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Abstract— Using data augmentation techniques, unsupervised 

representation learning methods extract features from data by 

training artificial neural networks to recognize that different views 

of an object are just different instances of the same object. We 

extend current unsupervised representation learning methods to 

networks that can self-organize data representations into two-

dimensional (2D) maps.  The proposed method combines ideas 

from Kohonen’s original self-organizing maps (SOM) and recent 

development in unsupervised representation learning. A ResNet 

backbone with an added 2D Softmax output layer is used to 

organize the data representations.  A new loss function with linear 

complexity is proposed to enforce SOM requirements of winner-

take-all (WTA) and competition between neurons while explicitly 

avoiding collapse into trivial solutions. We show that enforcing 

SOM topological neighborhood requirement can be achieved by a 

fixed radial convolution at the 2D output layer without having to 

resort to actual radial activation functions which prevented the 

original SOM algorithm from being extended to nowadays neural 

network architectures. We demonstrate that when combined with 

data augmentation techniques, self-organization is a simple 

emergent property of the 2D output layer because of neighborhood 

recruitment combined with WTA competition between neurons. 

The proposed methodology is demonstrated on SVHN and 

CIFAR10 data sets. The proposed algorithm is the first end-to-end 

unsupervised learning method that combines data self-

organization and visualization as integral parts of unsupervised 

representation learning. 

 

Index Terms— Self-Organizing Maps, Data Visualization, 

Unsupervised Representation Learning, SOM. 

 

I. INTRODUCTION 

Kohonen’s seminal work on self-organizing maps (SOM) 

[1] was an attempt to model the brain’s organization into 

topological maps. Kohonen’s theory showed that these maps 

can be organized using simple topological neighborhood 

recruitment and winner-take-all (WTA) mechanisms.   

Discoveries in biological neural networks such as grid and 

place cells showed that topological features in the brain extend 

beyond sensory and motor maps to topological strategies for 

navigation in the environment. Emerging evidence suggests 

that the brain could also be encoding abstract knowledge in a 

similar topological way [2, 27, 34].  And while evidence for the 

brain’s topological features has gained strength through the 

years, Kohonen’s ideas did not keep pace with modern artificial 
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neural network developments.  

The original SOM was found to not optimize any particular 

loss function [3], and despite improvements in subsequent 

versions of SOM with well-defined clustering and vector 

quantization loss functions [25], learning in multi-layered 

architectures with SOM outputs was proven difficult because 

gradient-based optimization method, which is the workhorse of 

modern artificial neural networks, cannot be used in SOM 

because of the lack of easily differentiable loss functions due to 

SOM’s reliance on non-differentiable WTA mechanisms and 

radial activation functions. Autoencoders were proposed as an 

alternate way to generate SOM [35]. However, these methods 

shifted the original difficulties from the neural network output 

layer to another layer but did not resolve the hard-WTA and 

radial activation problems. 

Modern artificial neural networks have moved away from 

Kohonen’s ideas.  However, visualization techniques such as t-

SNE [28] show that modern networks do perform some form of 

self-organization is some high dimensional space as a by-

product of learning from data [29,32]. And while the use of 

Softmax activation can be viewed as a form of the WTA 

mechanism, Softmax WTA response is just another by-product 

of one-way classification. Convolutions and pooling operations 

in neural networks do use neighborhood pixel and neural 

information during feature extraction in the input and hidden 

layers, but topological structure is abandoned in the output layer 

of the network where the network’s final decisions are made. 

 The goal of machine learning is to design systems that can 

accumulate knowledge by unsupervised interaction with the 

environment without data labelling and annotation. To achieve 

that goal, current unsupervised representation learning, and 

self-supervised learning methods, extract features from visual 

data by training artificial neural networks to recognize that 

different views of an object are just different instances of the 

same object. Learning is achieved by maximizing agreement 

between these views using metrics such as cosine-based 

similarity between unit-vector representations in some high 

dimensional embedding space. Based on this idea, various 

methods were proposed to demonstrate that neural networks are 

fully capable of extracting features from data without using 

prior data labeling. However, while all the various methods 

apply similar data augmentation techniques to generate the 

multiple views, the proposed methods differ when answering 

the fundamental question that arises when implementing 

unsupervised methods: how can learning algorithms be 

N. Kermiche is with Western Digital Corporation, Irvine, CA 92612  (e-

mail: noureddine.kermiche@wdc.com) 
 

 

Self-Organizing Representation Learning  

N. Kermiche 

mailto:noureddine.kermiche@wdc.com


 2 

prevented from collapsing into trivial solutions where 

representations of all objects are the same? 

