA (mRNA) stability
(94). With more RNA sequencing and whole-genome sequencing
being used clinically, these assays promise to illuminate
additional mechanisms by which variants exert phenotypic
effects in patients (95).

Emerging themes: integration of readouts
from multiple functional assays achieves
greater phenotypic depth
Assays with relatively simple readouts that are broadly general-
izable across loci will prove valuable for scaling experiments to
meet clinical demand. However, recent studies illustrate that
more phenotypically detailed information can be gained by
interrogating libraries with multiple functional readouts and
in multiple cell types (Table 1). Cell-based approaches in which
variant libraries are stably integrated allow cells to be expanded

and assayed in multiple ways (40,50,96,97). One recent study
tested the same MPRA library in five different cell lines to
improve the identification of causal variants from GWAS data
and to nominate cell-type-specific effects (94). Using cell-based
assays, a deep mutational scan of the warfarin-target VKOR was
used to readout both protein stability and enzymatic activity (61).
This dual approach elucidated four transmembrane domains
and key active site residues, while also providing clinical insights
into variants that increase warfarin sensitivity.

Three mutational scans have been performed for TP53, the
tumor suppressor gene most commonly mutated in human
cancer. First, Kotler et al. (98) asked how mutations to the
protein’s DNA-binding domain affect cell growth, both in culture
and in tumor models. Whereas, hotspot mutations did not
confer a growth advantage over null alleles in vitro, they did
in vivo, a finding suggestive of potential gain-of-function effects.
Meanwhile, Giacomelli et al. (99) leveraged CRISPR-screening
data to devise assays in isogenic p53+ and p53-null lines
using multiple drug treatments. The different combinations
distinguished dominant negative variants from loss-of-function
alleles. Finally, Boettcher et al. (100) used a leukemia line to
show that hotspot TP53 mutations act as dominant negatives, a
mechanism that fully explains the TP53 mutational landscape
of acute myeloid leukemia (AML). Collectively, these papers
illustrate how cellular context, genetic background and assay
design can be crucial to elucidate disease mechanisms of
variants.

Two groups have applied mutational scans to the tumor
suppressor PTEN, studying variants’ effects on protein stability
in human cells (55) and lipid phosphatase activity in yeast (59).
Analyzing these data in conjunction with well-curated patient
data revealed variants that increase autism spectrum disorder
(ASD) risk and associate with early-onset cancer (101). Highlight-
ing the value of integrating multiple assays, putative dominant
negative variants were identified that retained stability but not
enzymatic activity.

An alternative approach to layering multiple assays would
be to use a single assay capable of capturing different func-
tional classes of variants. Of note, one group has recently
demonstrated using single-cell RNA-sequencing to interrogate
patient variants observed in the oncogenes NRAS and MYC
(102). Coupling expressed barcodes to each variant allowed
cells to be genotyped and transcriptionally profiled, revealing
distinct pathways activated by specific mutations. Though this
implementation required sequencing >300 000 single cells to
study 200 variants, single-cell readouts may prove advantageous
for exploring variant effects with greater phenotypic depth
going forward.

A common limitation to multiplex assays is the use of
complementary DNA (cDNA) libraries that preclude discovery
of splice-altering variants. Therefore, combining assays that
assess splicing with those measuring effects on the protein level
will be essential to achieve optimal clinical accuracy. Recently,
>1000 variants in POU1F1 were assayed using a minigene
reporter, and 113 were deemed splice-disruptive (90). Two of
these co-segregated with disease in unsolved families with
familial hypopituitarism. In our work on BRCA1, we were able
to measure variant effects on both protein function and mRNA
levels by using SGE. This implicated ∼10% of loss-of-function
missense variants as disrupting splicing (69). With whole-
genome and RNA sequencing becoming more common clinically
(95,103), there will be more opportunities to link splice-disruptive
variants within introns to human phenotypes using multiplex
assays.
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Table 1. Strategies for combining data across multiplex assays to reveal mechanisms

Strategy Benefit Examples

Combining readouts of protein function
Protein stability and enzymatic activity Corroborating pathogenicity; nominating

dominant negative variants
VKOR (61); PTEN (101); nudix hydrolase 15
(NUDT15) (97)

Specific protein function and cell survival Corroborating pathogenicity; linking specific
functions to cell-based phenotypes

BRCA1 (54)

Multiple drug treatments Interrogating pathway dependencies;
mapping resistance mutations

