
 1

Abstract— Using data augmentation techniques, unsupervised

representation learning methods extract features from data by

training artificial neural networks to recognize that different views

of an object are just different instances of the same object. We

extend current unsupervised representation learning methods to

networks that can self-organize data representations into two-

dimensional (2D) maps. The proposed method combines ideas

from Kohonen’s original self-organizing maps (SOM) and recent

development in unsupervised representation learning. A ResNet

backbone with an added 2D Softmax output layer is used to

organize the data representations. A new loss function with linear

complexity is proposed to enforce SOM requirements of winner-

take-all (WTA) and competition between neurons while explicitly

avoiding collapse into trivial solutions. We show that enforcing

SOM topological neighborhood requirement can be achieved by a

fixed radial convolution at the 2D output layer without having to

resort to actual radial activation functions which prevented the

original SOM algorithm from being extended to nowadays neural

network architectures. We demonstrate that when combined with

data augmentation techniques, self-organization is a simple

emergent property of the 2D output layer because of neighborhood

recruitment combined with WTA competition between neurons.

The proposed methodology is demonstrated on SVHN and

CIFAR10 data sets. The proposed algorithm is the first end-to-end

unsupervised learning method that combines data self-

organization and visualization as integral parts of unsupervised

representation learning.

Index Terms— Self-Organizing Maps, Data Visualization,

Unsupervised Representation Learning, SOM.

I. INTRODUCTION

Kohonen’s seminal work on self-organizing maps (SOM)

[1] was an attempt to model the brain’s organization into

topological maps. Kohonen’s theory showed that these maps

can be organized using simple topological neighborhood

recruitment and winner-take-all (WTA) mechanisms.

Discoveries in biological neural networks such as grid and

place cells showed that topological features in the brain extend

beyond sensory and motor maps to topological strategies for

navigation in the environment. Emerging evidence suggests

that the brain could also be encoding abstract knowledge in a

similar topological way [2, 27, 34]. And while evidence for the

brain’s topological features has gained strength through the

years, Kohonen’s ideas did not keep pace with modern artificial

Paper was first submitted on 10/17/2021.

TensorFlow scripts will be provided upon request.

neural network developments.

The original SOM was found to not optimize any particular

loss function [3], and despite improvements in subsequent

versions of SOM with well-defined clustering and vector

quantization loss functions [25], learning in multi-layered

architectures with SOM outputs was proven difficult because

gradient-based optimization method, which is the workhorse of

modern artificial neural networks, cannot be used in SOM

because of the lack of easily differentiable loss functions due to

SOM’s reliance on non-differentiable WTA mechanisms and

radial activation functions. Autoencoders were proposed as an

alternate way to generate SOM [35]. However, these methods

shifted the original difficulties from the neural network output

layer to another layer but did not resolve the hard-WTA and

radial activation problems.

Modern artificial neural networks have moved away from

Kohonen’s ideas. However, visualization techniques such as t-

SNE [28] show that modern networks do perform some form of

self-organization is some high dimensional space as a by-

product of learning from data [29,32]. And while the use of

Softmax activation can be viewed as a form of the WTA

mechanism, Softmax WTA response is just another by-product

of one-way classification. Convolutions and pooling operations

in neural networks do use neighborhood pixel and neural

information during feature extraction in the input and hidden

layers, but topological structure is abandoned in the output layer

of the network where the network’s final decisions are made.

 The goal of machine learning is to design systems that can

accumulate knowledge by unsupervised interaction with the

environment without data labelling and annotation. To achieve

that goal, current unsupervised representation learning, and

self-supervised learning methods, extract features from visual

data by training artificial neural networks to recognize that

different views of an object are just different instances of the

same object. Learning is achieved by maximizing agreement

between these views using metrics such as cosine-based

similarity between unit-vector representations in some high

dimensional embedding space. Based on this idea, various

methods were proposed to demonstrate that neural networks are

fully capable of extracting features from data without using

prior data labeling. However, while all the various methods

apply similar data augmentation techniques to generate the

multiple views, the proposed methods differ when answering

the fundamental question that arises when implementing

unsupervised methods: how can learning algorithms be

N. Kermiche is with Western Digital Corporation, Irvine, CA 92612 (e-

mail: noureddine.kermiche@wdc.com)

Self-Organizing Representation Learning

N. Kermiche

mailto:noureddine.kermiche@wdc.com

 2

prevented from collapsing into trivial solutions where

representations of all objects are the same?

To prevent collapse, some of the proposed methods rely on

contrastive learning where augmented versions of the same

image instances (“positives”) are contrasted with instances

extracted from other images (“negatives”) [4,5,6,8,9,22]. A loss

objective based on NCE transformation of the cosine similarity

prevents collapse in an explicit manner by encouraging the

representations for positive pairs to be close while

representations for negative pairs to be far apart. Contrastive

methods have a large memory footprint because of the quadratic

complexity in the batch size. Other methods use only the

“positive” pairs and rely on simple cosine similarity loss with

linear complexity in the batch size [13,24]. To prevent collapse,

these methods use some combination of asymmetric learning

on dual-network architectures and stop-gradient operations.