To prevent collapse, some of the proposed methods rely on 

contrastive learning where augmented versions of the same 

image instances (“positives”) are contrasted with instances 

extracted from other images (“negatives”) [4,5,6,8,9,22]. A loss 

objective based on NCE transformation of the cosine similarity 

prevents collapse in an explicit manner by encouraging the 

representations for positive pairs to be close while 

representations for negative pairs to be far apart. Contrastive 

methods have a large memory footprint because of the quadratic 

complexity in the batch size. Other methods use only the 

“positive” pairs and rely on simple cosine similarity loss with 

linear complexity in the batch size [13,24]. To prevent collapse, 

these methods use some combination of asymmetric learning 

on dual-network architectures and stop-gradient operations. 

The experimental results achieved by these methods are as 

powerful as the contrastive methods, but they do not offer 

explicit explanations as to how avoiding collapse is achieved. 

Because the issue is still an active research subject, there are 

probably more methods for preventing collapse than we can 

account for or categorize in this study such as: explicit collapse 

avoidance using correlation-based whitening algorithms with 

quadratic complexity in the embedding vector length 

[23,26,33]. 

The methods presented so far are called self-supervised 

learning methods because of their need to use labels. The 

methods are two-phased processes where features are extracted 

first using unsupervised learning before a classifier is 

constructed in the second phase. The second phase requires 

supervised learning on a limited set of samples because there is 

no way of quantifying how good the features are without going 

back to the labels when the original intention was to avoid using 

in the first place. But despite using a limited number of labels, 

these methods proved the validity of the unsupervised learning 

phase by achieving state-of-the-art results in many challenging 

classification tasks.  

 Using labels is completely avoided with recent advances in 

end-to-end deep clustering using unsupervised representation 

learning [15, 29, 32]. The losses used are similar to the methods 

presented previously but the losses are applied directly at the 

level of the clusters with added cluster assignment balancing 

algorithms such as the Sinkhorn-Knop transform [15]. These 

otherwise powerful algorithms have two glaring weaknesses 

when striving for end-to-end unsupervised learning. The first is 

that the desired number of clusters must be defined a priory. 

The second is that these methods use separate visualization 

techniques such as t-SNE [28] to confirm the quality of the 

clusters and demonstrate the topological relations between 

cluster assignments. Relying on visualization techniques that 

are not part of the end-to-end unsupervised learning process and 

forcing a desired number of clusters are the main motivations 

behind this study. 

This study proposes end-to-end unsupervised representation 

learning where self-organization and visualization are 

integrated into the learning process. We borrow the idea of 

neural selectivity seen in biological neurons to introduce a new 

approach where each neuron in a large two-dimensional (2D) 

output layer is its own cluster. The proposed algorithm is called 

URL-SOM because it combines recent advances in 

unsupervised representation learning with ideas from 

Kohonen’s original SOM. 

In addition to the linear complexity of the cosine similarity 

loss used in representation learning, we propose a new loss 

function with linear complexity that enforces SOM 

requirements of WTA and competition between neurons while 

explicitly avoiding collapse into trivial solutions. We also show 

that SOM topological neighborhood requirements can be 

achieved using a fixed convolution in a 2D output layer without 

resorting to radial activation functions which prevented the 

original SOM algorithm from being extended to nowadays 

neural network architectures. A tentative idea of using 1x1 

convolutions to integrate representations in a neural network 

was proposed in [30]. Our proposed method uses a fixed radial 

convolution where the support of the filter is a free 

hyperparameter that is optimized based on the SOM task at 

hand as we will see in the experimental section of this study. 

In Section II, the contributions of this study are highlighted. 

