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First passage time distribution of active thermal particles in potentials
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We introduce a perturbative method to calculate all moments of the first passage time distribution in stochastic
one-dimensional processes which are subject to both white and colored noise. This class of non-Markovian
processes is at the center of the study of thermal active matter, that is self-propelled particles subject to diffusion.
The perturbation theory about the Markov process considers the effect of self-propulsion to be small compared
to that of thermal fluctuations. To illustrate our method, we apply it to the case of active thermal particles (i)
in a harmonic trap and (ii) on a ring. For both we calculate the first-order correction of the moment-generating
function of first passage times, and thus to all its moments. Our analytical results are compared to numerics.
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I. INTRODUCTION AND MAIN RESULTS

A. Introduction

Understanding the statistical properties of first passage
times (FPT), the time a stochastic process takes to first reach a
prescribed target has enjoyed increased attention over the last
two decades [1–3] since it is a key characteristic of complex
systems, such as chemical reactions [4], polymer synthesis
[5], intracellular events [6], neuronal activity [7], or finan-
cial systems [8]. Aside from their dynamical information,
FPTs are helpful to understand spatial properties of complex
networks [9], extreme values of stochastic processes [10],
and characteristic observables in out-of-equilibrium statistical
physics [11].

For Markovian stochastic processes, the FPT has been
studied for over a century, and often the full distribution of
FPT, or their moment-generating function, can be found in
closed form [12–15]. For non-Markovian processes, however,
the problem of finding the FPT distribution is much more
difficult and often the focus has been on the mean first passage
time (MFPT) alone [16–24]. The MFPT, however, can be
insufficient to characterize complex dynamics, emphasizing
the need for a more precise understanding of the full FPT
distribution [25,26].

In this paper, we address this challenge and compute the
full moment-generating function of a class of non-Markovian
stochastic processes perturbatively. In doing so, we obtain
all moments of the distribution to the same order in the
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perturbative expansion. By numerical integration, we further
recover the full FPT distribution With this method the full
distribution is obtained systematically in the presence of cor-
related driving noise and white thermal noise for a wide range
of settings, including a potential. The formulas we obtain
order by order are exact, and the results we obtain for two
systems, as an illustration, are in excellent agreement with
numerical simulations. This allows for a detailed analysis of
the qualitative changes of the FPT distribution induced by
correlations in stochastic forces.

In this paper, we consider the FPT problem in one di-
mension [see Fig. 1]. We study the FPT of a particle at
position xt placed in a potential V (x), and subject to white
thermal noise ξt , 〈ξt0ξt1〉 = 2Dxδ(t1 − t0), modeling a sur-
rounding heat bath at a temperature proportional to Dx (via
the fluctuation-dissipation theorem [27,28]). Additionally, we
assume that the particle is subject to a second stochastic force
which may model either self-propulsion or hidden internal
degrees of freedom. We refer to this force as active, as we
equate “activeness” with the presence of colored noise (e.g.,
telegraphic noise or an Ornstein-Uhlenbeck noise), follow-
ing, e.g., [29–31]. The active noise yt is a stochastically
independent stationary stochastic force with zero mean and
a nonvanishing autocorrelation function C2(t1 − t0) = yt0 yt1 .
Since the process includes two independent stochastic forces,
we introduce 〈. . .〉 to denote averages over ξt , and · · · to
denote averages over yt . The particle’s position satisfies a
Langevin equation [1] of the type

ẋt = −V ′(xt ) + ξt + εyt , (1)

where ε denotes a dimensionless coupling to the active term
which is chosen small enough such that εyt � ξt in proba-
bility. We refer to the process described in Eq. (1) as active
thermal process, as opposed to (i) purely active (“athermal”
[32]) processes and (ii) purely thermal processes since yt
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FIG. 1. A particle in a potential (orange parabola) subject to
both white and colored noise [see Eq. (1)]. While the white noise
models a thermal environment whose timescale of correlation is
negligibly small, the driving term models hidden degrees of freedom
which are correlated over timescales comparable to those of the par-
ticle’s stochastic dynamics. Those driving forces induce correlations
(pink correlation kernel) in the particle’s increments and therefore
break its Markovianity. In this work, we study first passage times
τx0,x1 , the time such a random walker (blue rough path) takes to first
reach x1 starting from x0 (dashed lines).

breaks thermal equilibrium [33]. Active thermal processes
have recently been considered in e.g., [34–37]. While the FPT
problem in purely active matter such as “run-and-tumble”
processes [38] has been studied in [39]. Understanding the
FPT in active thermal matter is relevant to, e.g., neural ac-
tivity [40], transport in living cells [41], and molecular motors
[42,43] where the influence of the thermal environment cannot
necessarily be neglected.

B. Main results

In the following we denote τx0,x1 the first passage time of xt

defined as

τx0,x1
:= inf

t1>t0

{
t : xt1 = x1

∣∣xt0 = x0
}
, (2)

and px0,x1 (t0, t1) = px0,x1 (t1 − t0) the probability distribution
of τx0,x1 , where time invariance of the yt averaged process
ensures that px0,x1 depends only on the time difference t1 −
t0. The central result of this work concerns the moment-
generating function of first passage times of xt :

Mx0,x1 (s) = 〈e−sτx0 ,x1 〉

= 1 − s
〈
τx0,x1

〉+ s2

2

〈(
τx0,x1

)2〉+ · · · (3)

for s � 0. We note that Mx0,x1 (s) is the Laplace transform of
the probability distribution px0,x1 (t ), and the restriction to the
negative imaginary axis of the complex function p̂x0,x1 (z) =∫∞

0 dt px0,x1 (t )e−izt . Because px0,x1 (t ) is nonzero only for t �
0, and

∫∞
0 dt px0,x1 (t ) = 1, the function p̂x0,x1 (z) is bounded,

and by the Paley-Wiener theorem holomorphic, on the lower
half complex plane [44]. Besides, p̂x0,x1 (z) converges to the
Fourier transform of px0,x1 (t ) on the real axis [defined in
Eq. (7)]. Therefore, in the following we will use alternatively
the Fourier transform and Laplace transform for our calcu-

lations whenever convenient, and assume that conditions are
met such that a simple rotation ω = −is allows to go from one
transform of px0,x1 (t ) to the other.

We now assume that the moment-generating function
Mx0,x1 (s) has an expansion of the form

Mx0,x1 (s) = M0
x0,x1

(s) + νM1
x0,x1

(s) + O(ν2), (4)

where M0 and M1 are the coefficients of expansion of
Mx0,x1 (s) in a dimensionless parameter ν of order O(ε2),
around ν = 0. The case ε = 0 corresponds to a purely thermal
process, and the corresponding moment-generating function
M0 can be found by classical methods such as the Darling-
Siegert method which is discussed in the next subsection.
Here, we assume that around this state Mx0,x1 (s) is analytic
in ν.

The first-order contribution M1 requires some deeper anal-
ysis. Much of what follows is dedicated to the calculation
of M1, which to our knowledge is new in the literature. In
principle, the method we present here is capable of calculat-
ing coefficients M2, M3, . . . of arbitrarily high order of ν for
arbitrarily colored noise [cf. Eq. (68)] as long as the autocorre-
lations can be integrated suitably. Furthermore, the potentials
V (x) are arbitrary, as long as an associated differential opera-
tor can be diagonalized (Sec. III and [45]), otherwise, it needs
to be treated perturbatively as well.

