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Alternative approaches to generalized sidelobe
canceler

Phan Le Son

Abstract—The generalized sidelobe canceler (GSC) decom-
poses the beamforming into two paths: The upper path is to
preserve the desired signal, the lower path is to suppress the
desired signal. The GSC design was proposed in the time-domain,
then it is easily applied for the broadband beamforming. From
beampattern viewpoint, we propose alternative approaches to
the GSC, the new algorithms mainly modify in the lower path,
that is, instead of using the blocking matrix to suppress the
desired signal, we design a beamformer that contains the nulls
at the look direction and some other directions. We claim that
the beamforming with a null at look direction performs a similar
function to the blocking matrix. Moreover, the GSC subtracts two
beampatterns to suppress the side-lobes, this amplifies noise when
the sidelobes of the upper path beampattern are not identical to
the lower path beampattern, especially at the null positions of
the upper path beampattern. To tackle this issue, we insert those
nulls to the lower path beampattern to increase the similarity
of the beampatterns at two paths. By doing so, we propose two
variants of the GSC, one is the fixed beamforming where the
adaptive filter in the lower path of the GSC is removed and the
other is the adaptive beamforming where only one adaptive filter
is used.

Index Terms—Fixed beamforming, adaptive beamforming, su-
perdirective beamforming, differential microphone array.

I. INTRODUCTION

Array signal processing (ASP) [1], [2] has been widely
employed in diverse areas such as acoustics [3], [4], radio-
interferometry [5], [6], radar and sonar systems [2], [7],
wireless networks [8], [9], [10] and medical imagery [11].
Beamforming is an important topic in ASP [1], that is the
process of performing spatial filters to preserve the signal from
directions of interest while suppressing interfering signals
and noise arriving from other directions. A fixed beamformer
is a beamformer whose coefficients are independent on the
measurement signals, it normally uses to suppress stationary
noise. On the other hand, an adaptive beamformer is the
beamformer whose coefficients depend on or adapt to measure-
ment signals, it is capable of suppressing interferences but it
suffers from computationally intensive and signal distortions.
In many applications, the bandwidth of signals of interest
spreads over several octaves, therefore the characteristics of
the beamformer should be invariant over frequency of interest,
which is achieved via the so-called broadband beamforming.

For instance, if noise fields are stationary and well-defined,
then using fixed beamforming is a reasonable choice. Most
fixed beamformer have a closed-form expression for beam-
former coefficients. For example, the delay and sum beam-
forming (DSB) is the simplest beamforming technique where
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the signal of sensors are delayed to align in phase and then
be summed [12]. Actually, beamformer coefficents of DSB
are the optimal solution for the noise suppression when only
white noise is immersed in the signal. Later, superdirective
beamforming (SD) [13] was proposed to consider the presence
of diffuse noise. However, at low frequencies, the SD beam-
forming amplifies white noise. Therefore, the regularization of
SD, considering white noise, is commonly used in practical ap-
plications. For acoustic signals, differential microphone arrays
(DMAs) are used in the variety of applications. Conventional
DMA is based on the spatial derivatives of the acoustic
pressure field [14], [15], [16]. Since the sensor spacing of
the DMA is much smaller than the acoustic wavelength,
the DMA is small in size and can be easily mounted into
other devices. On the other hand, based on the short-time
Fourier transform (STFT), spatial filtering is applied to form
a differential beamformer in each subband [17], [18], [19],
[20]. The order of the differential beamformer could be
designed by selecting the number of null-constraints and the
type of differential beamformer could also be obtained by
assigning the null positions and/or changing the optimization
objective function such as maximum front-to-back ratio for a
supercardioid microphone, maximum directivity index for a
hypercardioid, etc.

The early adaptive beamforming technique is the linearly
constrained beamforming [21], which minimizes the energy
of array output with subject to distortion-less at look di-
rection. Over the years, the general approach for this class
of beamformer has been studied as the so-called linearly
constrained minimize variance (LCMV) [12], [22], [23] where
the objective is to minimize the variance of the array output,
that enables to solve the problem from statistical viewpoint. In
LCMV, the input signals are modeled to the covariance matrix
computed via multiple frames observation, then the closed-
form expression for the solution is derived for some simple
cases. An alternative approach to linearly constrained adaptive
beamforming was proposed by Griffiths and Jim in [24], that
is the general sidelobe canceler (GSC) beamformer. In GSC,
they modified the constrained problem in [21] to unconstrained
problem by introducing a fixed beamforming at the upper path
and a blocking matrix at the lower path. The lower path signals
are filtered by the adaptive FIR filters before be subtracted
from the upper path signal. This scheme could preserve the
signal of interest (SOI) in the upper path while removing
the noise in the lower path. This simple approach could be
easy to deploy in the real-time implementation. Besides, the
GSC can be designed and processed in the time-domain, it
is well-suited to broadband signal processing [25]. However,
in practical applications, steering vector errors are inevitable,
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then the conventional blocking matrix could not block the
target signal effectively, that degrades the performance of the
GSC. To address those problems, robust adaptive beaformers
based on GSC structure were proposed. In [26], [27], [28],
they regard the blocking matrix as a set of filters where spatial
and temporal frequency are merged to a single variable of the
filter, then suppressing signals from a set of look direction
at temporal frequency band is achieved by high-pass filter
design. It is therefore flexible to expand the region of look
direction to tolerate mismatches. However, these approaches
reduce the degrees of freedom for interference cancellation.
Later, Hoshuyama at al. in [29] added adapter filters inside
the blocking matrix to minimize the leakage of target signal in
the lower path. They restrict filter coefficients of the blocking
matrix within a defined region associated with the tolerant
region of look direction. This method increases the robust of
the beamformer against steering vector errors without loss the
degrees of freedom for interference reduction. On the other
hand, instead of using the steering vector model, Gannot at
al. in [30] considered acoustic transfer function ratios as the
input of GSC and proposed a GSC solution which can be
applied in a reverberating room. The transfer function ratios
can be re-estimated if the acoustic environment has changed.