In Section III, we introduce the network architecture used in this 

study. In Section IV, we propose a new loss function. In Section 

V, the proposed methodology is demonstrated on SVHN and 

CIFAR10 data sets using a ResNet backbone.  

II. CONTRIBUTION 

This study proposes end-to-end unsupervised representation 

learning where self-organization and visualization are 

integrated into the learning process. Based on a simple 

geometric interplay between Softmax and L2 normalization, we 

propose a new loss function with linear complexity that 

enforces SOM requirements of WTA and neuron competition 

while explicitly avoiding collapse into trivial solutions. We 

show that SOM topological neighborhood requirements can be 

achieved with a fixed convolution in the projection layer 

without resorting to radial activation functions.  

III. THE NETWORK 

A. URL_SOM network 

As shown in Fig. 1, URL-SOM network is similar to networks 

used for classification tasks except that the number of neurons 

in the output layer could be very large to be able to form a 2D 

map and a fixed convolution is added just before the final 

Softmax output. 
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Fig1. URL_SOM network. The projection, convolution and Softmax are 2D 
single channel layers. Notice the fixed 2D Gaussian convolution after the linear 

projection and before the Softmax. Adding dropout or L2 regularization to 

linear projection layer (not shown in the figure) improved SOM response 
slightly. 

 

The backbone used in this study is a ResNet. A standard 

global average pooling is used before a linear projection is 

converted into a 2D layer. After that, a fixed convolution (see 

next section) is used before the final Softmax layer. 

We tried to build the 2D layer by utilizing incremental 

deconvolution operations like what is done in GANs when 

constructing 2D outputs. Deconvolution could be less 

expensive than a large linear projection. However, we did not 

see drastic improvements and decided to stay with the linear 

projection since we have less architectural parameters to tune. 

With a linear layer, the size of the 2D projection is the only 

tunable parameter. 

B. Topological neighborhood using 2D fixed radial filter 

We tried many strategies to enforce SOM topological 

neighborhood requirement by attempting to smooth the 2D 

response and could not find anything that worked better with 

the proposed loss function than a simple convolution with a 

fixed radial filter. 

One of the failed strategies was to minimize the error between 

the 2D output and radial targets that are generated recursively 

during the learning process based on winning neurons. This 

approach would have been the closest to the original SOM with 

hard-WTA mechanism. The approach did work for MNIST and 

FASHION-MNIST data sets when using shallow networks but 

did no work with deeper networks and more challenging data 

sets such as CIRAF10. 

As shown in Fig. 1, we found that applying the fixed 2D 

convolution directly after the 2D linear projection is crucial. 

Introducing any nonlinear activations between the two linear 

operations degraded the SOM quality. 

Inspired by t-SNE [28], we also tried to see if the ‘crowding 

phenomenon” seen when visualizing data using Gaussian 

embedding distribution compared with t-student distribution 

can be seen in our proposed learning algorithm when we switch 

from a Gaussian filter to a t-student filter. The SOM qualitative 

response improved slightly if we use t-student filters as shown 

in the experimental section of this study, but we did not see the 

drastic change seen in t-SNE. A simple average pooling was 

also tried. However, the optimization became too difficult when 

using simple averaging and undesirable SOM artifacts were 

seen with simple averaging. We also found that allowing the 

filter to be learned instead of using a fixed filter resulted in poor 

SOM. 

The size of the fixed Gaussian kernel is set to 6-sigma instead 

of the standard 3-sigma used for Gaussian image blurring.  

Artifacts were seen in the final SOM if we reduce the kernel 

size. 

IV. SOM LOSS 

A. Softmax, L2 normalization and cosine similarity 

 The cosine similarity is a crucial component when optimizing 

a loss objective in many current unsupervised representation 

learning methods [7,13,14,24,29]. This is usually implemented 

with an L2 normalization of the latent-space representations 

which corresponds to projecting the features on the surface of 

the unit hypersphere.  