We further illustrate our framework by explicitly comput-
ing M0 and M1 for two cases, each of which are additionally
driven by colored Gaussian noise, i.e., yt is Gaussian and has
correlator yt0 yt1 = Dyβe−β|t1−t0| with some diffusivity Dy and
correlation time β−1. In the first case, the particle is placed
in a harmonic potential V (x) = α

2 x2. This particular model
has been studied in, e.g., [37]. We refer to this model as
active thermal Ornstein-Uhlenbeck process (ATOU). While
M0 [see Eq. (99)] has been long known M1 [see Eq. (100)]
is a new result. By numerically computing its inverse Laplace
transform, we obtain the full probability distribution of first
passage times to first order in ν. In Fig. 2(a) we compare
this to the numerically obtained probability density function.
Second, we calculate M0 and M1 for the case of a Brownian
motion on a ring of radius r driven by colored Gaussian
noise which we refer to as active thermal Brownian motion
(ATBM). Again, through numerically computing its inverse
Laplace transform we obtain the corrected probability distri-
bution of first passage times which is compared to numerics
in Fig. 2(b).

Our method is systematic since it allows its user to cal-
culate in principle corrections to arbitrary order, and it is
controlled in the sense that the error can be made arbitrar-
ily small. Further, all moments are available at once and to
equal perturbative order. It is also valid for arbitrary noise
colors β−1.

The paper is structured as follows. In Sec. II we give a
detailed account of how to calculate Mx0,x1 (s) for small ν.
First, we reproduce the Darling-Siegert argument in the equi-
librium case (ν = ε = 0). Next, we introduce a perturbative
version of the Darling-Siegert equation. Then, we obtain, as
an intermediate result, a formula for Mx0,x1 (s) which is still a
functional of the colored noise yt . In the last step, we need to
average over the stationary distribution of yt to arrive at the
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FIG. 2. First-order corrections to the probability distribution of first passage times as found by the framework presented in this work for
two example processes. (a) First passage time distribution of active thermal Ornstein-Uhlenbeck process (ATOU) [cf. Eq. (76)] compared to
numerical Laplace inversion of analytically obtained moment-generating function [cf. theoretical result in Eq. (98)] for various values of ν

(solid lines). The plot marks indicate the distribution as sampled through Monte Carlo simulations with 5 × 106 runs. Simulation parameters
are x0 = 0, x1 = 1, α = 1, Dx = 1, Dy = 1, β = 1

2 while ε is tuned to fix ν = Dyβε2/(Dxα) to values as indicated in the legend. The inset
shows rescaled deviations to the undriven first passage time distribution [plot marks, cf. Eq. (104)] as compared to the first-order correction
(solid lines, ν = 0.1 omitted). Higher-order corrections appear for growing values of ν (cf. Fig. 3). See Sec. III A 2 for discussion. (b) First
passage time distribution of active thermal Brownian motion (ATBM) [cf. Eq. (108)] compared to numerical Laplace inversion of analytically
obtained moment-generating function [cf. theoretical result in Eq. (127)] for various values of ν (solid lines). The plot marks indicate the
distribution as sampled through Monte Carlo simulations with 106 runs. Simulation parameters are x0 = 0, x1 = π, r = 1, Dx = 1, Dy =
1, β = 1

2 while ε is tuned to fix ν = Dyr2βε2/D2
x to values as indicated in legend. The inset shows rescaled deviations to the undriven first

passage time distribution [cf. Eq. (104)] as compared to the first-order correction (solid lines, ν = 0.1 omitted). Higher-order corrections
appear for growing values of ν (cf. Fig. 6). See Sec. III B 2 for discussion.

explicit formula (75) which is the main result of our work.
In the subsequent Sec. III, we calculate all quantities required
for the case of a harmonic potential and a Brownian motion
with periodic boundary conditions and arrive at the first-order
correction to the moment-generating function of first passage
times, Eq. (100). Section IV concludes with a discussion of
our findings.

II. PERTURBATION THEORY

As outlined above, in this work we present a way to calcu-
late the moment-generating function of first passage times of
stochastic processes which are close to an equilibrium state.
The underlying assumption is that the moment-generating
function varies smoothly as ε, the coupling to the self-
propelling force, is switched on. The moment-generating
function of the equilibrium version of the process (ε = 0) is
assumed to be known in closed form, as is for instance justi-
fied for the Ornstein-Uhlenbeck process or Brownian motion
[45]. This exact form is then corrected by terms in the spirit of
a perturbative expansion which is controlled by powers of a di-
mensionless parameter describing the distance to equilibrium.
First, we revise the arguments given by Darling and Siegert for
the equilibrium case [14,15]. Next, we outline our perturbative
approach to the active case.

Before going further, we introduce some notations (see
Appendix A for a list). The transition probability density of
progressing from x0 at t0 to x1 at t1 is denoted by

Tx0,x1 (t0, t1) = T (t0, t1), (5)

where the arguments x0 and x1 will later be dropped wherever
confusion can be avoided, for the sake of easier notation.
Analogously, the return probability at x1, Tx1,x1 (t0, t1), is de-
noted by

Rx1 (t0, t1) = R(t0, t1) = Tx1,x1 (t0, t1). (6)

In the following, we denote the Fourier transform of a function
f (t ) by

f̂ (ω) =
∫ ∞

−∞
dt e−iωt f (t ), (7)

with inverse

f (t ) =
∫ ∞

−∞
d̄ω eiωt f (ω), (8)

where d̄ω = dω
2π

.
In the following, we consider functions f (t0, t1) which de-

pend on the difference t1 − t0 only, i.e., f (t0, t1) = f (t1 − t0).
We refer to functions of this type as diagonal. The Fourier
transform in two variables of these functions reads as

f̂ (ω0, ω1) =
∫ ∞

−∞
dt0

∫ ∞

−∞
dt1 e−iω0t0−iω1t1 f (t0, t1)

= f̂ (ω1)δ̄(ω0 + ω1), (9)

where δ̄(ω) = 2πδ(ω).

A. Equilibrium case: The Darling-Siegert solution

We here consider the equilibrium case of Eq. (1) defined
by setting ε = 0. As xt is Markovian, the functions p and T
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satisfy the following renewal equation:

Tx0,x1 (t0, t1) =
∫ t1

t0

dt ′ px0,x2 (t0, t ′)Tx2,x1 (t ′, t1) (10)

for all x2 ∈ (x0, x1]. Applying a Fourier transform to Eq. (10),
the time homogeneity of both Tx0,x1 (t0, t1) and p(t0, t1) trans-
lates into diagonality in frequencies and turns the convolution
into a product, such that the result can be stated at the level
of the amplitudes alone. Rearranging the terms and choosing
x2 = x1 results in

p̂(ω) = T̂ (ω)

R̂(ω)
. (11)

Since the Fourier transform of a probability density equals
its characteristic function, Eq. (11) recovers all moments of
the first passage time provided T̂ is known. Further, set-
ting ω = −is for some s ∈ R+ turns the Fourier transforms
into Laplace transforms and the characteristic function into
the moment-generating function. This recovers the Darling-
Siegert equation in its original form in which the Laplace
transform of transition and return probabilities is linked to the
moment-generating function of first passage times.

B. Out of equilibrium: A perturbative approach

The argument made by Darling and Siegert breaks down
when ε �= 0: indeed, when averaging over the driving noise
y(t ), the renewal equation (10) no longer is true. The approach
we take in this paper, consists of three steps:

(1) Fix a particular realization y(t ), and expand transition
and return probabilities of xt as functional expansion around
y = 0 of the form

T̂ (ω0, ω1, [ŷ]) =
∞∑

n=0

εn

n!