The experimental results achieved by these methods are as

powerful as the contrastive methods, but they do not offer

explicit explanations as to how avoiding collapse is achieved.

Because the issue is still an active research subject, there are

probably more methods for preventing collapse than we can

account for or categorize in this study such as: explicit collapse

avoidance using correlation-based whitening algorithms with

quadratic complexity in the embedding vector length

[23,26,33].

The methods presented so far are called self-supervised

learning methods because of their need to use labels. The

methods are two-phased processes where features are extracted

first using unsupervised learning before a classifier is

constructed in the second phase. The second phase requires

supervised learning on a limited set of samples because there is

no way of quantifying how good the features are without going

back to the labels when the original intention was to avoid using

in the first place. But despite using a limited number of labels,

these methods proved the validity of the unsupervised learning

phase by achieving state-of-the-art results in many challenging

classification tasks.

 Using labels is completely avoided with recent advances in

end-to-end deep clustering using unsupervised representation

learning [15, 29, 32]. The losses used are similar to the methods

presented previously but the losses are applied directly at the

level of the clusters with added cluster assignment balancing

algorithms such as the Sinkhorn-Knop transform [15]. These

otherwise powerful algorithms have two glaring weaknesses

when striving for end-to-end unsupervised learning. The first is

that the desired number of clusters must be defined a priory.

The second is that these methods use separate visualization

techniques such as t-SNE [28] to confirm the quality of the

clusters and demonstrate the topological relations between

cluster assignments. Relying on visualization techniques that

are not part of the end-to-end unsupervised learning process and

forcing a desired number of clusters are the main motivations

behind this study.

This study proposes end-to-end unsupervised representation

learning where self-organization and visualization are

integrated into the learning process. We borrow the idea of

neural selectivity seen in biological neurons to introduce a new

approach where each neuron in a large two-dimensional (2D)

output layer is its own cluster. The proposed algorithm is called

URL-SOM because it combines recent advances in

unsupervised representation learning with ideas from

Kohonen’s original SOM.

In addition to the linear complexity of the cosine similarity

loss used in representation learning, we propose a new loss

function with linear complexity that enforces SOM

requirements of WTA and competition between neurons while

explicitly avoiding collapse into trivial solutions. We also show

that SOM topological neighborhood requirements can be

achieved using a fixed convolution in a 2D output layer without

resorting to radial activation functions which prevented the

original SOM algorithm from being extended to nowadays

neural network architectures. A tentative idea of using 1x1

convolutions to integrate representations in a neural network

was proposed in [30]. Our proposed method uses a fixed radial

convolution where the support of the filter is a free

hyperparameter that is optimized based on the SOM task at

hand as we will see in the experimental section of this study.

In Section II, the contributions of this study are highlighted.

In Section III, we introduce the network architecture used in this

study. In Section IV, we propose a new loss function. In Section

V, the proposed methodology is demonstrated on SVHN and

CIFAR10 data sets using a ResNet backbone.

II. CONTRIBUTION

This study proposes end-to-end unsupervised representation

learning where self-organization and visualization are

integrated into the learning process. Based on a simple

geometric interplay between Softmax and L2 normalization, we

propose a new loss function with linear complexity that

enforces SOM requirements of WTA and neuron competition

while explicitly avoiding collapse into trivial solutions. We

show that SOM topological neighborhood requirements can be

achieved with a fixed convolution in the projection layer

without resorting to radial activation functions.

III. THE NETWORK

A. URL_SOM network

As shown in Fig. 1, URL-SOM network is similar to networks

used for classification tasks except that the number of neurons

in the output layer could be very large to be able to form a 2D

map and a fixed convolution is added just before the final

Softmax output.

 3

Fig1. URL_SOM network. The projection, convolution and Softmax are 2D
single channel layers. Notice the fixed 2D Gaussian convolution after the linear

projection and before the Softmax. Adding dropout or L2 regularization to

linear projection layer (not shown in the figure) improved SOM response
slightly.

The backbone used in this study is a ResNet. A standard

global average pooling is used before a linear projection is

converted into a 2D layer. After that, a fixed convolution (see

next section) is used before the final Softmax layer.

We tried to build the 2D layer by utilizing incremental

deconvolution operations like what is done in GANs when

constructing 2D outputs. Deconvolution could be less

expensive than a large linear projection. However, we did not

see drastic improvements and decided to stay with the linear

projection since we have less architectural parameters to tune.

With a linear layer, the size of the 2D projection is the only

tunable parameter.

B. Topological neighborhood using 2D fixed radial filter

We tried many strategies to enforce SOM topological

neighborhood requirement by attempting to smooth the 2D

response and could not find anything that worked better with

the proposed loss function than a simple convolution with a

fixed radial filter.

One of the failed strategies was to minimize the error between

the 2D output and radial targets that are generated recursively

during the learning process based on winning neurons. This

approach would have been the closest to the original SOM with

hard-WTA mechanism. The approach did work for MNIST and

FASHION-MNIST data sets when using shallow networks but

did no work with deeper networks and more challenging data

sets such as CIRAF10.