In general, most researches focus on blocking matrix de-
sign to remove the leakage effectively. However, subtracting
structure in GSCs has another issue that has not addressed
explicitly, e.g., noise/interference in the lower path and in the
upper path are much different, then subtracting them does not
suppress the noise/interference effectively (noise/interference
in the upper path leaks to the final output). In this paper,
we explain this issue from the beampattern perspective and
propose a simple approach to overcome this problem. We
regard the blocking matrix as the first order differential
beamformings with a null at the look direction. Then, we
analyze the difference between upper path’s and lower path’s
beampatterns. In most of cases, the sidelobes of the upper
path beampattern is much different with the lower path’s
beampattern and the difference is varying over frequency.
Then, the subtraction can not remove the sidelobes effectively.
Furthermore, the blocking matrix generates multiple almost
identical beampatterns at the lower path, that is somewhat
redundant.

To overcome those problems, we propose modified GSCs,
that is, instead of using a blocking matrix in the lower path, we
design a beamformer that has a null at look direction and some
nulls at the nulls’ position of the upper path beamforming.
Some extra nulls at the lower path make the lower path
beampattern is more similar to sidelobes of the upper path
beampattern. Besides the shape of beampatterns, phases of
beampatterns are also important that should be aware before
subtracting the signals. For instance, the phase of the upper
path and lower path beampattern are almost stable over the
direction, we can use a fixed scale value in the lower path
to correct the phase and amplitude of the subtracted signal.
That is the case when the array layout is symmetric and the
reference point is selected at the center of the array. As such,
a fixed beamforming is proposed, referred to as a variant of
the GSC. On the other hand, the phase difference is varying

over the direction, we use an adaptive FIR filter at the lower
path. Depending on the direction of interferences at an instance
time, the FIR filter can scale the amplitude and adjust the
phase of the lower path beampattern accordingly. Furthermore,
to avoid target signal distortion at the final output, updating
filter coefficients should be performed when the signal-to-
interference ratio (SIR) is low [29], then we propose a simple
method to change the step size of the adaptive FIR filter based
on the energy of upper path and lower path signals. This
adpative beamforming is also considered as another variant
of the GSC. We briefly summarize the contributions of our
work on beamforming design as follows:

1) We present some new insight into the GSC beamformer
where we claim that the response of the blocking matrix
is similar with that of first order Cardiod beampatterns
with the null at look direction. From beampattern stand-
point, we draw some disadvantages of the GSC.

2) We propose a fixed beamforming designed for a sym-
metric array layout. For this kind of array layout, we
prove that the complex-valued beampattern of superdi-
rective beamforming contains only the real part if we
select the reference point at the center of the array. The
beamforming designed by this approach has a frequency-
invariant mainlobe and the sidelobes are suppressed as
much as possible.

3) For an arbitrary array layout, we propose an adaptive
beamforming design. Its performance is not only su-
perior to other methods, the computational complexity
is also reduced. Moreover, this methodology gives the
opportunity to combine multiple arrays to form a single
expected beampattern.

4) We conduct the simulations and experiments to extermi-
nate the proposed methods.

As the basis of our proposed approaches, we review the
GSC beamforming in Section II. In Section III, we propose
two alternative approaches to the GSC: A fixed beamforming
with suppressed sidelobe (FBSS) and an adaptive beamform-
ing with suppressed sidelobe (ABSS). The simulations and
their results are provided in Section IV. The experiment is
presented in Section V. Finally, the conclusion is drawn in
Section VI.

II. GENERALIZED SIDELOBE CANCELER

Consider an array with M sensors, the GSC algorithm was
proposed in the time-domain [24] where the signal of sensor
m at the discrete time index n is defined by

xm(n) = sm(n) + nm(n), m = 1, . . . ,M

where sm(n) and nm(n) are the signal of interest (SOI) and
noise, respectively. We can present the SOI at a sensor as the
wave propagation from the source to the sensor

sm(n) = am ∗ s0

where am is the transfer function of the wave propagation, s0
is the source signal and ‘∗’ is the convolution operation.
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Let xA(n) be the time-alignment towards the look direction
of x(n) = [x1(n), . . . , xM (n)]T , normally xA(n) is imple-
mented by fraction delays of the measurement signals. Fig. 1
plots the overview of GSC.

Fig. 1: Schematic description of the decomposition of the optimal
weight vector into two orthogonal parts.