∫
d̄ω̃1 . . . d̄ω̃nδ̄

(
ω0 + ω1 +

n∑
i=1

ω̃i

)

× T̂ (n)(ω1, ω̃1, . . . , ω̃n)ŷ(−ω̃1) . . . ŷ(−ω̃n).
(12)

(2) As long as y(t ) is fixed, the process, when understood
as conditioned on this particular driving, satisfies a renewal
equation of the type (10). Inserting the perturbative transition
and return probabilities from the previous step gives a pertur-
bative series for the first passage time density p̂(ω0, ω1; [y])
of xt conditioned on a particular yt .

(3) Averaging over the ensemble of driving noises. For
simplicity, we here assume that the correlation function of the
driving noise is given by

yt0 yt1 = Dyβe−β|t1−t0|, (13)

where β is the inverse correlation time. Generally, when com-
puting the term of order εn, the first n moments of yt need to
be known.

This procedure leads to the central result of this work: the
moment-generating function of first passage times to second
order in ε reads as

p̂(ω) = T̂ (0)(ω)

R̂(0)(ω)
+ ε2Dyβ

2

[
T̂ (2)(ω, iβ,−iβ )

R̂(0)(ω)
− 2

T̂ (1)(ω − iβ, iβ )R̂(1)(ω, iβ )

R̂(0)(ω − iβ )R̂(0)(ω)

+ 2
T̂ (0)(ω)R̂(1)(ω − iβ, iβ )R̂(1)(ω, iβ )

(R̂(0)(ω))2R̂(0)(ω − iβ )
− T̂ (0)(ω)R̂(2)(ω, iβ,−iβ )

(R̂(0)(ω))2

]
+ O(ε4). (14)

In the next sections, we derive this relation in more details.

C. Perturbative Darling-Siegert equation

1. Expression for the first passage time distribution

By imposing an additional driving noise yt , the transition
probability and FPT probability density of xt depend on a
particular realization of yt . Accordingly, we introduce the
transition probability density T (t0, t1, [y]) and FPT proba-
bility density p(t0, t1, [y]) as the densities of the process xt

conditioned on y given. The conditional densities are explic-
itly dependent on t0 and t1 rather than their difference t1 − t0
because yt is an explicit function of time.

For y fixed, the process remains Markovian and therefore
Eq. (10) still applies and gives rise to

Tx0,x1 (t0, t1; [y]) =
∫ ∞

−∞
dt ′ px0,x1 (t0, t ′; [y])

× Rx1 (t ′, t1; [y]), (15)

where the dependency of the functions on the spatial values
x0, x1 has been made explicit for clarity, and we have used the
fact that p(t0, t ′; [y]) vanishes for t ′ < t0 and R(t ′, t1) vanishes
for t ′ > t1 to integrate over the full real axis.

It is no longer possible to directly invert this equation in
Fourier space to solve for p, as done in Eq. (11), since neither
terms in the integral are diagonal, i.e., they depend explicitly
on both t0, t ′ and t ′, t1. However, introducing the inverse func-
tional R−1 which is defined by the implicit equation∫ ∞

−∞
dt R−1(t0, t ; [y])R(t, t1; [y]) = δ(t1 − t0), (16)

the renewal equation can be formally solved by the relation

px0,x1 (t0, t1; [y]) =
∫ ∞

−∞
dt Tx0,x1 (t0, t ; [y])R−1

x1
(t, t1; [y]).

(17)

Our approach is then to perform a functional expansion of the
quantities involved in Eq. (17) in the function y, around the
Markovian case y = 0.
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2. Functional expansion of the transition and
return probability densities

We start by performing a Taylor expansion of the transition
probability T (t0, t1):

T (t0, t1; [y])

=
∞∑

n=0

1

n!

∫
dt̃1 . . . dt̃n

δnT

δy(t̃1) . . . δy(t̃n)
(t0, t1; [0])y(t̃1) . . . y(t̃n).

(18)

We now argue that this functional expansion can be rewritten
in a simpler form, using the time-invariance properties of the
dynamic equation (1). We introduce the time-shifting operator
which transforms a function yt into a time-shifted function ỹt ,
according to

St0 [y](t ) = yt+t0 ≡ ỹt (19)

and we will use the fact that

T (t0, t1; [y]) = T (t0 + τ, t1 + τ ; [S−τ [y]]) (20)

for any time shift τ . This relation results from the invariance
by time shifting of Eq. (1), when the function yt is shifted
in time accordingly. As a result, we introduce the shifted
function T0, defined by

T0(τ ; [ỹ]) = T (0, τ ; [ỹ]) (21)

such that Eq. (20) gives, choosing τ = −t0,

T (t0, t1; [y]) = T0(t1 − t0; [St0 [y]]) . (22)

Using Eq. (22), the functional derivatives of T can be
related to the functional derivatives of T0 through

δnT

δy(t̃1) . . . δy(t̃n)
(t0, t1; [y])

= δnT0

δỹ(t̃1 − t0) . . . δỹ(t̃n − t0)
(t1 − t0; [St0 [y]]), (23)

and the functional expansion of T can now be written

T (t0, t1; [y]) =
∞∑

n=0

1

n!

∫
dt̃1 . . . dt̃n

× δnT0

δỹ(t̃1 − t0) . . . δỹ(t̃n − t0)
(t1 − t0; [0])

× y(t̃1) . . . y(t̃n), (24)

where we have used that St0 [y = 0] = [0]. So far, the tran-
sitional probability T (t0, t1; [y]) has been expressed as a
functional of y in the time domain. In order to consider
the transition probability as a functional of the Fourier-
transformed driving noise ŷ, we introduce T̂ (ω0, ω1; [ŷ]),
defined by taking the Fourier transform of T (t0, t1, [y]) with
respect to t0, t1, and taking y equal to the inverse Fourier
transform of ŷ in the definition of T :

T̂ (ω0, ω1; [ŷ]) =
∫

dt0 dt1 T (t0, t1, [y])e−i(ω0t0+ω1t1 ), (25)

and similarly

T̂0(ω; [ŷ]) =
∫

dτ T0(τ, [y])e−iωτ . (26)

The functional derivatives of T0(τ ; [y]) and T̂0(ω; [ŷ]) are re-
lated by

δnT0(τ ; [y])

δy(t̃1) . . . δy(t̃n)
=
∫

d̄ω dω̃1 . . . dω̃n
δnT̂0(ω; [ŷ])

δŷ(ω̃1) . . . δŷ(ω̃n)

× e−iω̃1 t̃1 . . . e−iω̃nt̃n eiωτ . (27)

As a result, combining Eqs. (24) and (25), we obtain the
functional expansion

T̂ (ω0, ω1; [ŷ])

=
∞∑

n=0

1

n!

∫
dω̃1 . . . dω̃n δ̄

(
ω0 + ω1 −

n∑
i=1

ω̃i

)

× δnT̂0

δŷ(ω̃1) . . . δŷ(ω̃n)
(ω1; [0])ŷ(ω̃1) . . . ŷ(ω̃n). (28)

The perturbative expansion of the return probability R is
simply obtained from by letting x0 → x1 in the expansion of
T and has therefore the same structure, using R0(τ ; [ỹ]) =
R(0, τ ; [ỹ]). To ease the notation, we now introduce a shorter
notation for the set of functions:

T (n)(ω1, ω̃1, . . . , ω̃n)

= (2π )n

εn

δnT̂0

δŷ(−ω̃1) . . . δŷ(−ω̃n)
(ω1; [0]), (29)

R(n)(ω1, ω̃1, . . . , ω̃n)

= (2π )n

εn

δnR̂0

δŷ(−ω̃1) . . . δŷ(−ω̃n)
(ω1; [0]), (30)

where the factor 1/εn has been introduced for convenience, to
make the expansion in small ε explicit in Eq. (28). We then
arrive at the following form:

T̂ (ω0, ω1; [ŷ])=
∞∑

n=0

εn

n!