As shown in Fig. 1, we found that applying the fixed 2D

convolution directly after the 2D linear projection is crucial.

Introducing any nonlinear activations between the two linear

operations degraded the SOM quality.

Inspired by t-SNE [28], we also tried to see if the ‘crowding

phenomenon” seen when visualizing data using Gaussian

embedding distribution compared with t-student distribution

can be seen in our proposed learning algorithm when we switch

from a Gaussian filter to a t-student filter. The SOM qualitative

response improved slightly if we use t-student filters as shown

in the experimental section of this study, but we did not see the

drastic change seen in t-SNE. A simple average pooling was

also tried. However, the optimization became too difficult when

using simple averaging and undesirable SOM artifacts were

seen with simple averaging. We also found that allowing the

filter to be learned instead of using a fixed filter resulted in poor

SOM.

The size of the fixed Gaussian kernel is set to 6-sigma instead

of the standard 3-sigma used for Gaussian image blurring.

Artifacts were seen in the final SOM if we reduce the kernel

size.

IV. SOM LOSS

A. Softmax, L2 normalization and cosine similarity

 The cosine similarity is a crucial component when optimizing

a loss objective in many current unsupervised representation

learning methods [7,13,14,24,29]. This is usually implemented

with an L2 normalization of the latent-space representations

which corresponds to projecting the features on the surface of

the unit hypersphere.

Our proposed loss will be based on similar cosine similarity

measures. To achieve that, a Softmax output vector 𝑝 = {𝑝𝑖}1
𝑛

give the (flattened) n activations {𝑣𝑖}1
𝑛 after the 2D convolution

is:

𝑝𝑖 =
𝑒𝑥𝑝(𝑣𝑖)

∑ 𝑒𝑥𝑝(𝑣𝑗)𝑛
𝑗=1

 𝑖 = 1, … 𝑛.

Vector p satisfies the probability constraints:

∑ 𝑝𝑖 = 1

𝑛

𝑖=1

𝑎𝑛𝑑 𝑝𝑖 ≥ 0, (1)

which defines a hyperplane in an n dimensional space and is

projected into a unit hypersphere using

𝑃 =
𝑝

‖𝑝‖
 (2)

where

‖𝑝‖ = (∑ 𝑝𝑖
2

𝑛

𝑖−1

)

1
2

In the following section, a vector p and point with the same

name p are used interchangeably. Vector p starts at the origin

O, where all probabilities are zero, and ends at the

corresponding point p (see Fig. 2).

The L2 projection of the Softmax hyperplane is a section of

the unit hypersphere for positive probabilities. A special

constant vector defined by point u where Softmax has equal

probabilities 𝑝𝑖 =
1

𝑛
 𝑓𝑜𝑟 𝑖 = 1, … 𝑛 and has a constant L2

projection vector U. Fig. 2 illustrates u and U vectors and the

Softmax line between p1 and p2 and the unit circle for n = 2.

Vector U is crucial to the definition of the proposed loss.

 4

Fig. 2. Softmax output vector p is on the line between 2 WTA vectors p1 and
p2. L2 normalization will take p from the Softmax line into P on the unit circle.

Equal probability vector u is transformed into U.

On the unit hypersphere, the vector scalar product between

vectors P and U is a true cosine similarity metric since

𝑃. 𝑈 = ∑ 𝑝𝑖𝑢𝑖 = cos(𝜃) ,

𝑛

𝑖=1

 (3)

where 𝜃 is the angle between U and P. The definition (3) of the

vector scalar product is used for the remainder of this section.

B. Winner-take-all loss

Winner-take-all (WTA) points are corners of a hypercube. In

Fig. 2, p1 and p2 correspond to WTA vectors for n = 2.

Enforcing WTA response is nothing other than pushing vector

P away from U on the hypersphere towards the corners of the

hypercube. If we are given N vectors in a batch {𝑃𝑖}1
𝑁, this can

be achieved by increasing the angles between the N vectors and

the U vector or minimizing the following loss

𝑙𝑜𝑠𝑠𝑊𝑇𝐴 =
∑ 𝑃𝑖

𝑁
1

𝑁
 . 𝑈 (4)

where U is the equal-probability constant unit vector defined

previously. Loss (4) is a positive metric because are

probabilities are positive. WTA loss has linear complexity

because it is computed based on the averaging operation

through a batch.

C. Loss objective for preventing collapse

Minimizing 𝑙𝑜𝑠𝑠𝑊𝑇𝐴 could cause all data representation

vectors to move towards very few corners of the hypercube

resulting in a collapse of the Softmax output. To prevent that,

we are going to enforce a symmetry condition where the angle

between the average vector 𝑎 =
∑ 𝑃𝑖

𝑁
1

𝑁
 in a batch of size N and

vector U is minimized. To achieve that, we project vector a into

the unit hypersphere vector 𝐴 =
𝑎

‖𝑎‖
 . In Fig. 2, if the network

collapses into a single WTA (either p1 or p2), the angle formed

between the average response vector over a batch A and vector

U will be maximum. The only way for the average vector

direction to align with U is if p1 is WTA for 50% of the samples

in the batch and p2 is WTA for the other 50%. The symmetry

relation represented by vector U forces WTA for the various

samples to fill the hypercube corners evenly and the relation can

be extended to any dimension n.