Our proposed loss will be based on similar cosine similarity 

measures. To achieve that, a Softmax output vector 𝑝 = {𝑝𝑖}1
𝑛 

give the (flattened) n activations {𝑣𝑖}1
𝑛  after the 2D convolution 

is: 

𝑝𝑖 =
𝑒𝑥𝑝(𝑣𝑖)

∑ 𝑒𝑥𝑝(𝑣𝑗)𝑛
𝑗=1

     𝑖 = 1, … 𝑛.                           

 

Vector p satisfies the probability constraints: 

 

∑ 𝑝𝑖 = 1 

𝑛

𝑖=1

𝑎𝑛𝑑  𝑝𝑖  ≥ 0,                                  (1) 

 

which defines a hyperplane in an n dimensional space and is 

projected into a unit hypersphere using 

 

𝑃 =  
𝑝

‖𝑝‖
                                      (2) 

where 

‖𝑝‖ =  (∑ 𝑝𝑖
2

𝑛

𝑖−1

)

1
2

                                       

 

In the following section, a vector p and point with the same 

name p are used interchangeably. Vector p starts at the origin 

O, where all probabilities are zero, and ends at the 

corresponding point p (see Fig. 2).  

The L2 projection of the Softmax hyperplane is a section of 

the unit hypersphere for positive probabilities. A special 

constant vector defined by point u where Softmax has equal 

probabilities  𝑝𝑖 =  
1

𝑛
 𝑓𝑜𝑟 𝑖 = 1, … 𝑛 and has a constant L2 

projection vector U. Fig. 2 illustrates u and U vectors and the 

Softmax line between p1 and p2 and the unit circle for n = 2. 

Vector U is crucial to the definition of the proposed loss. 
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Fig. 2.  Softmax output vector p is on the line between 2 WTA vectors p1 and 
p2. L2 normalization will take p from the Softmax line into P on the unit circle. 

Equal probability vector u is transformed into U. 

 

On the unit hypersphere, the vector scalar product between 

vectors P and U is a true cosine similarity metric since 

 

𝑃. 𝑈 =  ∑ 𝑝𝑖𝑢𝑖 = cos(𝜃)  ,

𝑛

𝑖=1

                         (3) 

 

where 𝜃 is the angle between U and P. The definition (3) of the 

vector scalar product is used for the remainder of this section. 
 

B. Winner-take-all loss 

Winner-take-all (WTA) points are corners of a hypercube. In 

Fig. 2, p1 and p2 correspond to WTA vectors for n = 2. 

Enforcing WTA response is nothing other than pushing vector 

P away from U on the hypersphere towards the corners of the 

hypercube. If we are given N vectors in a batch  {𝑃𝑖}1
𝑁, this can 

be achieved by increasing the angles between the N vectors and 

the U vector or minimizing the following loss 

 

𝑙𝑜𝑠𝑠𝑊𝑇𝐴 =
∑ 𝑃𝑖

𝑁
1

𝑁
 . 𝑈                                    (4) 

 

where U is the equal-probability constant unit vector defined 

previously. Loss (4) is a positive metric because are 

probabilities are positive. WTA loss has linear complexity 

because it is computed based on the averaging operation 

through a batch. 

C. Loss objective for preventing collapse 

Minimizing 𝑙𝑜𝑠𝑠𝑊𝑇𝐴 could cause all data representation 

vectors to move towards very few corners of the hypercube 

resulting in a collapse of the Softmax output. To prevent that, 

we are going to enforce a symmetry condition where the angle 

between the average vector 𝑎 =  
∑ 𝑃𝑖

𝑁
1

𝑁
  in a batch of size N and 

vector U is minimized. To achieve that, we project vector a into 

the unit hypersphere vector 𝐴 =  
𝑎

‖𝑎‖
  . In Fig. 2, if the network 

collapses into a single WTA (either p1 or p2), the angle formed 

between the average response vector over a batch A and vector 

U will be maximum. The only way for the average vector 

direction to align with U is if p1 is WTA for 50% of the samples 

in the batch and p2 is WTA for the other 50%. The symmetry 

relation represented by vector U forces WTA for the various 

samples to fill the hypercube corners evenly and the relation can 

be extended to any dimension n.   