∫
d̄ω̃1 . . . d̄ω̃nδ̄

(
ω0 + ω1 +

n∑
i=1

ω̃i

)

× T̂ (n)(ω1, ω̃1, . . . , ω̃n)ŷ(−ω̃1) . . . ŷ(−ω̃n),

R̂(ω0, ω1; [ŷ])=
∞∑

n=0

εn

n!

∫
d̄ω̃1 . . . d̄ω̃nδ̄

(
ω0 + ω1 +

n∑
i=1

ω̃i

)

× R̂(n)(ω1, ω̃1, . . . , ω̃n)ŷ(−ω̃1) . . . ŷ(−ω̃n),
(31)

where we have made a choice of signs of ω̃1, . . . , ω̃n for
convenience.

3. Functional expansion of the inverse of
the return probability density

We now turn to the expansion of R−1 in Eq. (17). As T and
R, R−1 satisfies the time-shift invariance relation (20). This
can be seen by time shifting Eq. (16) by the time τ :∫ ∞

−∞
dt R−1(t0 + τ, t + τ ; S−τ [y])

× R(t + τ, t1 + τ ; S−τ [y]) = δ(t1 − t0) (32)
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and, since R(t + τ, t1 + τ ; S−τ [y]) = R(t, t1, [y]), one also obtains R−1(t0 + τ, t + τ ; S−τ [y]) = R−1(t0, t ; [y]) since Eq. (16)
defines R−1. The analysis of the previous subsection still applies and one obtains the expansion

R̂−1(ω0, ω1; [ŷ]) =
∞∑

n=0

εn

n!

∫
d̄ω̃1 . . . d̄ω̃nδ̄

(
ω0 + ω1 +

n∑
i=1

ω̃i

)
(R̂−1)(n)(ω1, ω̃1, . . . , ω̃n)ŷ(−ω̃1) . . . ŷ(−ω̃n). (33)

We then obtain by applying a Fourier transform to Eq. (16)∫
d̄ω R̂−1(ω0, ω; [ŷ])R̂(−ω,ω1; [ŷ]) = δ̄(ω0 + ω1). (34)

This relation allows to relate the functions (R−1)(n) to the functions R(n), by plugging Eqs. (31) and (33) and identifying order
by order in ε. Limiting ourselves up to order 2, we obtain

(R̂−1)(0)(ω) = 1

R̂(0)(ω)
, (35)

(R̂−1)(1)(ω, ω̃1) = − R̂(1)(ω, ω̃1)

R̂(0)(ω)R̂(0)(ω + ω̃1)
, (36)

(R̂−1)(2)(ω, ω̃1, ω̃2) = 1

R̂(0)(ω + ω̃1 + ω̃2)R̂(0)(ω)

{
2R̂(1)(ω + ω̃2, ω̃1)R̂(1)(ω, ω̃2)

R̂(0)(ω + ω̃2)
− R̂(2)(ω, ω̃1, ω̃2)

}
. (37)

4. Second-order expansion of the first passage time distribution

Equipped with these expansions, one now can expand the first passage time density expression (17) to obtain a functional
expansion of the first passage density in ε, involving the functions T̂ (n) and R̂(n) which are simpler to calculate. We first need to
write the Fourier-transformed version of Eq. (17):

p̂(ω0, ω1; [ŷ]) =
∫ ∞

−∞
d̄ω T̂ (ω0, ω; [ŷ]) R̂−1(−ω,ω1; [ŷ]), (38)

where the dependency on x0, x1 is here implicit. Performing an expansion of this relation in ε, the result reads to second order

p̂(ω0, ω1; [ŷ]) = T̂ (0)(ω1)

R̂(0)(ω1)
δ̄(ω0 + ω1) + ε

[
− T̂ (0)(−ω0)R̂(1)(ω1,−ω0 − ω1)

R̂(0)(−ω0)R̂(0)(ω1)
+ T̂ (1)(ω1,−ω0 − ω1)

1

R̂(0)(ω1)

]
ŷ(ω0 + ω1)

+ 1

2
ε2
∫

d̄ω̃

[
T̂ (0)(−ω0)

R̂(0)(−ω0)R̂(0)(ω1)

{
2R̂(1)(−ω̃ − ω0, ω̃)R̂(1)(ω1,−ω0 − ω1 − ω̃)

R̂(0)(−ω̃ − ω0)

− R̂(2)(ω1, ω̃,−ω0 − ω1 − ω̃)

}
+ T̂ (2)(ω1, ω̃,−ω0 − ω1 − ω̃)

R̂(0)(ω1)

− 2T̂ (1)(−ω̃ − ω0, ω̃)R̂(1)(ω1,−ω0 − ω1 − ω̃)

R̂(0)(ω1)R̂(0)(−ω̃ − ω0)

]
ŷ(−ω̃)ŷ(ω0 + ω1 + ω̃) + · · · . (39)

At this stage, we have obtained a perturbative expansion of
the first passage time density for a particular realization of y,
and only in terms of the expansion coefficients of transition
and return probability T and R. We now give a more explicit
expression of these expansion coefficients.

D. Finding the coefficient terms for probability densities in the
functional expansion

In this section we show how the functional expansion of
transition and return probability are obtained perturbatively in
terms of some suitable eigenfunctions.

The transition probability Tx0,x1 (t0, t1) of the undriven
process, characterized by Langevin equation (1) for ε = 0,
depends on the time difference only and can therefore be
written Tx0,x1 (t0, t1) = T (0)

x0,x1
(t1 − t0), following definitions

given in Eqs. (21) and (29). The transition density T (0) solves

the Kolmogorov forward equation⎧⎪⎨
⎪⎩

∂t T (0)
x0,x1

(t ) = Lx1 T (0)
x0,x1

(t ), t > 0

T (0)
x0,x1

(t = 0) = δ(x1 − x0),

T (0)
x0,x1

(t ) = 0, t < 0

(40)

where we introduce the forward evolution operator Lx as

Lx f = ∂x(V ′(x) f ) + Dx∂
2
x f , (41)

where f is a twice differentiable test function. In Eq. (40), we
denote the forward operator as Lx1 to indicate that its gradient
terms are acting on the x1 dependency of T (0). Correspond-
ingly, the L2-adjoint operator L†

x , also referred to as backward
operator, is

L†
x f = −V ′(x)∂x f + Dx∂

2
x f . (42)

The forward operator Lx has a countable set of eigenfunctions
{un(x)} and a nonpositive spectrum 0 � −λ0 > −λ1 > · · ·
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[46],

Lxun(x) = −λnun(x), n � 0 (43)

but is a priori not self-adjoint in L2(R).1 It is straightforward
to show [47], however, that the operator

Lx = e
V (x)
2Dx Lxe− V (x)

2Dx (44)

is self-adjoint and that therefore the family of{
e

V (x)
2Dx un(x)

}
, n � 0 (45)

as eigenfunctions of Lx, form an orthogonal set of eigen-
functions spanning L2(R). We further impose a choice
of normalization of the functions {un}, such that the set
{e V (x)

2Dx un(x)} is orthonormal. Defining un(x) as right eigenfunc-
tions, and

vn(x) = e
V (x)
Dx un(x) (46)

as left eigenfunctions, satisfying

L†
xvn(x) = −λnvn(x), (47)

we obtain a biorthogonal system for the pair {un(x)}, {vn(x)}:∫
dx vm(x)un(x) = δm,n. (48)