In the lower path, the SOI portion sm(n) m = 1, . . . ,M is
aligned and suppressed via a blocking matrix B

xB(n) = BxA(n)

where xB(n) size of M−1 is the vector output of the blocking
matrix, this signal vector should exclude the SOI. To do so,
the blocking matrix B has to fulfill the following properties
[24], [14]:

• The size of the matrix is (M − 1)×M
• The sum of all values in one row is zero
• The matrix has to be of rank M − 1.

An example of blocking matrix for the case M = 4 is

B =

1 −1 0 0
0 1 −1 0
0 0 1 −1

 . (1)

The vector xB is processed with adaptive FIR filters H =
[h1, . . . ,hM−1]

T and then be subtracted from the upper path’s
signal (e.g., the output of DSB) to get the noise-reduced signal,
that is

y(n) =

L−1∑
i=0

yDSB(n− i)gf [i]−
M−1∑
i=1

L−1∑
j=0

{
xB(n− j)

}
[i]hi[j]

(2)
where [.] indicates an element in a vector/matrix, yDSB(.) is
the output of the DSB, gf is a fixed FIR filter which ensures
a specified gain and phase response for the output signal, L
is the length of FIR filters.

The early paper of GSC [24] used an iterative procedure to
adaptive updating hi,∀i = 1, . . . ,M − 1 in the least-mean-
square sense

{hi[k]}n+1 = {hi[k]}n + µ0y(n)xB(n− k), k = 1, . . . , L
(3)

where µ0 is the normalized step size computed from a small
factor β0 by

µ0 =
β0∑M−1

i=1

∑L−1
j=0 ({xB(n− j)

}
[i])2

. (4)

In summary, (2), (3) and (4) are the procedure of the GSC
algorithm. The beamforming in the upper path and the block-
ing matrix are selected flexibility. However, how the selections
affect the performance of GSC is not clearly explained.

From beampattern standpoint, we observe that one output of
the blocking matrix xB [m], m = 0, . . . ,M − 2 is equivalent
to the output of differential beamforming, that is delay and
subtract signals. In case of a uniform linear array (ULA), its
output contains M − 1 almost identical first-order Cardioid
beampatterns having null at look direction.

Fig. 2: An output of the blocking matrix.

As example for the ULA, at rotation frequency ω, the mth
output element of the blocking matrix in (1) to the signal at
an incident direction θ is given by

bm(ω, θ) = e−jω
mdH cos θ

c e−jTm − e−jω
(m+1)dH cos θ

c e−jTm+1

= e−jω
mdH cos θ

c ejω
mdH
c − e−jω

(m+1)dH cos θ

c ejω
(m+1)dH

c

= e−jωmdH
cos θ−1

c (1− e−jωdH
cos θ−1

c )

where Tm and Tm+1 are the time delays at the sensor m and
m+1, respectively, dH is the inter-distance of sensors, c is the
wave speed and j is the imaginary unit. Then,

|bm(ω, θ)| = |1− e−jωdH
cos θ−1

c |

is the first order Cardioid beampattern with null at θ = 0o if
dH << πc/ω [31], as illustrated in Fig. 2.

In the upper path, if a DSB is selected, then the gain of the
beampattern obtains the maximum value at the look direction
and less than that for other directions, e.g. Fig. 3 plots the
DSB beampattern of ULA (endfire) with nine sensors (the
inter-distance is 2.5 cm) at different frequencies.

It is clearly seen that the sidelobes of the upper path’s
beampatterns are much different with the first-order Cardiod
beampatterns in the lower path and the difference is varying
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Fig. 3: Example for the DSB’s beampatterns of the ULA at different
frequencies.

over frequency. Therefore, the GSC needs to use adaptive
filters that act as gain and phase controls for the first-order
Cardiod beampatterns before subtracting them from upper
path’s beampattern. Also, the GSC uses M−1 almost identical
beampatterns in the lower path, that is somewhat redundant,
because scaling and sum many identical beampatterns are
equivalent to scaling a single beampattern. That motivates us
to modify the GSC in this study.

III. ALTERNATIVE APPROACHES TO THE GENERALIZED
SIDELOBE CANCELER

The problem of subtracting different beampatterns in the
GSC could be mitigated if we can design the lower path
beamformer whose beampattern is almost identical to side-
lobes of the upper path beampattern. That implementation is
indeed feasible via the SD with multiple constraints where
the nulls position can be inserted arbitrarily. To simplify our
problem, in this paper, we restrict the spacing of sensors to
be small compared to wavelengths of signal. That prevents the
spatial aliasing issue which causes extra nulls in synthesized
beampatterns.

At a narrow band in STFT, let x(ω) =
[x1(ω), . . . , xM (ω)]T be a measurement vector of the
array at the rotation frequency ω , then the array response
with beamforming is

y(ω) = w(ω)Hx(ω) (5)

where w(ω) = [w1(ω), . . . , wM (ω)] is the weight vector of
the beamformer. The objective of SD with multiple constraints
is to minimize the noise energy with subject to distortionless
at the look direction and nulls at certain directions. Assume
we want to design a beampattern having N nulls at θ1, . . . , θN
and the distortionless at θ0, then the optimization problem is
given as

minimize
w(ω)

w(ω)H(Γ(ω) + µI)w(ω)

subject to

w(ω)HD(ω) = iT

(6)

where D(ω) = [d(ω, θ0),d(ω, θ1), . . . ,d(ω, θN )] is the ma-
trix size of M × (N + 1) containing N + 1 steering vectors,
Γ(ω), I are the correlation matrix of diffuse noise and white
noise, respectively, µ is a number deciding the noise model
and i = [1, 0, . . . , 0]T is a vector size of N + 1.