BCR-ABL (50); MCL1, BCL2L1 (117)

Analyzing splicing and protein function
RNA expression and cell survival Improves clinical accuracy by identifying

splice variants (including intronic)
BRCA1 (69); CARD11 (110)

Testing variants in multiple cell lines
Engineered genetic backgrounds Discerns dominant versus recessive effects;

assess epistasis
TP53 (99,100)

Different cell types Reveals cell-type effects on gene regulation;
explains mutational profiles in disease

DNA damage response pathway (118); several
regulatory loci (86,94)

Cancer cell growth in vitro versus in vivo Separating cell-intrinsic and cell-extrinsic
variant effects

TP53 (98)

Emerging themes: genome editing allows
variants to be tested at endogenous loci with
growing ease
As illustrated by variants impacting splicing, it is often advan-
tageous to test variants at their endogenous loci. Apart from
splicing, genomic context can be crucial for maintaining phys-
iological protein expression levels and for assessing variants
in regulatory elements. By way of example, a comparison of
identical MPRAs performed on genome-integrated versus non-
integrated constructs showed only a weak correlation in scores
(104).

To our benefit, genome editing technologies have improved
since the introduction of CRISPR/Cas9 to facilitate more efficient
and precise editing in a wide variety of cell types (105) (Table 2).
Several methods have been established to boost homology-
directed repair (HDR) efficiencies, allowing more efficient
integration of variants of interest (106). Haploid human lines
(e.g. HAP1) can be edited to reveal variant effects that are
recessive on the cellular level (69,107,108), though engineering
polyploid cells to contain a single copy of a target locus may
prove viable for more cell types (109). Likewise, a cloning-
free SGE protocol was recently deployed in a diploid B cell
lymphoma line to link dominant negative variants in CARD11
to rare immunodeficiencies (110).

Base editing and prime editing technologies have emerged
as CRISPR-based alternatives for creating programmed variants
and are continuing to improve through protein engineering (111–
113). Base editors use Cas9 fused to cytosine or adenine deam-
inase domains to achieve targeted editing (111,114), whereas
prime editing is accomplished via Cas9-directed reverse tran-
scription to introduce programmed variants (112). One advan-
tage of these systems is that highly specific variants are cre-
ated without the need for double-stranded breaks and HDR,
suggesting greater scalability may be possible (115,116).

Accordingly, the first large-scale base editor screens were
recently published (117–119). Employing numerous growth-
based assays in human cell lines, Hanna et al. assessed >52 000
ClinVar variants, discovering loss-of-function variants in disease
genes and mapping protein residues where variants alter
responses to targeted therapies. With similarly broad coverage,
Cuella-Martin et al. used base editing to engineer missense

variants across 86 DNA damage response genes, discovering
functionally critical protein domains and providing evidence for
VUS reclassification. Importantly, these screens required careful
validation to confirm guide RNAs (gRNAs) scored as hits were
creating the intended edits.

Though currently limited by lower editing efficiencies, opti-
mization of prime editing systems may further facilitate satu-
ration mutagenesis of endogenous loci (120). A recent preprint
describes ‘saturation prime editing’, using libraries of prime edit-
ing gRNAs to resolve pathogenicity for hundreds of variants in
BRCA2 and NPC1 (121). In the future, coupling improved versions
of these technologies with CRISPR tools to identify regulatory
elements (122) will help reveal the functional impact of rare vari-
ants at regulatory loci. Overall, the rapid pace of improvement
to CRISPR reagents suggests that, in coming years, engineering
large numbers of variants in their endogenous context may
become as easy as engineering them on plasmids.

Emerging themes: large genetic databases and
multiplex assays synergistically improve
variant classification
Multiplex assays are inherently orthologous to classical genet-
ics approaches and computational predictors. Therefore, new
experimental data sets can be benchmarked using established
genotype–phenotype relationships. Majithia et al. (53) used a
FACS-based assay to measure the effects of ∼10 000 PPARG vari-
ants and found many of the lowest scoring alleles were exclusive
to type 2 diabetes patients in a cohort of ∼20 000 individu-
als. Applying SGE to BRCA1, we could immediately validate our
results via comparison to hundreds of variant interpretations
provided in ClinVar (69). Other groups have since used BRCA1
SGE data to reanalyze variants seen in hereditary cancer pre-
disposition testing. In one cohort, clinical records were used to
show that BRCA1 variants deemed loss-of-function by SGE con-
fer a clinical risk indistinguishable from previously established
pathogenic variants (123). This example illustrates how multi-
plex assays can be rapidly validated with pre-existing genetic
data and subsequently used to reclassify variants observed in
patients (Fig. 2).
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Table 2. Selected genome editing assays for testing human variant at scale