To minimize the angle between A and U, the cosine similarity

between A and U must be maximized. Preventing collapse is

achieved by minimizing the positive metric

𝑙𝑜𝑠𝑠𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒 = 1 − 𝐴 . 𝑈 (5)

Preventing collapse loss also has linear complexity because

it is computed based on the averaging operation through a

batch.

The geometric and statistical arguments presented so far

could imply that the batch size must be a lot larger than the

number of neurons in the Softmax output for the average

operation to give valid statistics when using loss (5). However,

all simulation results show that we could use N = 128 and N =

256 with Softmax size n being in the thousands without seeing

noticeable degradation in SOM behavior. We do not have an

explanation as to why we could get away with using small batch

sizes except that it may be another positive side effect of

stochastic gradient learning.

Loss (5) is deceptively simple. Whereas 𝑙𝑜𝑠𝑠𝑊𝑇𝐴 (4) is trying

to push representations towards the n corners of the hypercube,

𝑙𝑜𝑠𝑠𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒 is trying to distribute representations evenly among

the n output neurons. A simulation of the 𝑙𝑜𝑠𝑠𝑊𝑇𝐴 +

𝑙𝑜𝑠𝑠𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒 for n = 2 is shown in Fig. 3. The Softmax vectors

are constructed using the logistic function with a single input

𝑥 ≥ 0 :

𝑝(𝑥) = [
1

1 + exp (−𝑥)
,

exp (−𝑥)

1 + exp (−𝑥)
]

We vary the Softmax input x from 0 to 6. We use a binomial

probability for selecting a point p(x) (close to p1) or (1 - p(x))

(close to p2). The probability was changed from 0 to 1. The plot

shows clearly, as predicted previously, that the minimum is

reached when the Softmax is saturated for large inputs (WTA)

and the probability of selecting p1 is 50%. The idea was

justified by a symmetry argument that should hold for any 𝑛.

However, to perform similar simulations to 𝑛 = 2 to illustrate

that the idea still works for large 𝑛 requires a more challenging

Monte Carlo simulation. Further, the idea will be confirmed

with real data and a large 𝑛 in the following experimental

section of this study.

𝑙𝑜𝑠𝑠𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒 prevents collapse in an explicit manner by trying

to distribute representations evenly among the output neurons

without resorting to cluster assignment balancing algorithms

such as the Sinkhorn-Knop transform [15], where the ratio

between the batch size and the desired number of clusters must

be defined. In our case, we do not need to define the desired

 5

number of clusters because each neuron in the 2D output layer

is its own cluster.

Fig. 3. We vary the Softmax input from 0 to 6. The minimum of the combined

loss 𝑙𝑜𝑠𝑠𝑊𝑇𝐴 + 𝑙𝑜𝑠𝑠𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒 is reached when Softmax is saturated for large

inputs (WTA) and the probability of selecting p1 is 50%.

D. Similarity and combined loss

The similarity loss is like the loss used elsewhere

[7,13,14,24,29]. Two instances of an image are generated using

random image transformations such as cropping, brightness

change, left/right flipping and other transformations [22]. Given

two instances of the same image, we get two Softmax outputs

𝑝+𝑎𝑛𝑑 𝑝− . The Softmax vectors are projected into unit vectors

𝑃+𝑎𝑛𝑑 𝑃− . The similarity between N sample pairs in a batch

is

𝑙𝑜𝑠𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = 1 −
1

𝑁
∑ 𝑃𝑖

+. 𝑃𝑖
−

𝑁

1

 (6)

When given N image pairs, 𝑙𝑜𝑠𝑠𝑊𝑇𝐴 and 𝑙𝑜𝑠𝑠𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒 must be

calculated for 2N samples. We used the following N average

samples:

𝑃𝑖 =
𝑃𝑖

+ + 𝑃𝑖
−

2
, 𝑖 = 1, … , 𝑁 (7)

to calculate 𝑙𝑜𝑠𝑠𝑊𝑇𝐴 and 𝑙𝑜𝑠𝑠𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒 using (4) and (5)

directly. The total SOM loss is

𝑙𝑜𝑠𝑠 = 𝑙𝑜𝑠𝑠𝑊𝑇𝐴 + 𝑙𝑜𝑠𝑠𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒 + 𝛾 𝑙𝑜𝑠𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (8)

and 𝛾 > 0 is an added weight factor. Simulation results show

that 𝑙𝑜𝑠𝑠𝑊𝑇𝐴 and 𝑙𝑜𝑠𝑠𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒 must be scaled similarly as shown

in (8). 𝛾 can be tuned based on the sharpness and the number of

clusters seen in the final SOM. The SOM sensitivity, however,

does not vary a lot as we change 𝛾 between 1 and 2.