Using the Lagrange multipliers method, the solution of SD
with multiple constraints is given by [12]

w(ω) =
(Γ(ω) + µI)−1D(ω)

D(ω)H(Γ(ω) + µI)−1D(ω)
i. (7)

For conciseness, we omit ω in the formulas in the remainder
of this section whenever possible.

To manipulate the shape of beampattern, instead of using
the DSB in the upper path, we also use a SD beamfomer
in the upper path where the look direction is assured by the
distortionless constraint, the sidelobe’s shape and beamwidth
are designed by nulls’ position. For instance, the different
phase response of the beampatterns at the lower and upper
paths are almost equal over the spatial directions except the
mainlobe region of upper path beampattern, we could apply a
fixed filter to align the phase and scale the amplitudes before
subtracting them. That enables us to use a fixed beamforming
as an alternative approach to GSC. On the other hand, the
different phase response of the beampatterns at the lower and
upper paths is much varying over the spatial directions or we
want to use more beamfomers at the lower path, we need to
use an adaptive filter at the lower path, that is considered as
a variant of GSC.

A. Fixed beamforming with suppressed sidelobes

At a narrow band in STFT, we design two beamformers, one
is to construct the mainlobe with expected beamwidth (upper
path beampattern) and the other is to replicate the sidelobes of
the upper path beampattern (lower path beampattern). Then,
we subtract the scale of lower path’s signal from the upper
path’s signal to achieve a beampattern with suprressed side-
lobes. Fig. 4 plots the block diagram of the fixed beamforming
with suppressed sidelobes (FBSS).

Fig. 4: Fixed beamforming with suppressed sidelobes.
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On the upper path, the beamformer is designed by

wu =
(Γ + µI)−1Du

DH
u (Γ + µI)−1Du

iu (8)

where Du = [d(θ0),d(θ1), . . . ,d(θN )] is the matrix size of
M × (N + 1) containing N + 1 steering vectors, and iu =
[1, 0, . . . , 0]T is a vector size of N + 1.

On the lower path, the beamformer is designed by

wl =
(Γ + µI)−1Dl

DH
l (Γ + µI)−1Dl

il (9)

where Dl = [d(θm),d(θ0),d(θ1), . . . ,d(θN ), . . . ,d(θN+K)]
is the matrix size of M × (N +K+2) containing N +K+2
steering vectors, θm is any direction that makes wl 6= 0 (e.g.
θm is at the peak of sidelobes of upper path beampattern),
θN+1, . . . , θN+K are the extra null directions in the upper path
beampattern added by spatial aliasing effect when changing
the frequency and il = [1, 0, 0, . . . , 0]T is a vector size of
N +K + 2.

The array response of the upper path beamforming at
direction θm is

α = wH
u d(θm) = iTu

DH
u (Γ + µI)−1d(θm)

DH
u (Γ + µI)−1Du

. (10)

Beamforming with suppressed sidelobes is designed by

w = wu − αwl. (11)

Consider the class of arrays which are symmetric to the
reference point, then the array response at the lower path and
upper contain the real value only. For example, a ULA has a
reference sensor at the center of array (M is an odd number),
the steering vector is defined as

d(θ) = [e
jω(M−1)dH cos θ

c , . . . , e
−jω(M−1)dH cos θ

c ]T = [aT , 1,aH ]T .

Similarly, we could present Du as two conjunction parts

Du = [AT
u ,1,A

H
u ]T

where 1 is the vector size of N + 1 containing one for all
element. The array response at the upper path,

Bu(θ) = wH
u d(θ) = iTu

DH
u (Γ + µI)−1d(θ)

DH
u (Γ + µI)−1Du

or

Bu(θ) = iTu
[AH

u ,1,A
T
u ](Γ + µI)−1[aT , 1,aH ]T

[AH
u ,1,A

T
u ](Γ + µI)−1[AT

u ,1,A
H
u ]T

(12)

is a real number (see Appendix A).
We can obtain the similar result for the lower path beam-

forming. Then, this kind of array could be applied with the
FBSS. From (11), it is clear that the FBSS is a beamforming
that can be used to design a broadband beamforming where the
mainlobe is maintained over frequency, while the sibelobes are
suppressed as much as possible but may vary over frequency.

In a nutshell, we use (8), (9), (10) and (11) to design fixed
beamforming for a symmetric array layout. The numerical sim-
ulation section will present some examples of this approach.

B. Adaptive beamforming with suppresed sidelobes

Analogous to the GSC, in this section, the proposed method
is presented in the time-domain.

In case of spatial phase response of beamforming is com-
plicated (vary over direction), we need a robust approach
that can be adaptively updated the phase and gain of lower
path beamforming before subtracting it from the upper path
beamforming, which is called an adaptive beamforming with
suppressed sidelobes (ABSS). Depending on the interference
directions, at a narrow band, the appropriate gain and phase
shift for the lower path beamforming is updated via an adaptive
FIR filter.