This is useful to solve the forward equation; taking the
Fourier transform in time of Eq. (40), one obtains

iωT̂ (0)
x0,x1

(ω) = LxT̂ (0)
x0,x1

(ω) + δ(x1 − x0). (49)

Inserting the ansatz

T̂ (0)
x0,x1

(ω) =
∑
n�0

T̂ (0)
n,x0

(ω)un(x1) (50)

into Eq. (49) and using Eq. (43) leads to

∑
n�0

(iω + λn)T̂ (0)
n,x0

(ω)un(x1) =
∑
n�0

vn(x0)un(x1), (51)

where we made use of the decomposition of unity:

δ(x1 − x0) =
∑
n�0

vn(x0)un(x1). (52)

Since the un(x1) are linearly independent, their prefactors in
Eq. (51) need to agree. Therefore,

T̂ (0)
n,x0

(ω) = vn(x0)

iω + λn
(53)

implying, together with Eq. (50),

T̂ (0)
x0,x1

(ω) =
∑
n�0

vn(x0)un(x1)

iω + λn
. (54)

Turning to the case of ε �= 0, the transition probability of
the driven Langevin equation (1) solves the forward equation

∂t1 Tx0,x1 (t0, t1; [y])

= [
Lx1 + εy(t1)∂x1

]
Tx0,x1 (t0, t1; [y]), t1 > t0

Tx0,x1 (t0, t0; [y]) = δ(x1 − x0),

Tx0,x1 (t0, t1; [y]) = 0, t1 < t0 (55)

where time homogeneity can no longer be assumed. Under
Fourier transform, this forward equation becomes

(iω1 − Lx1 )T̂x0,x1 (ω0, ω1, [ŷ])

= δ(x1 − x0)δ̄(ω1 + ω0)

+ ε

∫
d̄ω̃1 ŷ(ω̃1)∂x1 T̂x0,x1 (ω0, ω1 − ω̃1, [ŷ]), (56)

where the y-dependent term turns from a product into a convo-
lution under the Fourier transform. We develop a perturbative
solution of T̂x0,x1 (ω0, ω1, [ŷ]) in powers of ŷ.

We first discuss the first-order correction in ε. Following
the functional expansion (31), and using the zeroth-order re-
sult (54), we obtain

T̂x0,x1 (ω0, ω1; [ŷ]) =
∑
n�0

vn(x0)un(x1)δ̄(ω0 + ω1)

iω1 + λn

+ ε

∫
d̄ω̃1T̂ (1)

x0,x1
(ω1, ω̃1)ŷ(−ω̃1)

× δ̄(ω0 + ω1 + ω̃1) + · · · (57)

and we wish to determine the function T̂ (1). Since the un(x)
span the L2 space, and in analogy to the ansatz (50), the first-
order correction too can be written as a sum

T̂ (1)
x0,x1

(ω1, ω̃1) =
∑
n�0

T̂ (1)
n,x0

(ω1, ω̃1)un(x1). (58)

Reinserting Eqs. (57) and (58) into Eq. (56) causes all terms
to zeroth order in y to cancel, and one obtains an equation
relating the contributions proportional to ε:

∑
n�0

(iω1 + λn)
∫

d̄ω̃1T̂ (1)
n,x0

(ω1, ω̃1)ŷ(−ω̃1)un(x1)δ̄(ω0 + ω1 + ω̃1)

=
∫

d̄ω̃1

∑
n�0

vn(x0)u′
n(x1)

i(ω1 − ω̃1) + λn
ŷ(ω̃1)δ̄(ω0 + ω1 − ω̃1). (59)

1Instead, L†
x is self-adjoint and nonpositive in the weighted space L2(u0(x)) [46].
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The right-hand side, which is the convolution of T̂ (0)(ω) and
ŷ(ω), no longer sums over un(x1) but their derivative u′

n(x1).
In order to compare both left and right terms, we need to
express this sum as a sum over the linearly independent un(x1)
again. The decomposition of the derivative in terms of un(x1)
is given by

u′
n(x1) =

∑
k


nkuk (x1), (60)

where we refer to the 
nk as derivative coupling matrix whose
entries, as follows from biorthogonality, are


nk =
∫

dx vk (x)u′
n(x). (61)

Further, Eq. (59) holds true for arbitrary y(ω̃1). In order to
compare both integrations over d̄ω̃1, we relabel ω̃1 �→ −ω̃1

in the right-hand side of the equation. Using this notation,
inserting the sum (60) into Eq. (59), and resolving the ansatz
(58), one obtains

T̂ (1)
x0,x1

(ω1, ω̃1) =
∑

n,k�0

vk (x0)
knun(x1)

[i(ω1 + ω̃1) + λk](iω1 + λn)
. (62)

In a similar way, the second-order correction can be found;
using the functional expansion (31) to second order,

T̂x0,x1 (ω0, ω1; [ŷ])

=
∑
n�0

vn(x0)un(x1)

iω1 + λn
δ̄(ω0 + ω1)

+ ε
∑

n,k�0

vk (x0)
knun(x1)

(−iω0 + λk )(iω1 + λn)
ŷ(ω0 + ω1)

+ ε2

2

∫∫
d̄ω̃1d̄ω̃2T̂ (2)

x0,x1
(ω1, ω̃1, ω̃2)ŷ(−ω̃1)ŷ(−ω̃2)

× δ̄(ω0 + ω1 + ω̃1 + ω̃2) + · · ·, (63)

with the results from Eqs. (54) and (62) to zeroth and first
order, inserting this ansatz into the forward equation (56)
gives, following in complete analogy to the previous step,

T̂ (2)
x0,x1

(ω1, ω̃1, ω̃2)

=
∑

n,k,m�0

2vn(x0)
nk
kmum(x1)

[i(ω1+ω̃1+ω̃2) + λn][i(ω1+ω̃1) +λk](iω1+λm)
.

(64)

Following this method, it is straightforward to generate the
perturbative terms of T̂ (n) to arbitrary order in n,

T̂ (n)
x0,x1

(ω1, ω̃1, . . . , ω̃n)

= n!
∑

k0,...,kn�0

vk0 (x0)
k0k1 · . . . · 
kn−1kn ukn (x1)∏n
j=0

(
i
(
ω1 +∑

1���n− j ω̃�

)+ λk j

) .
(65)

Finally, choosing x0 = x1 in any of the expressions (54), (62),
(64), and (65) gives the corresponding terms for the return
probability coefficients R̂(0)(ω), R̂(1)(ω, ω̃1), . . . . Equipped
with these expressions, we are able to compute the relevant
integrals in the formula for the y-averaged first passage time
density (67).