Since 𝑙𝑜𝑠𝑠𝑊𝑇𝐴 and 𝑙𝑜𝑠𝑠𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒 have linear complexity in

both batch size and output size, the total loss, which is based on

3 cosine similarities, also has linear complexity in both batch

size and output size because of the linear complexity of

𝑙𝑜𝑠𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 .

Since optimization is performed by the projection of the

Softmax output on the hypersphere, the reader may wonder why

we need the Softmax layer in the first place. Losses (4) and (5)

won’t be possible without positivity conditions on the

probabilities. Softmax is one way to use a differentiable

transformation that preserves probability conditions shown in

(1).

The following script shows a TensorFlow implementation of

the total loss function.

Script: URL_SOM loss has linear complexity in batch size and output size

because it is based on the sum of 3 cosine similarities.

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. Data Augmentation

We used the same data augmentation for both CIFAR10 and

SVHN data sets (image size is 32 by 32 pixels). The image

augmentation used is close to the one proposed in [22]. We used

uniform random cropping with sizes between 22 to 32 pixels.

The cropping transformation is applied constantly with an

added random left/right flip 50% of the time. We applied

random color jitter 80% of the time using random [brightness,

contrast, saturation, hue] = [0.4, 0.4, 0.4, 0.4]. We also changed

images to gray scale 50% of the time.

Using the combination of all these transformations as stated

in [22] is crucial for good representation learning as well as the

proposed SOM. We also found that SOM is sensitive to crop

size and the gray scale transformation rate. We found that too

much deviation from the recommended setting degraded the

 6

SOM response.

The justification of using some specific combination of

random data augmentations for representation learning is based

on experimental data [22] with no theoretical framework that

explains how to choose a particular image transformation given

a data set combined with a given neural network architecture.

Cropping could be a way to bias the network to focus on the

middle of the image since most data sets have target objects

centered in the middle of the image. Gray scale could be a way

to ignore color and focus on geometric features. However, we

cannot completely ignore the border of the image or its colors

without throwing away valuable image information. It is also

possible that our convolutional neural network with a smaller

size (next section) and smaller data sets may not be as efficient

at absorbing heavy data augmentation as larger networks such

as the transformer-based network shown in [32].

B. The network, data, and training

We used the same network and training strategy for both

CIFAR10 and SVHN. The network used in this study is shown

in Fig. 1. The backbone is a ResNet-20 where we changed all

relu to elu activations because the results obtained were

superior with elu activation. We used a ResNet-20 with 16, 48,

and 256 (3x3) filters for the 3 stages. The standard ResNet

global average pooling was implemented as an average pooling

layer with pool_size = 8. The pooling is followed by a linear

projection into a 30x30 2D layer (900 neurons). After that, a

fixed convolution is used before the Softmax layer.

The network used has 3.4 million trainable parameters with

0.23 million parameters for the linear 30x30 2D projection

operation. We used all training and testing data for both

CIFAR10 and SVHN to train the SOM network. We trained the

network for 500 epochs with early stopping if the loss does not

improve after 10 epochs. We used Adam optimizer with initial

warmup. The training strategy and the SOM loss as a function

of epoch number for both CIFAR10 and SVHN can be seen in

Fig. 5 and Fig. 10.

We found that adding regularization techniques to the SOM

layer such as dropout (rate = 0.5) or L2-regularization (decay =

0.0005) improved the SOM response slightly.

C. Neural selectivity as SOM goodness metric

The network is trained without access to labels. However, we

would like to measure SOM quality based on the 2D

distribution of the data and see if the network did uncover

topological properties in the data by clustering samples with the

same labels close to each other. However, any standard

clustering metric we tried to use introduced additional hyper

parameters such as the number of clusters or the number of

neighbors in the 2D map. To avoid that, and because our

approach makes each neuron in the 2D output its own cluster

(see Section IV.C), we used neural selectivity as a non-

parametric method to measure the clustering capability of SOM

and we left the 2D distribution quality to be validated through

visual inspection.

 Fig. 6, demonstrates how to visualize SOMs since the

number of samples is larger than the number of neurons in the

2D grid. In Fig. 6, each neuron in the 2D map will have

maximum response to several samples. We compute the mode

of the distribution of labels and consider the label that occurs

more often as the true label for that neuron. Other labels in the

neuron will be considered error samples. This metric quantifies

how sensitive a neuron is to a specific label. The average

correct/incorrect numbers are averaged over the 2D grid. We

call the metric Neural Selectivity (NS). NS is just a 0-neighbor

classifier.

The NS obtained using the new SOM algorithm is 70% (Fig.

4) for CIFAR10 and 91% for SVHN (Fig. 8). 70% classification

rate for CIFAR10 is an adequate result but it is not state-of-the

-art for unsupervised methods. However, we believe that this is

the first method that shows good end-to-end unsupervised

methodology where learning and visualization are integral parts

of the learning algorithm.