To minimize the angle between A and U, the cosine similarity 

between A and U must be maximized. Preventing collapse is 

achieved by minimizing the positive metric 

 

𝑙𝑜𝑠𝑠𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒 = 1 − 𝐴 . 𝑈                           (5) 

 

Preventing collapse loss also has linear complexity because 

it is computed based on the averaging operation through a 

batch.  

The geometric and statistical arguments presented so far 

could imply that the batch size must be a lot larger than the 

number of neurons in the Softmax output for the average 

operation to give valid statistics when using loss (5). However, 

all simulation results show that we could use N = 128 and N = 

256 with Softmax size n being in the thousands without seeing 

noticeable degradation in SOM behavior. We do not have an 

explanation as to why we could get away with using small batch 

sizes except that it may be another positive side effect of 

stochastic gradient learning. 

Loss (5) is deceptively simple. Whereas 𝑙𝑜𝑠𝑠𝑊𝑇𝐴 (4) is trying 

to push representations towards the n corners of the hypercube, 

𝑙𝑜𝑠𝑠𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒  is trying to distribute representations evenly among 

the n output neurons. A simulation of the 𝑙𝑜𝑠𝑠𝑊𝑇𝐴 + 

𝑙𝑜𝑠𝑠𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒  for n = 2 is shown in Fig. 3. The Softmax vectors 

are constructed using the logistic function with a single input 

𝑥 ≥ 0 : 

 

𝑝(𝑥) = [
1

1 + exp (−𝑥)
,

exp (−𝑥)

1 + exp (−𝑥)
] 

 

We vary the Softmax input x from 0 to 6. We use a binomial 

probability for selecting a point p(x) (close to p1) or (1 - p(x)) 

(close to p2). The probability was changed from 0 to 1. The plot 

shows clearly, as predicted previously, that the minimum is 

reached when the Softmax is saturated for large inputs (WTA) 

and the probability of selecting p1 is 50%. The idea was 

justified by a symmetry argument that should hold for any 𝑛. 

However, to perform similar simulations to 𝑛 = 2 to illustrate 

that the idea still works for large 𝑛 requires a more challenging 

Monte Carlo simulation. Further, the idea will be confirmed 

with real data and a large 𝑛 in the following experimental 

section of this study. 

𝑙𝑜𝑠𝑠𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒  prevents collapse in an explicit manner by trying 

to distribute representations evenly among the output neurons 

without resorting to cluster assignment balancing algorithms 

such as the Sinkhorn-Knop transform [15], where the ratio 

between the batch size and the desired number of clusters must 

be defined. In our case, we do not need to define the desired 
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number of clusters because each neuron in the 2D output layer 

is its own cluster. 

 
Fig. 3. We vary the Softmax input from 0 to 6. The minimum of the combined 

loss 𝑙𝑜𝑠𝑠𝑊𝑇𝐴 + 𝑙𝑜𝑠𝑠𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒 is reached when Softmax is saturated for large 

inputs (WTA) and the probability of selecting p1 is 50%. 

D. Similarity and combined loss 

The similarity loss is like the loss used elsewhere 

[7,13,14,24,29]. Two instances of an image are generated using 

random image transformations such as cropping, brightness 

change, left/right flipping and other transformations [22]. Given 

two instances of the same image, we get two Softmax outputs 

𝑝+𝑎𝑛𝑑 𝑝− .  The Softmax vectors are projected into unit vectors 

𝑃+𝑎𝑛𝑑 𝑃− .   The similarity between N sample pairs in a batch 

is 

𝑙𝑜𝑠𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = 1 −
1

𝑁
∑ 𝑃𝑖

+. 𝑃𝑖
−

𝑁

1

                    (6) 

 

When given N image pairs, 𝑙𝑜𝑠𝑠𝑊𝑇𝐴 and 𝑙𝑜𝑠𝑠𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒  must be 

calculated for 2N samples. We used the following N average 

samples: 

𝑃𝑖 =
𝑃𝑖

+ + 𝑃𝑖
−

2
, 𝑖 = 1, … , 𝑁                         (7) 

 

to calculate 𝑙𝑜𝑠𝑠𝑊𝑇𝐴 and 𝑙𝑜𝑠𝑠𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒  using (4) and (5) 

directly. The total SOM loss is 

 