Fig. 5: Adaptive beamforming with suppressed sidelobes.

In Fig. 5, beamforming of the lower path and upper path
are designed similarly to the FBSS, except that the coefficients
are transformed to the time-domain as a set of fixed spatial
filters, i.e., Wu,Wl are the spatial filters’ coefficients in the
time-domain for the lower path and upper path, respectively.

Beamforming at the lower path is performed in the time-
domain by spatial filtering

yl(n) =

M−1∑
i=0

L1−1∑
j=0

{x(n− j)}[i]Wl[i, j] (13)

where L1 is the length of the spatial fitter of the lower path,
Wl has dimension of M × L1, computed from (9) for the
frequency of interest.

Beamforming at the upper path is performed in the time-
domain by spatial filtering

yu(n) =

M−1∑
i=0

L2−1∑
j=0

{x(n− j)}[i]Wu[i, j] (14)

where L2 is the length of the spatial fitter of the lower path
(normally we set L1 = L2), Wu has dimension of M × L2,
computed from (8) for the frequency of interest.

The final output of ABSS is given as

y(n) = yu(n)−
L−1∑
i=0

yl(n− i)h[i] (15)

where L is the length of the adaptive FIR filter h.
The objective function is to minimize the energy of the

output signal, that is the unconstrained optimization given by

minimize
h

y(n)2 = (yu(n)−
L−1∑
i=0

yl(n− i)h[i])2. (16)
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That is a quadratic function, the gradient is given explicitly
by

g = −2y(n)b

where b = [yl(n), . . . , yl(n− L+ 1)]T . The gradient descent
method can be applied to update h iteratively,

{h}n+1 = {h}n − αn{g}n (17)

where αn is the step size and {.}n is the vector/matrix at
nth iteration. For very small values of αn, the correction of
{h}n is small and the movement down the quadratic surface
is slow, and as αn is increased, the rate of descent increases.
However, there is an upper limit on how large the step size
may be. For values of αn that exceed this limit, the trajectory
of {h}n becomes unstable and unbounded [32].

Taking the expected value of equation (17), we have

E
[
{h}n+1

]
= E

[
{h}n

]
+ 2αnE

[
(yu(n)− bT {h}n)b

]
or

E
[
{h}n+1

]
= (I− 2αnRx)E

[
{h}n

]
+ 2αnru

where Rx = E[bbT ] and ru = E
[
yu(n)b

]
.

Subtracting h from both sides of this equation, we have

E
[
{h}n+1

]
− h = (I− 2αnRx)E

[
{h}n

]
+ 2αnru − h

Note that h is the solution of Wiener-Hopf equation, or ru =
Rxh, then

cn+1 = (I− 2αnRx)cn

where cn = E
[
{h}n

]
−h is the weight error vector at step n.

It is clearly seen that if we select αn to satisfy the maximum
eigenvalue of matrix (I−2αnRx) be less than 1, then {h}n+1

converges to h.
In Fig. 5, we adopt the normalized least-mean-square (LMS)

algorithm for the adaptive FIR filter, that is

{h}n+1 = {h}n +
β

bTb
y(n)b, (18)

where β is the normalized step size with 0 < β < 1. With the
normalization of the step size by bTb, that avoids the gradient
noise amplification when b is large [32].

The major problem of this structure is the ‘signal leak
through’ [33] which may result in desired signal distortion.
The ‘signal leak through’ occurs when the lower path does not
complete suppress the desired signal and this can be problem-
atic for broadband beamforming where it is difficult to ensure
perfect signal cancellation across the frequency of interest
[34]. In addition, the interference is partially suppressed in the
final output, that happens when the lower path beampattern is
not similar to the upper path beampattern’s sidelobes, which
leads to the interference in the upper path leaks to the final
output.

To avoid misadjustment, filter coefficients should be updated
only when the SIR is low [29] but estimating SIR is somewhat
computationally expensive, e.g. using voice activity detection.
In fact, our unconstrained problem has a special structure that
can be utilized to estimate the SIR, that is, a ratio of energy
between the lower path and upper path signals. Suppose that
when the SOI is active or the SIR is high, the energy of

the upper path signal dominates the energy of the lower path
signal and vice versa (an example of this ratio is illustrated in
Fig. 23). Then, we propose a rule to change the normalized
step size: When the energy ratio is high, β is increased and
vice versa. Thus, the adaptive normalized step size βa is
defined as

βa =
bTb

bT
ubu

β, (19)

where bu = [yu(n), . . . , yu(n−L+1)]T is a vector containing
signals in the upper path. Then, we replace (18) by

{h}n+1 = {h}n +
β

bu
Tbu

y(n)b. (20)

In case the energy of interference dominates the energy of
SOI, the formula (20) is better than the formula (18) since
bTb
bTubu

> 1 and it increases the convergence speed. So, we can
use (20) to replace (18) to further improve the convergence
rate of the filter coefficients, while still assuring the trajectory
of {h}n is stable.

The computation in (20) has the complexity of O(2L),
then total computational complexity of the proposed method
is O(ML1 +ML2 +3L) which is less than that of the GSC,
O(ML1 +ML2 + 3ML).