E. Driving noise averaging

As was set out initially, the quantity of interest is the first
passage time density when averaged over all driving noises
(even if the quantity given above might be of interest in
itself). The average over driving noise realizations yt is an
average different to the average over the stochastic process
xt . This double average is reminiscent of “quenched-disorder
averages” where a system subject to thermal fluctuations is
embedded into a random disorder potential. The expansion
in Eq. (39) is a power series in orders of ε, where contribu-
tions of order εn contain an internal integration over n − 1
free frequencies. The expansion terms which stand in front
of the y terms, those denoted within square brackets, are
independent of y. They may be interpreted as the nth-order
response functionals of the first passage time distribution to
perturbations in the driving noise y. To calculate the y average
of p̂(ω0, ω1; [y]), each term in Eq. (39) is integrated over the
path measure of y, P[y]. The order of internal integration and
y averaging can be swapped. Consequently, since yt = 0 by
assumption, all terms in first order in y vanish. To second
order, correlations of y come into play. We introduce the
correlation function

ŷ(ω0)ŷ(ω1) =
∫

D[ŷ]P[ŷ]ŷ(ω0)ŷ(ω1) = Ĉ2(ω1)δ̄(ω0 + ω1),

(66)

where the last equality arises from the stationary in time of
the random process y(t ). Stationarity in time also implies that
Ĉ2(ω) is symmetric in ω �→ −ω. Performing an averaging
over P[ŷ] of Eq. (39), we obtain

p̂(ω0, ω1; [ŷ])

= T̂ (0)(ω1)

R̂(0)(ω1)
δ̄(ω0+ω1)+1

2
ε2

⎡
⎢⎢⎢⎣−

∫
d̄ω̃

T̂ (0)(ω1)R̂(2)(ω1, ω̃,−ω̃)

(R̂(0)(ω1))2
Ĉ2(ω̃)︸ ︷︷ ︸

=:(I)

+ 2
∫

d̄ω̃
T̂ (0)(ω1)R̂(1)(ω1 − ω̃, ω̃)R̂(1)(ω1,−ω̃)

(R̂(0)(ω1))2R̂(0)(ω1 − ω̃)
Ĉ2(ω̃)︸ ︷︷ ︸

=:(II)

− 2
∫

d̄ω̃
T̂ (1)(ω1 − ω̃, ω̃)R̂(1)(ω1,−ω̃)

R̂(0)(ω1)R̂(0)(ω1 − ω̃)
Ĉ2(ω̃)︸ ︷︷ ︸

=:(III)

+
∫

d̄ω̃
T̂ (2)(ω1, ω̃,−ω̃)

R̂(0)(ω1)
Ĉ2(ω̃)︸ ︷︷ ︸

=:(IV)

⎤
⎥⎥⎥⎦δ̄(ω0 + ω1) + · · · . (67)
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The first term, of zeroth order, represents the Darling-Siegert
solution (11). This is consistent with our expansion around
the base point of no driving noise (fully Markovian process).
Once averaged, the second-order contribution is again di-
agonal [i.e., proportional to δ̄(ω0 + ω1)] indicating that the
y-averaged first passage distribution is again invariant under
time shifts. The four correction terms featuring in the second-
order expansion in ε are labeled (I)–(IV), and need to be
calculated explicitly.

The corresponding expressions are derived in the following
section, for the case of Gaussian colored noise. Generally,
however, the entire expression (67) remains valid for driving
noise correlations Ĉ2(ω) which keep the integrals finite.

F. Second-order correction with Gaussian colored noise

So far, in our derivation of the second-order correction to
the first passage time density [Eq. (67)], we only demanded
the active driving noise to be stationary, with finite correla-
tions and vanishing mean. In what follows, we specify yt to be
Gaussian colored noise. This choice is almost canonical in the
study of colored noise [23]. In our case it greatly simplifies the
necessary integrals. It is, however, possible to use any other

correlation functions as long as the integrals remain manage-
able. Generally, to compute the perturbative contribution of
nth order in y, the n-point correlation function of yt needs to
be known; for Gaussian processes all higher moments follow
from the two-point correlation function which simplifies the
calculation of potential higher-order corrections. Since the
correlation function of colored noise is an exponential, the
results obtained in this section to order ε2 hold for any noise
with such autocorrelation, in particular, telegraphic noise as
used in run-and-tumble processes [38]. Run-and-tumble and
other purely active processes correspond to Dx = 0 or, al-
ternatively ν → ∞, and are therefore not captured by our
perturbative approach valid for ν � 1.

Gaussian colored noise is defined by its exponential corre-
lator

yt0 yt1 = Dyβe−β|t1−t0|, (68)

which in Fourier space reads as [Eq. (66)]

Ĉ2(ω) = 2Dyβ
2

ω2 + β2
. (69)

With the explicit expressions (54), (62), and (64), we perform
the integration in (I) [see Eq. (67) for notation] in eigenfunc-
tion representation

(I) =
∫

d̄ω̃
T̂ (0)(ω1)R̂(2)(ω1, ω̃,−ω̃)

(R̂(0)(ω1))2
Ĉ2(ω̃) = 2Dyβ

2 T̂ (0)(ω1)

(R̂(0)(ω1))2

∫
d̄ω̃

R̂(2)(ω1, ω̃,−ω̃)

β2 + ω̃2
= 2Dyβ

2 T̂ (0)(ω1)

(R̂(0)(ω1))2

×
∑

n,k,m�0

2
∫ ∞

−∞
d̄ω̃

vn(x1)
nk
kmum(x1)

(iω1 + λn)[i(ω1 + ω̃) + λk](iω1 + λm)

1

ω̃2 + β2

= Dyβ
T̂ (0)(ω1)R̂(2)(ω1,−iβ, iβ )

(R̂(0)(ω1))2
, (70)

where in the last equality we employed Cauchy’s residue theorem closing the contour in the lower half-plane containing the
simple pole at ω̃ = −iβ. Likewise, we find

(IV) =
∫

d̄ω̃
T̂ (2)(ω1, ω̃,−ω̃)

R̂(0)(ω1)
Ĉ2(ω̃) = 2Dyβ

2 1

R̂(0)(ω1)

×
∑

n,k,m�0

2
∫ ∞

∞
d̄ω̃

vn(x0)
nk
kmum(x1)

(iω1 + λn)[i(ω1 + ω̃) + λk](iω1 + λm)

1

ω̃2 + β2

= Dyβ
T̂ (2)(ω1,−iβ, iβ )

R̂(0)(ω1)
, (71)

where again the integral is evaluated by closing the contour in the lower half-plane enclosing the pole at ω̃ = −iβ.
The integrals (II) and (III), featuring ω̃-dependent denominators, require some more careful analysis. We have

(II) = 2
∫

d̄ω̃
T̂ (0)(ω1)R̂(1)(ω1 − ω̃, ω̃)R̂(1)(ω1,−ω̃)Ĉ2(ω̃)

(R̂(0)(ω1))2R̂(0)(ω1 − ω̃)
. (72)

As before, we calculate this integral by application of Cauchy’s residue theorem, but now closing the contour in the upper
half-plane. The numerator’s poles all lie in the lower half-plane with the exception of the pole at ω̃ = iβ stemming from the
correlator, as can be confirmed by inspection of Eq. (62). Besides, the denominator R̂(0)(ω1 − ω̃) does not have any roots for
Im(ω̃) > 0. Indeed, using the relations (54) and (46), R̂(0)(ω1 − ω̃) = ∑

n�0
vn (x1 )un(x1 )
i(ω1−ω̃)+λn

= eV (x1 )/Dx
∑

n�0
(un(x1 ))2

i(ω1−ω̃)+λn
. Since the

{un(x)} span L2, there cannot be a x1 for which all un(x1) = 0. Aside from the real part of the denominator in the sum is strictly
positive, λn + Im(ω̃) > 0, assuming ω1 ∈ R. In the upper half-plane the sum therefore only contains terms whose real part is
non-negative and at least once strictly positive; hence, the sum is free of roots in the upper half-plane. Invoking Cauchy’s residue
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formula the integral is then given by

(II) = 2Dyβ
T̂ (0)(ω1)R̂(1)(ω1 − iβ, iβ )R̂(1)(ω1,−iβ )

(R̂(0)(ω1))2R̂(0)(ω1 − iβ )
. (73)

By analogous reasoning one obtains

(III) = 2
∫

d̄ω̃
T̂ (1)(ω1 − ω̃, ω̃)R̂(1)(ω1,−ω̃)

R̂(0)(ω1)R̂(0)(ω1 − ω̃)
Ĉ2(ω̃) = 2Dyβ

T̂ (1)(ω1 − iβ, iβ )R̂(1)(ω1,−iβ )