𝑙𝑜𝑠𝑠 =  𝑙𝑜𝑠𝑠𝑊𝑇𝐴 +  𝑙𝑜𝑠𝑠𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒  + 𝛾 𝑙𝑜𝑠𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦       (8) 

 

and 𝛾 > 0 is an added weight factor. Simulation results show 

that 𝑙𝑜𝑠𝑠𝑊𝑇𝐴 and 𝑙𝑜𝑠𝑠𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒  must be scaled similarly as shown 

in (8). 𝛾 can be tuned based on the sharpness and the number of 

clusters seen in the final SOM. The SOM sensitivity, however, 

does not vary a lot as we change 𝛾 between 1 and 2. 

Since 𝑙𝑜𝑠𝑠𝑊𝑇𝐴 and 𝑙𝑜𝑠𝑠𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒  have linear complexity in 

both batch size and output size, the total loss, which is based on 

3 cosine similarities, also has linear complexity in both batch 

size and output size because of the linear complexity of 

𝑙𝑜𝑠𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 . 

Since optimization is performed by the projection of the 

Softmax output on the hypersphere, the reader may wonder why 

we need the Softmax layer in the first place. Losses (4) and (5) 

won’t be possible without positivity conditions on the 

probabilities. Softmax is one way to use a differentiable 

transformation that preserves probability conditions shown in 

(1).   

The following script shows a TensorFlow implementation of 

the total loss function. 

 

Script: URL_SOM loss has linear complexity in batch size and output size 

because it is based on the sum of 3 cosine similarities. 

V. EXPERIMENTAL RESULTS AND DISCUSSION 

A. Data Augmentation 

We used the same data augmentation for both CIFAR10 and 

SVHN data sets (image size is 32 by 32 pixels). The image 

augmentation used is close to the one proposed in [22]. We used 

uniform random cropping with sizes between 22 to 32 pixels. 

The cropping transformation is applied constantly with an 

added random left/right flip 50% of the time. We applied 

random color jitter 80% of the time using random [brightness, 

contrast, saturation, hue] = [0.4, 0.4, 0.4, 0.4].  We also changed 

images to gray scale 50% of the time.  

Using the combination of all these transformations as stated 

in [22] is crucial for good representation learning as well as the 

proposed SOM. We also found that SOM is sensitive to crop 

size and the gray scale transformation rate. We found that too 

much deviation from the recommended setting degraded the 
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SOM response. 

The justification of using some specific combination of 

random data augmentations for representation learning is based 

on experimental data [22] with no theoretical framework that 

explains how to choose a particular image transformation given 

a data set combined with a given neural network architecture. 

Cropping could be a way to bias the network to focus on the 

middle of the image since most data sets have target objects 

centered in the middle of the image. Gray scale could be a way 

to ignore color and focus on geometric features. However, we 

cannot completely ignore the border of the image or its colors 

without throwing away valuable image information. It is also 

possible that our convolutional neural network with a smaller 

size (next section) and smaller data sets may not be as efficient 

at absorbing heavy data augmentation as larger networks such 

as the transformer-based network shown in [32]. 

B. The network, data, and training 

We used the same network and training strategy for both 

CIFAR10 and SVHN. The network used in this study is shown 

in Fig. 1. The backbone is a ResNet-20 where we changed all 

relu to elu activations because the results obtained were 

superior with elu activation. We used a ResNet-20 with 16, 48, 

and 256 (3x3) filters for the 3 stages. The standard ResNet 

global average pooling was implemented as an average pooling 

layer with pool_size = 8. The pooling is followed by a linear 

projection into a 30x30 2D layer (900 neurons). After that, a 

fixed convolution is used before the Softmax layer. 

The network used has 3.4 million trainable parameters with 

0.23 million parameters for the linear 30x30 2D projection 

operation. We used all training and testing data for both 

CIFAR10 and SVHN to train the SOM network. We trained the 

network for 500 epochs with early stopping if the loss does not 

improve after 10 epochs. We used Adam optimizer with initial 

warmup. The training strategy and the SOM loss as a function 

of epoch number for both CIFAR10 and SVHN can be seen in 

Fig. 5 and Fig. 10. 