D. New parameters

The proposed algorithm introduces 3 new parameters: the 2D

output size, the Sigma of the fixed Gaussian convolution, and

the 𝛾 weight for the similarity loss. We kept the 2D size fixed

to 900 (30x30) neurons. We varied Sigma from 3 to 10 and 𝛾

from 1 to 2. The effect of the changes in Sigma can be seen in

Fig. 7 and Fig. 9. In general, neural selectivity improves with

smaller filter support at the expense of more clusters and noisier

maps. However, the change is not drastic

 The effects of changing 𝛾 are not that drastic either.

However, cluster size increases as we increase 𝛾 and NS

improves. We used 𝛾 = 2 in this study.

E. Gaussian vs. t-student convolutional filters

In Fig. 11, CIFAR10 SOM neural selectivity with the t-

student convolution filter
1

1+(𝑥2+𝑦2)
 improved to 73.33% from

72.12% for filter
1

1+
(𝑥2+𝑦2)

18

 at the expense of more clusters and

more dead neurons. The qualitative response and neural

selectivity improved slightly from the Gaussian response if we

use t-student filters with large support. However, t-student

filters have larger support that Gaussian filters and require filter

size that is bigger than SOM size to avoid edge artifacts.

 7

Fig. 4. CIFAR10 SOM for all 60000 samples. WTA response is shown on a 30
by 30 neuron grid after two separate runs. Fixed Gaussian filter with Sigma = 5

was used. Neural selectivity is 70.3% and 70.58%. All items have separate

clusters except for the cat and the deer. Cat data surrounds the dog data, and the
deer data surrounds the horse data. It is interesting that the bird and airplane

data are relatively close. All non-animal objects tend to be close to each other.

The two plots highlight that this is a non-linear optimization result and
subsequent runs may not repeat the same exact visual distribution, but the

highlighted semantic relations do persist over multiple runs. The 2D

representation distribution confirms that 𝑙𝑜𝑠𝑠𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒 (see Section IV.C) is

preventing collapse by encouraging representation to spread evenly among all

output neurons.

Fig. 5. CIFAR10 loss as a function of epoch number using batch size = 256.
Adam optimizer with warmup is applied. Learning rate switches from 0.0001

to 0.0005 at epoch 5 and switches to 0.001 at epoch 10. This explains the two

glitches seen. Learning was performed with early stopping if the loss does not
improve for 10 epochs. In this case, early stopping occurred at epoch 322.

Fig. 6. SOM visualization for samples that share same winner-take-all neurons.

CIFAR10 response is zoomed. Plot shows added random (-0.4 to 0.4) uniform
scatter around each neuron for display purposes only to highlight all samples

that share the same winner-take-all neurons. Notice that some neurons respond

to fewer samples than others. Having some neurons not respond to any samples
is not desirable since we would like SOM to be a space-filling response without

wasting neurons. We saw in some instances that two incompatible clusters are

separated by dead neurons if they are close to each other. Dead neurons could
be considered a reasonable representation of discontinuity between

incompatible clusters.

 8

Fig. 7. CIFAR10 SOM for all 60000 samples after changing Sigma from 3 (top
plot) to 10 (bottom plot). Neural selectivity decreased from to 71.19%. to

70.19%. As a general observation, neural selectivity improves with smaller

filter support at the expense of more clusters and noisier maps. However, the
change is not drastic. Notice the presence of non-responding neurons which is

not a desirable property in terms of neural efficiency but necessary to represent

discontinuity by separating incompatible clusters if they ended up close to each
other.

Fig. 8. SVHN SOM for all 99289 samples after 188 epochs. We used a

Gaussian filter with Sigma = 5. Neural selectivity is 91.50%. All items have
separate clusters. We used the same network and the same contrastive data

augmentation as CIFAR10, except for left/right random image flip because it is

not a valid symmetry for SVHN. There are two clusters per item representing

the different street numbers. The explanation of this phenomenon is because
SVHN has bright numbers with dark backgrounds and dark numbers on bright

backgrounds. Numbers with opposite front/back brightness are assigned to

different clusters. Neural networks are not invariant to image level inversion
and trying to add image level inversion to the data augmentation reduces SOM

quality.

Fig. 9. SVHN SOM for all 99289 samples after increasing the Gaussian filter
Sigma from 5 to 10. Neural selectivity is 91.06% which is similar to previous

data with Sigma = 5. However, there are still multiple clusters per item

representing the different street numbers with added artifacts not seen with
Sigma = 5. Notice the lines formed by dead neurons between some clusters.

Fig. 10. SVNH loss as a function of epoch number using batch size = 256.

Same optimization used as CIFAR10 but gradient descent had an early stop at
epoch 188 because of loss flattening.

 9

Fig. 11. CIFAR10 neural selectivity using the t-student convolution filter

1

1+(𝑥2+𝑦2)
 in the top plot improved slightly to 73.33% from 72.12% with filter

1

1+
(𝑥2+𝑦2)

18

 in the bottom plot at the expense of more clusters, more dead neurons,

and noisier SOM.