From the beampattern subtracting pointview, for the instan-
taneous interferences, the gain and phase in the lower path
beampattern are updated accordingly to synchronize to the
gain and phase of critical sidelobes of the upper path beam-
pattern. Updating is performed via the sense of minimizing
the output signal’s energy. Analogous to the GSC, this uncon-
strained LMS algorithm is the simplest form compared to other
adaptive beamformings, e.g. Frost beamforming [21], LCMV
or minimum variance distortionless response. Compared to the
GSC, the computational complexity of this method is reduced,
since only one adaptive FIR filter is used instead of M − 1
adaptive FIR filters. Moreover, the proposed method aims to
avoid the drawbacks of the GSC, then its performance is
superior to the GSC that will be illustrated in the simulation
section.

IV. NUMERICAL SIMULATION

A. Fixed beamforming with suppressed sidelobes

The white noise gain (WNG) shows the ability of the array
to suppress the incoherence noise, such as self-noise, array
imperfection, etc. That is given by [14],

W (w(ω)) =

∣∣wH (ω)d(ω, θ0)
∣∣2

wH (ω)w (ω)
(21)

where w(ω) is the weight vector of beamforming, d(ω, θ0) is
the steering vector of the look direction.

Another index used to evaluate the beampattern is the
directivity factor (DF), it measures the ability to preserve the
source of interest while suppressing the signal coming from
other directions [14],

D(w(ω)) =

∣∣w(ω)Hd(ω, θ0)
∣∣2

w(ω)HΓ(ω)w(ω)H
(22)
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where Γ(ω) is the pseudo-coherence matrix of the diffuse
noise field,

Γ (ω) [i, j] = sinc
(
ωdij
c

)
where dij is the distance between sensor i and sensor j, c is
the wave speed.

(a) 1 kHz.

(b) 4 kHz.

(c) 5.5 kHz

Fig. 6: Beampatterns at some frequencies: (left) upper path beampat-
tern, FBSS and SDM, (right) lower path beampattern.

We simulated broadband beamforming for a uniform linear
array of M = 7 sensors with the inter-distance dH = 0.02 m,
the reference sensor is at the middle of the array. The upper
path beampattern has a look direction at 0o and fixed nulls at
70o, 150o. Then, the lower path beampattern has fixed nulls
at 0o, 70o and 150o, and we set θm = 180o. Due to spatial
aliasing at high frequencies, there are some extra nulls at the
upper path beampattern, we need to insert these nulls to the
lower path beampattern as well. The noise model parameter µ
in (7) is set 0.1 for all simulations.

In comparison, we also design superdirective beamforming
with multiple constraints (SDM) with look direction at 0o and

fixed nulls at 70o, 150o and 180o. In Fig. 6, we plotted the
beampatterns at 1 kHz, 4 kHz and 5.5 kHz, it is clear that
sidelobes of the upper path beampattern are suppressed for
all frequencies, especially the sidelobe contains θm = 180o is
almost completely suppressed. In comparison with the SDM,
both always assure the nulls at 70o, 150o and 180o, but the
FBSS has smaller sidelobe regions at high frequencies, e.g.,
4 kHz and 5.5 kHz in Figs 6b and 6c, respectively. Note that
the number of nulls at Figs. 6a, 6b and 6c are different, that
causes the spatial aliasing effect.

Fig. 7, Fig. 8 and Fig. 9 plot the broad beampattern from
500 Hz to 6 kHz for the upper path beampattern, lower path
beampattern and FBSS’s beampattern, respectively.

Fig. 7: The broadband beampattern of the upper path.

Fig. 8: The broadband beampattern of the lower path.

The WNG and DF of upper path beamforming, FBSS and
SDM are plotted in Fig. 10. It is clearly seen that, the FBSS
improves the DF compared to others, while the WNG is still in
the acceptable range. Although the results of this simulation
do not surprise us, i.e. a design with the regularization of
the WNG and DF, the target of FBSS is frequency-invariant
mainlobe and minimizing the sidelobes’ region. This objective
function is different with other approaches in the literature.
Moreover, the proposed method enables to use multiple sensor
arrays to form a single desired beam’s shape, e.g. the upper
path is an endfire array aims to build the mainlobe and the
lower path is another linear array aims to reproduce the
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Fig. 9: The broadband beampattern of the FBSS.

sidelobes, in such a case, combining the beamforming of two
arrays can be performed via FSBB.

(a) WNG.

(b) DF.

Fig. 10: WNGs and DFs over frequency.

B. Adaptive beamforming with suppressed sidelobes

The signal-to-noise ratio (SNR) is defined as

SNR = 10 log10
σ2
s

σ2
n

(23)

where σ2
s and σ2

n are the variances of SOI and additive noise,
respectively.

There are two interferences impinging on the array that have
variances σ2

1 , σ
2
2 , then the SIR is defined as

SIR = 10 log10
σ2
s

σ2
1 + σ2

2

. (24)

To evaluate the performance of adaptive beamforming,
we measure the signal’s error (SE) between the SOI and
beamforming output, that is

SE = E[(y(n)− s(n))2] (25)

where E[.] is the expectation value, y(n) is the beamforming
signal and s(n) is the SOI.