R̂(0)(ω1)R̂(0)(ω1 − iβ )
. (74)

All four terms together give a general formula for the moment-generating function of first passage times for arbitrary
underlying processes and driving noises provided the eigenfunctions and correlators are known. In the case of driving noise
with exponentially decaying autocorrelation, the full formula for p̂(ω0, ω1) = p̂(ω1)δ̄(ω0 + ω1), reads as

p̂(ω) = T̂ (0)(ω)

R̂(0)(ω)
+ ε2Dyβ

2R̂(0)(ω)

[
T̂ (0)(ω)

R̂(0)(ω)

(
2

R̂(1)(ω − iβ, iβ )R̂(1)(ω,−iβ )

R̂(0)(ω − iβ )
− R̂(2)(ω,−iβ, iβ )

)

+ T̂ (2)(ω,−iβ, iβ ) − 2
T̂ (1)(ω − iβ, iβ )R̂(1)(ω,−iβ )

R̂(0)(ω − iβ )

]
+ O(ε4) . (75)

This general result concludes this section. In the next section,
we consider two concrete examples to demonstrate how this
perturbation theory can be turned into analytical results.

III. RESULTS FOR SIMPLE POTENTIALS

A. Active thermal Ornstein-Uhlenbeck process (ATOU)

In this example we study the case of a particle in a har-
monic potential driven by white and colored noise described
by the Langevin equation

ẋt = −αxt + ξt + εyt (76)

with driving noise correlator [see Eq. (68)]

yt0 yt1 = Dyβe−β|t1−t0|. (77)

This process reduces to the simple Ornstein-Uhlenbeck pro-
cess when ε = 0 which models a particle in a harmonic
potential [V (x) = α

2 x2] within a thermal bath. We consider,
however, the process driven by an additional “active” term εyt .
We therefore refer to this process as active thermal Ornstein-
Uhlenbeck process (ATOU). In the undriven case (ε = 0), the
dynamics are characterized by the time and length scales α−1

and

� =
√

Dxα−1.

1. From eigenfunctions to the moment-generating function of first
passage times

The Fokker-Planck equation associated [cf. Eq. (41)] to the
Langevin equation (76) is

∂t T
(0)

x0,x1
= Lx1 T (0)

x0,x1
= (

Dx∂
2
x1

+ αx1∂x1 + α
)
T (0)

x0,x1
(78)

with Lx = Dx∂
2
x + αx∂x + α the forward evolution operator.

The operator has eigenvalues [46]

λn = αn (79)

and is diagonalized by the (normalized) eigenfunctions

vn(x) = 1√√
2π� · n!

Hen

(x

�

)
, (80)

un(x) = 1√√
2π� · n!

Hen

(x

�

)
e− x2

2�2 , (81)

where we introduced Hermite polynomials using the conven-
tion

Hen(x) = (−1)ne
x2

2
dn

dxn
e− x2

2 (82)

which satisfy the relation

He′
n(x) = x Hen(x) − Hen+1(x) (83)

such that the coupling matrix [cf. Eq. (61)] resolves to


mn = −
√

n

�
δm+1,n. (84)

The coupling matrix is not diagonal: incoming momentum n is
upgraded to outgoing momentum n + 1 by the noise coupling.
For later use, we also note that(

x

�
− �

d

dx

)
vn(x) = √

n + 1 vn+1(x), (85)

�v′
n(x) = √

n vn−1(x). (86)

By L2 adjointness, it follows that the adjoint creation and
annihilation operators are

−�u′
n(x) = √

n + 1 un+1(x), (87)(
x

�
+ �

d

dx

)
un(x) = √

nun−1(x). (88)

In order to compute the transition and return probabilities,
the following identity [48]

∞∑
k=0

Hek (x) Hek (y)e− y2

2

k!
zk = 1√

1 − z2
e− (y−zx)2

2(1−z2 ) (89)

proves to be useful.
We introduce all quantities in dimensionless form, and take

ω to be imaginary, such as the reduced frequency s̄ and the
reduced autocorrelation time β̄ as

s̄ = iα−1ω, β̄ = α−1β. (90)
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By considering the Fourier transform at s̄ = iα−1ω, we are
effectively studying the Laplace transform. This is intended
since our final observable is the moment-generating function,
the Laplace transform of the first passage time distribution.
Further, we denoted the lengths rescaled by � as

x̄1 = �−1x1, x̄0 = �−1x0. (91)

In the discussion that follows, we analyze all densities as
densities in these dimensionless quantities to simplify nota-
tion and calculations. Following Eq. (54), one obtains for the
transition probability

T̂ (0)(ω = −is̄α)

= 1√
2π�

∑
n=0

Hen(x̄0) Hen(x̄1)e− x̄2
1
2

n!(s̄α + αn)

= 1√
2π�α

∫ ∞

0
dt e−s̄t

∞∑
n=0

Hen(x̄0) Hen(x̄1)e− x̄2
1
2

n!
(e−t )n

= 1√
2π�α

∫ ∞

0
dt

e−s̄t

√
1 − e−2t

e− (x̄1−x̄0e−t )2

2(1−e−2t ) , (92)

where we used identity (89) setting z = e−t . This integral is
the Laplace transform of the Ornstein-Uhlenbeck propagator
(in t ↔ s), and its value is known in the literature to be [14]

T̂ (0)(−is̄α)

=
⎧⎨
⎩

�(s̄)√
2π�α

e
x̄2
0−x̄2

1
4 D−s̄(−x̄0)D−s̄(x̄1), x̄0 < x̄1

�(s̄)√
2π�α

e
x̄2
0−x̄2

1
4 D−s̄(x̄0)D−s̄(−x̄1), x̄0 > x̄1

(93)

where we introduced the parabolic cylinder functions D−s̄(x)
[49]. By continuity, for x̄0 → x̄1 it follows that

R̂(0)(−is̄α) = �(s̄)√
2π�α

D−s̄(x̄1)D−s̄(−x̄1). (94)

In order to compute T̂ (1)(−is̄α,−iβ̄α), we use Eq. (62) and
the derivative coupling matrix computed in (84) to find

T̂ (1)(−is̄α,−iβ̄α)

= 1

�α2

∑
n

vn(x̄0)(−√
n + 1)un+1(x̄1)

(s̄ + β̄ + n)(s̄ + n + 1)

= 1

�α2(1 − β̄ )
∂x̄1

∑
n

vn(x̄0)un(x̄1)

×
[

1

s̄ + β̄ + n
− 1

s̄ + n + 1

]

= ∂x̄1

�α(1 − β̄ )
(T̂ (0)(−i(s̄ + β̄ )α) − T̂ (0)(−i(s̄ + 1)α)),

(95)

where we made use of relation (87) in the second equal-
ity. Letting x̄0 → x̄1, one obtains R̂(1)(−is̄α,−iβ̄α). The
counterpart T̂ (1)(−is̄α − iβ̄α, iβ̄α) is similarly found to

be

T̂ (1)(−is̄α − iβ̄α, iβ̄α)

= ∂x̄1

�α(1 + β̄ )
(T̂ (0)(−is̄α) − T̂ (0)(−i(s̄ + β̄ + 1)α)).

(96)

These terms can be explicitly calculated and simplified.
The rather lengthy but explicit expressions are given in
Appendix D.