VI. CONCLUSION

This study demonstrates how to build self-organizing

representation learning using gradient optimization and current

neural network architectures. The proposed method combines

self-organization and visualization as integral parts of machine

learning without having to use external visualization techniques

such as t-SNE.

We also demonstrate that we could design stable

unsupervised representation learning algorithms with linear

complexity using a single network by exploiting a simple

geometric interplay between Softmax and L2 normalization.

CIFAR10 and SVHN are not vanilla sets but they are

considered small sets compared to nowadays sets with millions

of samples. The ResNet-20 network used in this study is also

small compared with nowadays networks. Generalizing the

proposed algorithm to representation maps with higher

dimensions and extending the ideas presented in this paper to

larger networks and larger data sets will be part of future

studies.

The data presented in this study does show that some

semantic relations do develop as part of representation self-

organization. However, artificial neural networks are still far

away from being able to encode knowledge as topological

relations. This study could be one small step in that direction.

ACKNOWLEDGMENT

I thank my family for their support and the Western Digital

Corporation for allowing me to publish this work.

REFERENCES

[1] T. Kohonen. Self-Organization and Associative Memory. Springer Series.
In Information Sciences, Vol.8. Springer-Verlag, Berlin, Heidelberg, New

York, Tokyo, 1984.

[2] Jacob L. S. Bellmund, Peter Gärdenfors, Edvard I. Moser, Christian F.
Doeller,"Navigating cognition: Spatial codes for human thinking".

Science. Vol. 362, No. 64159 Nov 2018

[3] Marie Cottrell, Jean-Claude Fort, Gilles Pagès, “Theoretical Aspects of

the SOM Algorithm”. arXiv:0704.1696v1. 13 Apr 2007

[4] Oord, Aaron van den, Yazhe Li, and Oriol Vinyals. “Representation

learning with contrastive predictive coding.” “Representation Learning
with Contrastive Predictive Coding” arXiv preprint arXiv:1807.03748,

2018.

[5] Sohn, Kihyuk. “Improved deep metric learning with multi-class n-pair
loss objective.” NeurIPS, 2016.

[6] Hénaff, Olivier J., Ali Razavi, Carl Doersch, S. M. Eslami, and Aaron van

den Oord. “Data-efficient image recognition with contrastive predictive
coding.” arXiv preprint arXiv:1905.09272, 2019

[7] He, Kaiming, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross

Girshick. “Momentum contrast for unsupervised visual representation
learning.” arXiv preprint arXiv:1911.05722, 2019

[8] Bachman, Philip, R. Devon Hjelm, and William Buchwalter. “Learning

representations by maximizing mutual information across
views.” NeurIPS, 2019.

[9] Tian, Yonglong, Dilip Krishnan, and Phillip Isola. “Contrastive

multiviewcoding.” arXiv preprint arXiv:1906.05849, 2019

[10] Sermanet, Pierre, Corey Lynch, Jasmine Hsu, and Sergey Levine. “Time-

contrastive networks: Self-supervised learning from multi-view
observation.” CVPRW, 2017.

[11] Poole, Ben, Sherjil Ozair, Aaron van den Oord, Alexander A. Alemi, and

George Tucker. “On variational bounds of mutual information.” ICML,
2019.

[12] Chen, Ting, Simon Kornblith, Kevin Swersky, et al. “Big Self-

Supervised Models Are Strong Semi-Supervised Learners.”
ArXiv:2006.10029 [Cs, Stat], June 2020.

arXiv.org, http://arxiv.org/abs/2006.10029

[13] Grill, Jean-Bastien, et al. “Bootstrap Your Own Latent: A New
Approach to Self-Supervised Learning.” ArXiv:2006.07733 [Cs, Stat],

June 2020. arXiv.org, http://arxiv.org/abs/2006.07733.

[14] Chen, Xinlei, et al. “Improved Baselines with Momentum Contrastive
Learning.” ArXiv:2003.04297 [Cs], Mar. 2020.

arXiv.org, http://arxiv.org/abs/2003.04297

[15] Caron, Mathilde, et al. “Unsupervised Learning of Visual Features by
Contrasting Cluster Assignments.” ArXiv: 2006.09882.

[16] Jing, Longlong, and Yingli Tian. “Self-Supervised Visual Feature

Learning with Deep Neural Networks: A Survey.” ArXiv:1902.06162
[Cs], Feb. 2019. arXiv.org, http://arxiv.org/abs/1902.06162

[17] Caron, Mathilde, et al. “Deep Clustering for Unsupervised Learning of

Visual Features.” ArXiv:1807.05520 [Cs], Mar. 2019.
arXiv.org, http://arxiv.org/abs/1807.05520

[18] Asano, Yuki Markus, et al. “Self-Labelling via Simultaneous Clustering

and Representation Learning.” ArXiv:1911.05371 [Cs], Feb. 2020.
arXiv.org, http://arxiv.org/abs/1911.05371

[19] Xie, Qizhe, et al. “Unsupervised Data Augmentation for Consistency

Training.” ArXiv:1904.12848 [Cs, Stat], June 2020.
arXiv.org, http://arxiv.org/abs/1904.12848