In the first simulation, we set SNR = 10 dB and σ2
1 = σ2

2 =
σ2
s , that is SIR = -3 dB. The SOI at 0o contains two impulse

response signals, as shown in Fig. 12. Two interferences at
70o and 150o contain multi-tone signal and chirp signal,
respectively.

(a) GSC.

(b) ABSS.

Fig. 11: Free-field environment: Comparison between the GSC and
ABSS.

1) Free-field environment: We set L = 511 for both ABSS
and GSC. For the beamformings inside ABSS, we use similar
beamformings designed in Section IV-A for frequency range
from 500 Hz to 6 kHz and applying inverse discrete Fourier
transfrom to obtain Wl,Wu with L1 = L2 = 512, β is set
0.01. The waveform of beamformings, measurement signal
and SOI are plotted in Fig. 11. Both methods are able to
suppress the noise, while preserving the SOI in the output
beamformings.

More specifically, the comparisons of the ABSS and GSC
from 312.5 ms to 450 ms are plotted in Fig. 11 and 12 where
the SEs of GSC and ABSS are 0.0151 and 0.0011, respectively.

Next, the SOI is simulated by summing a sinuous signal and
two impulse response and the SIR is changed from -30 dB to
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Fig. 12: Free-field environment: Comparison between the GSC and
ABSS from 312.5 ms to 450 ms.

10 dB, the SNR is set to 10 dB or 20 dB. We measure the SEs
over SIR for the GSC, FBSS and ABSS with 25 Monte Carlo
trials. Fig.13 shows that the ABSS outperforms the GSC in
terms of preserving the SOI and suppressing interferences. It
is worth noting that the computational complexity of ABSS is
less than that of GSC.

Fig. 13: Free-field environment: SEs over SIR for the ABSS, FBSS
and GSC, two interferences at 90o and 150o (a null position).

Another example, the interferences come from 90o and
180o (the directions are different with nulls’ direction of the
designed beampatterns at 70o and 150o), SEs over SIR are
plotted in Fig. 14.

2) Reverberant environment: We simulate a room with
dimensions of 3.5 × 6 × 3 m3 in which a uniform linear
array is located (x, y, z) = (1.5, 2, 1). The uniform linear array
contains M = 7 microphones with the inter-distance dH = 2
cm located along the X-axis. The SOI located at (x, y, z) =
(1.5 + 0.5 cos 0o, 2 + 0.5 sin 0o, 1) contains pulse signal. Two
interferences at (x, y, z) = (1.5+0.5 cos 70o, 2+0.5 sin 70o, 1)
and (x, y, z) = (1.5+0.5 cos 150o, 2+0.5 sin 150o, 1) contain
multi-tone signal (from 500 Hz to 6 kHz) and single-frequency
signal (2 kHz), respectively. We use a room impulse response
(RIR) generator in [35] with reverberation time T60 = 300
ms. In addition, the Gaussian noises with SNR = 10 dB are
added to received signals.

Fig. 14: Free-field environment: SEs over SIR for the ABSS, FBSS
and GSC, two interferences at 90o and 180o.

Fig. 15: Reverberant environment: The simulation for the GSC in a
reverberant room and white noise (SNR = 10 dB).

Fig. 16: Reverberant environment: The simulation for the ABSS in a
reverberant room and white noise (SNR = 10 dB).

We set L = 511 and L1 = L2 = 512, Figs. 15 and 16 plot
the output signals of GSC and ABSS, respectively. Comparing
two results, it is clearly seen that the ABSS outperforms the
GSC in terms of suppressing interferences.

In Fig. 17, the output of ABSS (adaptive beamforming)
and FBSS (fixed beamforming) are compared and we also
observe the out-performance of the ABSS, especially at the
low frequencies where the WNG of FBSS is low, as shown in
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Fig. 10.

Fig. 17: Reverberant environment: Comparing the ABSS (adaptive
beamforming) with the FBSS (fixed beamforming) in a reverberant
room and white noise (SNR = 10 dB).

3) Diffuse environment: Similarly to the simulation in Sec-
tion IV-B2, instead of white noise, we consider for the diffuse
noise with SNR = 10 dB in this simulation.

Fig. 18: The simulation for the GSC in a reverberant room and diffuse
noise (SNR = 10 dB).

Fig. 19: The simulation for the ABSS in a reverberant room and
diffuse noise (SNR = 10 dB).

In Figs. 18 and 19, we plot the results of GSC and ABSS
respectively. We can observe that the ABSS is also tolerent to
the diffuse noise. Similarly, in Fig. 20, the ABSS is superior
to the FBSS.

Fig. 20: Comparing the ABSS (adaptive beamforming) with the FBSS
(fixed beamforming) in a reverberant room and diffuse noise (SNR
= 10 dB).

V. EXPERIMENT

We conduct an experiment which is similar to the simulation
in Section IV-B2. An uniform linear array (M = 7 sensors
with the inter-distance dH = 0.02 m) was placed at the center
of a reverberant room with dimension of 3.5× 6× 3 m3.

A person at the endfire direction of the array spoke into the
microphone array for less than two seconds (within 4th and
5.5th second), while a speaker at the broadside direction of
the array played a music sound, referred to as interference.