We found that adding regularization techniques to the SOM 

layer such as dropout (rate = 0.5) or L2-regularization (decay = 

0.0005) improved the SOM response slightly.  

C. Neural selectivity as SOM goodness metric 

The network is trained without access to labels. However, we 

would like to measure SOM quality based on the 2D 

distribution of the data and see if the network did uncover 

topological properties in the data by clustering samples with the 

same labels close to each other.  However, any standard 

clustering metric we tried to use introduced additional hyper 

parameters such as the number of clusters or the number of 

neighbors in the 2D map. To avoid that, and because our 

approach makes each neuron in the 2D output its own cluster 

(see Section IV.C), we used neural selectivity as a non-

parametric method to measure the clustering capability of SOM 

and we left the 2D distribution quality to be validated through 

visual inspection. 

 Fig. 6, demonstrates how to visualize SOMs since the 

number of samples is larger than the number of neurons in the 

2D grid. In Fig. 6, each neuron in the 2D map will have 

maximum response to several samples. We compute the mode 

of the distribution of labels and consider the label that occurs 

more often as the true label for that neuron. Other labels in the 

neuron will be considered error samples. This metric quantifies 

how sensitive a neuron is to a specific label. The average 

correct/incorrect numbers are averaged over the 2D grid. We 

call the metric Neural Selectivity (NS). NS is just a 0-neighbor 

classifier. 

The NS obtained using the new SOM algorithm is 70% (Fig. 

4) for CIFAR10 and 91% for SVHN (Fig. 8). 70% classification 

rate for CIFAR10 is an adequate result but it is not state-of-the 

-art for unsupervised methods. However, we believe that this is 

the first method that shows good end-to-end unsupervised 

methodology where learning and visualization are integral parts 

of the learning algorithm. 

D. New parameters 

The proposed algorithm introduces 3 new parameters: the 2D 

output size, the Sigma of the fixed Gaussian convolution, and 

the 𝛾 weight for the similarity loss.  We kept the 2D size fixed 

to 900 (30x30) neurons. We varied Sigma from 3 to 10 and 𝛾 

from 1 to 2. The effect of the changes in Sigma can be seen in 

Fig. 7 and Fig. 9. In general, neural selectivity improves with 

smaller filter support at the expense of more clusters and noisier 

maps. However, the change is not drastic 

 The effects of changing 𝛾 are not that drastic either. 

However, cluster size increases as we increase 𝛾 and NS 

improves. We used 𝛾 = 2 in this study. 

E. Gaussian vs. t-student convolutional filters 

In Fig. 11, CIFAR10 SOM neural selectivity with the t-

student convolution filter 
1

1+(𝑥2+𝑦2)
 improved to 73.33% from 

72.12% for filter 
1

1+
(𝑥2+𝑦2)

18

 at the expense of more clusters and 

more dead neurons. The qualitative response and neural 

selectivity improved slightly from the Gaussian response if we 

use t-student filters with large support. However, t-student 

filters have larger support that Gaussian filters and require filter 

size that is bigger than SOM size to avoid edge artifacts. 
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Fig. 4.  CIFAR10 SOM for all 60000 samples. WTA response is shown on a 30 
by 30 neuron grid after two separate runs. Fixed Gaussian filter with Sigma = 5 

was used. Neural selectivity is 70.3% and 70.58%. All items have separate 

clusters except for the cat and the deer. Cat data surrounds the dog data, and the 
deer data surrounds the horse data. It is interesting that the bird and airplane 

data are relatively close. All non-animal objects tend to be close to each other. 

The two plots highlight that this is a non-linear optimization result and 
subsequent runs may not repeat the same exact visual distribution, but the 

highlighted semantic relations do persist over multiple runs. The 2D 

representation distribution confirms that  𝑙𝑜𝑠𝑠𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒 (see Section IV.C) is 

preventing collapse by encouraging representation to spread evenly among all 

output neurons. 