[20] Zhirong Wu, et al. “Unsupervised Feature Learning via Non-Parametric

Instance Discrimination.” ArXiv:1805.01978 [cs.CV], May 2018.
arXiv.org, https://arxiv.org/abs/1805.01978

[21] Ishan Misra, et al. “Self-Supervised Learning of Pretext-Invariant

Representations.” ArXiv:1912.01991. 4 Dec 2019.

https://arxiv.org/abs/1807.03748
https://arxiv.org/abs/1807.03748
https://papers.nips.cc/paper/6200-improved-deep-metric-learning-with-multi-class-n-pair-loss-objective
https://papers.nips.cc/paper/6200-improved-deep-metric-learning-with-multi-class-n-pair-loss-objective
https://arxiv.org/abs/1905.09272
https://arxiv.org/abs/1905.09272
https://arxiv.org/abs/1911.05722
https://arxiv.org/abs/1911.05722
https://arxiv.org/abs/1906.00910
https://arxiv.org/abs/1906.00910
https://arxiv.org/abs/1906.00910
https://arxiv.org/abs/1906.05849
https://arxiv.org/abs/1906.05849
https://arxiv.org/abs/1704.06888
https://arxiv.org/abs/1704.06888
https://arxiv.org/abs/1704.06888
https://arxiv.org/abs/1905.06922
http://arxiv.org/abs/2006.10029
http://arxiv.org/abs/2006.07733
http://arxiv.org/abs/2003.04297
http://arxiv.org/abs/1902.06162
http://arxiv.org/abs/1807.05520
http://arxiv.org/abs/1911.05371
http://arxiv.org/abs/1904.12848
https://arxiv.org/abs/1805.01978

 10

[22] Ting Chen, Simon Kornblith, Mohammad Norouzi, Geoffrey Hinton.
“A Simple Framework for Contrastive Learning of Visual

Representations.” ArXiv 2002.05709 [cs.CV]. last revised 1 Jul 2020.

[23] Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, Stéphane Deny,” Barlow
Twins: Self-Supervised Learning via Redundancy Reduction”,

arXiv:2103.03230, last revised 14 Jun 2021.

[24] Xinlei Chen, Kaiming He,” Exploring Simple Siamese Representation
Learning”, arXiv:2011.10566, 20 Nov 2020.

[25] Marie Cottrell, Madalina Olteanu, Fabrice Rossi, Nathalie Villa-

Vialaneix. Self-Organizing Maps, theory and applications. Revista de
Investigacion Operacional, 2018, 39 (1), pp.1-22. ffhal-01796059

[26] Aleksandr Ermolov, Aliaksandr Siarohin, Enver Sangineto, Nicu Sebe,”

Whitening for Self-Supervised Representation Learning”,
arXiv:2007.06346, 14 May 2021.

[27] Mirko Klukas, Marcus Lewis and Ila Fiete “Efficient and Flexible

Representation of Higher-Dimensional Cognitive Variables with Grid
Cells” Published in PLOS Computational Biology Journal . 2020/04/28.

[28] L.J.P. van der Maaten and G.E. Hinton, “Visualizing High-Dimensional

Data Using t-SNE”. Journal of Machine Learning Research 9(Nov):2579-
2605, 2008.

[29] Jayanth Reddy Regatti, Aniket Anand Deshmukh, Eren Manavoglu, Urun

Dogan,"Consensus Clustering with Unsupervised Representation
Learning". arXiv:2010.01245. Last revised 8 Jul 2021

[30] Geoffrey Hinton,"How to represent part-whole hierarchies in a neural

network". arXiv:2102.12627.25 Feb 2021.
[31] https://discuss.pytorch.org/t/depthwise-convolutions-from-tf-to-

pytorch/11682. Visited August 2021.
[32] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal,

Piotr Bojanowski, Armand Joulin, "Emerging Properties in Self-

Supervised Vision Transformers". arXiv:2104.14294.24 May 2021.
[33] Adrien Bardes, Jean Ponce, Yann LeCun,"VICReg: Variance-Invariance-

Covariance Regularization for Self-Supervised Learning",

arXiv:2105.04906.11 May 2021.
[34] Robert M. Mok and Bradley C. Love, "A non-spatial account of place and

grid cells based on clustering models of concept learning". Nature

Communications volume 10, Article number: 5685.12 December 2019.
[35] Florent Forest, Mustapha Lebbah, Hanene Azzag & Jérôme Lacaille,

"Deep embedded self-organizing maps for joint representation learning

and topology-preserving clustering". Neural Computing and Applications

(2021). 03 August 2021

https://doi.org/10.1371/journal.pcbi.1007796
https://doi.org/10.1371/journal.pcbi.1007796
https://doi.org/10.1371/journal.pcbi.1007796
https://discuss.pytorch.org/t/depthwise-convolutions-from-tf-to-pytorch/11682
https://discuss.pytorch.org/t/depthwise-convolutions-from-tf-to-pytorch/11682