With the setting of L = 511 and β = 0.01, the beamforming
signal of the upper path is plotted in the top of Fig. 21, next is
the beamforming signal of the lower path. For comparison, the
ABSS’s signal and upper path’s signal are plotted in the bottom
of Fig. 21. Also, their spectra are plotted in Fig. 22. The SIR
of ABSS’s signal is increased compared to the beamforming
of the upper path.

Fig. 21: Wave signals: (top) upper path’s signal, (middle) lower path’s
signal and (bottom) ABSS’s signal and upper path’s signal. Within
4th and 5.5th second, the source of interest is present and overlap
with the interference.

In Fig, 23, the energy ratio between the lower path and
upper path signals is plotted. As mentioned in Section III-B,
this ratio is proportional to the step size of the adaptive filter:
It is bigger when the energy of interference dominates that of
SOI and vice versa.



11

Fig. 22: Spectra:(top) upper path’s signal, (middle) lower path’s signal
and (bottom) ABSS’s signal. Within 4th and 5.5th second, the source
of interest is present and overlap with the interference.

Fig. 23: The energy ratio between the lower path and upper path
signals. Within 4th and 5.5th second, the source of interest is present
and overlap with the interference

Besides, we performed informal subjective listening eval-
uations to compare the ABSS’s signal and the upper path’s
signal. Our listeners noticed interference reductions in ABSS’s
signal and the distortion of the SOI was unnoticeable.

VI. CONCLUSION

In this paper, we have proposed two alternative approaches
to the generalized sidelobe canceler beamformer: One is for
fixed beamforming, another is for adaptive beamforming. The
proposed fixed beamforming applies for a symmetric array
layout and the reference point must be at the center of the
array. With that constraint, the difference of phase response
between the lower path beamforming and the upper path
beamforming is almost constant over the direction, so we can
use a fixed scale number to compensate for the difference
before subtracting. For the proposed adaptive beamforming,
it can apply for an arbitrary array layout. As presented in
the simulation section, this proposed method outperforms
the generalized sidelobe canceler in terms of interference
suppression and preserving the signal of interest. Moreover,
the computational complexity of this method is less than that
of the generalized sidelobe canceler because the proposed
method uses one adaptive FIR filter, while the GSC uses M−1
adaptive FIR filters. In comparison to other adaptive designs,
the problem of the proposed method is the unconstrained
optimization and the beamformer coefficients are updated via
the normalized least-mean square algorithm, that is much
simpler than the constrained optimization-based methods, such
as Frost beamforming, MVDR, LCMV, etc. For example,

our real-time implementation for seven-microphone case only
requires one processor, i.e., DSP56725 chip by NXP. Besides,
the proposed method could extend the lower path to multiple
lower paths where each path has a different beampattern and
it may belong to different sensor arrays. That enables the
ability to combine multiple arrays where one aims to build
the mainlobe, others aim to suppress the sidelobes.

APPENDIX A
PHASE RESPONSE OF BEAMFORMING

Consider a complex number is defined by

bm = [aH
m, 1,a

T
m]R[aT , 1,aH ]T

where [aH
m, 1,a

T
m] is the row m of the matrix DT

u and R =
(Γ + µI)−1.

First, we prove for the case µ = 0, then R = Γ−1. Note
that Γ(ω) is the pseudo-coherence matrix of the diffuse noise
field

Γ (ω) [i, j] = sinc
(
ωdij
c

)
,

and the array is symmetric then Γ has a special structure, .i.e,

Γ =

Γ1 γ Γ2

γ 1 γ
Γ2 γ Γ1

 .
Moreover, Γ is a symmetric matrix, it can be decomposed as

Γ = VDV−1

where V is an unitary matrix (V−1 = VT ) formed by
eigenvectors of Γ and D is diagonal matrix of eigenvalues.
So, we have

Γ−1 = VD−1V−1.

That implies Γ−1 has similar structure with Γ, then R can be
presented by

R = r

R1 r R2

r 1 r
R2 r R1


where r is a real number used to scale the center’s value of
matrix to one, r is the real-valued vector and R1,R2 are the
real-valued matrix. Thus,

bm/r = aH
mR1a + aH

mr + aH
mR2a

∗

+ aT r + 1 + aHr

+ aT
mR2a + aT

mr + aT
mR1a

∗

= 1 + 2Re{aH
mR1a}+ 2Re{aH

mR2a
∗}

+ 2Re{aT
mr}+ 2Re{aT r}

(where (.)∗ is the conjugate operator, Re{.} is the real
part of a complex number) is a real number. It leads to
[AH

u ,1,A
T
u ](Γ+ µI)−1[aT , 1,aH ]T is the real-valued vector

and [AH
u ,1,A

T
u ](Γ + µI)−1[AT

u ,1,A
H
u ]T is the real-valued

matrix. As a result, Bu(θ) in (12) is a real number.



12

For the case µ 6= 0, applying Woodbury’s formula [36], we
have

R = (µI + VDV−1)−1

=
1

µ
I− 1

µ
V(D−1 +

1

µ
V−1V)

1

µ
V−1

=
1

µ
I− 1

µ2
(VD−1V−1 +

1

µ
I)

= (
1

µ
− 1

µ3
)I− 1

µ2
Γ−1

has a similar structure with Γ−1, then Bu(θ) in (12) is also a
real number.
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