Method Paper Description Assay

SGE (40) HDR-mediated integration of variants at
Cas9-targeted loci

Hexamer effects on splicing in HEK293 (n = 4048);
DBR1 variant fitness in HAP1 (n = 365)

(69) (as above) BRCA1 variant effects on HAP1 fitness (n = 3893)
and transcript levels (n = 2646)

(110) Cloning-free SGE with single-stranded
DNA repair templates

CARD11 variant effects on TMD8 growth +/−
ibrutinib and transcript levels (n = 2542)

Base editor
screens

(119) gRNA libraries used with base editing to
introduce specific variants

n = 745 gRNAs targeting all exons of BRCA1 for
fitness effects in HAP1

(117) (as above) n = 70 000+ gRNAs tested in various cell lines
(HAP1, MELJUSO, A375 and HT29) and assays (drug
sensitivity, resistance and fitness of 57 000+
ClinVar variants)

(118) (as above) n = 50 000+ gRNAs to tile 86 DNA damage response
genes, assaying essentiality and response to DNA
damage drugs in MCF10A, MCF7 and HAP1

Saturation
prime editing

(121) Prime editing gRNAs designed to achieve
saturation mutagenesis

Variant effects on lysosome trafficking (NPC1;
n = 256) and growth (BRCA2; n = 465) in 293T

Figure 2. Integration of multiplex assays with genetic data from patients. Large numbers of VUS are observed in clinical testing and many loci associated with disease

have yet to be functionally studied. These are priority targets to study using multiplex assays. Such assays can be rapidly validated via comparison to existing knowledge

of variant effect and then integrated with large genetic data sets to improve diagnosis and help guide therapeutic strategies.

Large genetic databases lacking disease associations (e.g.
gnomAD) also have utility for evaluating multiplex assays. Vari-
ants predicted to be deleterious by an assay should be seen
less frequently in humans if they occur in genes under puri-
fying selection, a trend now observed across multiple studies
(52,69,101). Going forward, genetic data sets with deep phenotyp-
ing, such as the UK Biobank (124), will provide greater context for
linking variant effects in vitro to human phenotypes. Recalling
patients or accessing banked samples by genotype will enable
rapid follow-up studies of variants deemed functionally relevant
to disease.

Variant databases are increasingly incorporating results from
functional assays (17,125) as well as predictions from machine
learning methods (126–128). Models of variant effect built from
multiplex assays have also been used to impute missing data
and to predict deleterious variants genome-wide (44,129). As
more experimental data are generated, such models will incre-
mentally gain predictive power and may soon be able to accu-
rately predict the effects of far more variants than can be assayed
currently. To maximize the benefit of both multiplex assay data
and improved computational models, we will require better tools

for efficiently integrating multiple lines of evidence into clinical
interpretation algorithms.

Conclusions and Future Challenges
In summary, multiplex assays have become a powerful means
of generating variant effect data, and recent studies showcase
how these technologies are starting to bring benefits to clinical
variant interpretation.

Toward accurately reporting on the broad range of genetic
effects throughout human development and disease, optimizing
multiplex approaches in model systems, such as stem cells,
organoids and in vivo models, will be a major challenge to
overcome (130). Additionally, epistasis remains very difficult to
test on the scale of individual variants owing to the immense
number of potential interactions (131). Multiplex assays have the
potential to improve variant interpretation for diverse popula-
tions that have been historically underrepresented in genetic
studies (132). To make this work, however, we must ensure well-
curated experimental data sets are widely available and take
care to assess their utility across different populations. Global
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efforts to securely share genetic data will help facilitate this
(133,134).

Despite these considerable challenges, the impact of these
powerful technologies is already starting to be seen. By sys-
tematically testing large numbers of variants across numerous
assays, we are building the basis for a more unbiased and quan-
titative understanding of genotype–phenotype relationships in
humans. In coming years, multiplex assays will continue to
reveal the genetic mechanisms underlying disease phenotypes,
and in doing so, substantially improve the clinical utility of
genetic data.
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