 
 

 
Fig. 5.  CIFAR10 loss as a function of epoch number using batch size = 256. 
Adam optimizer with warmup is applied. Learning rate switches from 0.0001 

to 0.0005 at epoch 5 and switches to 0.001 at epoch 10. This explains the two 

glitches seen. Learning was performed with early stopping if the loss does not 
improve for 10 epochs. In this case, early stopping occurred at epoch 322. 

 
Fig. 6.  SOM visualization for samples that share same winner-take-all neurons. 

CIFAR10 response is zoomed. Plot shows added random (-0.4 to 0.4) uniform 
scatter around each neuron for display purposes only to highlight all samples 

that share the same winner-take-all neurons. Notice that some neurons respond 

to fewer samples than others. Having some neurons not respond to any samples 
is not desirable since we would like SOM to be a space-filling response without 

wasting neurons. We saw in some instances that two incompatible clusters are 

separated by dead neurons if they are close to each other. Dead neurons could 
be considered a reasonable representation of discontinuity between 

incompatible clusters. 
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Fig. 7.  CIFAR10 SOM for all 60000 samples after changing Sigma from 3 (top 
plot) to 10 (bottom plot). Neural selectivity decreased from to 71.19%. to 

70.19%. As a general observation, neural selectivity improves with smaller 

filter support at the expense of more clusters and noisier maps. However, the 
change is not drastic. Notice the presence of non-responding neurons which is 

not a desirable property in terms of neural efficiency but necessary to represent 

discontinuity by separating incompatible clusters if they ended up close to each 
other. 

 
Fig. 8.  SVHN SOM for all 99289 samples after 188 epochs. We used a 

Gaussian filter with Sigma = 5. Neural selectivity is 91.50%. All items have 
separate clusters. We used the same network and the same contrastive data 

augmentation as CIFAR10, except for left/right random image flip because it is 

not a valid symmetry for SVHN. There are two clusters per item representing 

the different street numbers. The explanation of this phenomenon is because 
SVHN has bright numbers with dark backgrounds and dark numbers on bright 

backgrounds. Numbers with opposite front/back brightness are assigned to 

different clusters. Neural networks are not invariant to image level inversion 
and trying to add image level inversion to the data augmentation reduces SOM 

quality.  

 
Fig. 9.  SVHN SOM for all 99289 samples after increasing the Gaussian filter 
Sigma from 5 to 10. Neural selectivity is 91.06% which is similar to previous 

data with Sigma = 5. However, there are still multiple clusters per item 

representing the different street numbers with added artifacts not seen with 
Sigma = 5. Notice the lines formed by dead neurons between some clusters. 

 
Fig. 10.  SVNH loss as a function of epoch number using batch size = 256. 

Same optimization used as CIFAR10 but gradient descent had an early stop at 
epoch 188 because of loss flattening. 
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Fig. 11.  CIFAR10 neural selectivity using the t-student convolution filter 

1

1+(𝑥2+𝑦2)
 in the top plot improved slightly to 73.33% from 72.12% with filter 

1

1+
(𝑥2+𝑦2)

18

 in the bottom plot at the expense of more clusters, more dead neurons, 

and noisier SOM. 

VI. CONCLUSION 

This study demonstrates how to build self-organizing 

representation learning using gradient optimization and current 

neural network architectures. The proposed method combines 

self-organization and visualization as integral parts of machine 

learning without having to use external visualization techniques 

such as t-SNE. 

We also demonstrate that we could design stable 

unsupervised representation learning algorithms with linear 

complexity using a single network by exploiting a simple 

geometric interplay between Softmax and L2 normalization. 

CIFAR10 and SVHN are not vanilla sets but they are 

considered small sets compared to nowadays sets with millions 

of samples. The ResNet-20 network used in this study is also 

small compared with nowadays networks. Generalizing the 

proposed algorithm to representation maps with higher 

dimensions and extending the ideas presented in this paper to 

larger networks and larger data sets will be part of future 

studies. 

The data presented in this study does show that some 

semantic relations do develop as part of representation self-

organization. However, artificial neural networks are still far 

away from being able to encode knowledge as topological 

relations. This study could be one small step in that direction. 
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