For the second-order derivative term, using formula (64),
one finds

T̂ (2)(−is̄α,−iβ̄α, iβ̄α)

= 2

�2α3

∞∑
n=0

vn(x̄0)
√

n + 1
√

n + 2un+2(x̄1)

(s̄ + n)(s̄ + β̄ + n + 1)(s̄ + n + 2)

= 2∂2
x̄1

�2α3

∞∑
n=0

vn(x̄0)un(x̄1)

(s̄ + n)(s̄ + β̄ + n + 1)(s̄ + n + 2)

= 2∂2
x̄1

�2α2

[
1

2(β̄ + 1)
T̂ (0)(−is̄α)

− 1

2(β̄ − 1)
T̂ (0)(−i(s̄ + 2)α)

+ 1

(β̄2 − 1)
T̂ (0)(−i(s̄ + β̄ + 1)α)

]
. (97)

Again, the evaluated terms, including for x̄0 → x̄1 are given in
Appendix D.

Equipped with the return and transition probabilities and
its first two derivatives with respect to driving noise y [cf.
(93)–(97)], we obtain the four contributions (70)–(74) which
constitute the second-order correction formula (75). While all
the explicit expressions are given in Appendix D, we here give
the moment-generating function in full as a undriven part and
a perturbative correction, using s = αs̄ = iω,

Mx0,x1 (s)=M0,OU
x0
�

,
x1
�

( s

α

)
+ Dyε

2β

Dxα︸ ︷︷ ︸
=:ν

M1,OU
x0
�

,
x1
�

( s

α

)
+ O(ν2), (98)

where we introduced the dimensionless parameter of expan-

sion ν = ε2Dyβ

Dxα
.

As is already known from literature (e.g., [15]),

M0,OU
x̄0,x̄1

(s̄) =
⎧⎨
⎩e

x̄2
0−x̄2

1
4

D−s̄ (−x̄0 )
D−s̄ (−x̄1 ) , x̄0 < x̄1

e
x̄2
0−x̄2

1
4

D−s̄ (x̄0 )
D−s̄ (x̄1 ) , x̄0 > x̄1.

(99)

By symmetry (x̄0, x̄1) ↔ (−x̄0,−x̄1) of the problem and sym-
metry of driving noise, it suffices to regard one case only, such
that without loss of generality we assume x̄0 < x̄1. The central
result of this section then is

M1,OU
x̄0,x̄1

(s̄) = s̄e
x̄2
0−x̄2

1
4

2(β̄2 − 1)D−s̄(−x̄1)2D−β̄−s̄(−x̄1)

× {(β̄ + 1)(s̄ + 1)D−β̄−s̄(−x̄1)[D−s̄(−x̄0)

× D−s̄−2(−x̄1) − D−s̄−2(−x̄0)D−s̄(−x̄1)]

− 2(β̄ + s̄)D−s̄−1(−x̄1)[D−s̄(−x̄0)D−β̄−s̄−1(−x̄1)

− D−β̄−s̄−1(−x̄0)D−s̄(−x̄1)]}. (100)
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FIG. 3. Numerical validation of first-order correction to FPT
moment-generating function M1 [cf. Eq. (4)] of ATOU [see Eq. (76)
and Sec. III A for discussion]. The result is calculated in Eq. (100).
Numerical simulations are shown for various values of 0.1 � ν �
0.8 (plot marks). The moment-generating functions were sampled for
x0 = 0, x1 = 1, Dx = 1, Dy = 1, α = 1, β = 0.1 and ε suitably
chosen to fix ν = Dyε

2β/(Dxα). For small values of ν agreement
with theoretical first-order correction (black line) is excellent. For
larger values of ν the deviation increases. The rescaled deviation M̃2

[see Eq. (102)], (inset) collapse and thus confirm that these deviations
are systematic higher-order corrections. See Sec. III A 2 for further
results and discussion.

Using, for instance, a computer algebra system like [50], all
moments can be obtained by differentiation and evaluating
the limit of s̄ → 0 at which all derivatives have a removable
singularity.

2. Numerical validation

In order to corroborate the closed-form result of the first-
order correction to the moment-generating function of first
passage times [Eq. (100)], we employ Monte Carlo simula-
tions integrating the driven Langevin equation (76) N � 106

times, numerically find the first passage time τ̃i, and average
the moment-generating function M̃ = 1

N

∑N
i=1 e−sτ̃i for values

of s within the range s ∈ [0, 5]. In the following, M̃ and T̃ de-
note quantities that have been numerically obtained. Since we
assume an expansion of the form M = M0 + νM1 + ν2M2 +
· · · , we take the numerical first derivative

M̃1|ν = M̃|ν − M̃|ν=0

ν
(101)

to verify our analytic prediction of M1. In Fig. 3, the numer-
ical estimate M̃1 is shown for various values of ν, together
with the analytic expression (100) of the scaling function M1.
For small ν, the agreement is excellent. For larger values of
ν, higher-order corrections become more visible. The next-
higher contribution, which we did not calculate analytically
but which can be found by following the framework to second
order in ν, is numerically estimated by taking the second
numerical derivative

M̃2|ν = M̃1|ν − M1

ν
, (102)

and is shown in the inset of Fig. 3. For 0.2 � ν � 0.8, the
second-order corrections collapse, indicating that the devia-
tions in the main figure are well accounted for by second-order
corrections. For ν = 0.1, M̃2 deviates slightly due to the sta-
tistical noise since the second-order correction is very small.

For better physical intuition of the process, we numerically
compute the inverse Laplace transform [50,51] of M0 and M1

to obtain the first passage time distribution:

p(t ) = p0(t ) + νp1(t ) (103)

neglecting, as usual, terms of higher order in ν. In Fig. 2(a),
we show the first-order corrected distribution compared to a
numerical sampling of the probability function p̃(t ) for values
of 0 � ν � 3.2. The agreement for ν � 1 is excellent, and
plotting the rescaled deviation

p̃1(t )|ν = p̃(t )|ν − p̃(t )|ν=0

ν
(104)

against the theoretical result of p1(y) [see inset of Fig. 2(a)]
shows systematic higher-order corrections consistent with our
framework. Since for small ν the deviation to the undriven
case is small, p̃ suffers from statistical noise, therefore we
omit showing p̃(ν = 0.1) in the inset.

These numerical results therefore confirm the analytically
obtained first-order correction to the moment-generating func-
tion; consequently, the correction to all moments has been
gained. As an illustration, we further show the first and
second moments of the Ornstein-Uhlenbeck process driven
by colored noise in Figs. 4(a) and 4(b). In analogy to the
moment-generating function, we measure the mean and mean-
square first passage times T̃1 = 1

N

∑N
i=1 τ̃i, T̃2 = 1

N

∑N
i=1 τ̃ 2

i ,
which we assume to expand in ν as T1(ν) = T 0

1 + νT 1
1 +

ν2T 2
1 + · · · and T2(ν) = T 0

2 + νT 1
2 + ν2T 2

2 + · · · . The first-
order corrections introduced are obtained by differentiation
with respect to s̄:

T 1
n = 1

αn

d n

d (−s̄)n

∣∣∣∣
s̄=0

M1 (105)

using the result of Eq. (100) which is performed by a computer
algebra system and evaluated exactly. Due to their lengthiness,
we do not give their full expression here. In order to numer-
ically confirm these predictions, we measure the first-order
derivatives

T̃ 1
1

∣∣
ν

= T̃1|ν − T̃1|ν=0

ν
, (106)

T̃ 1
2

∣∣
ν

= T̃2|ν − T̃2|ν=0

ν
, (107)

and compare it to the result obtained from Eq. (105). In
Figs. 4(a) and 4(b), we show the resulting moments of first
passage times obtained for fixed start position x0 = 0 (at
the minimum of the potential) but varied x1 ∈ [0.05, 2]. The
figures show a clear agreement with the theoretical result
and systematic deviations for larger ν. Further, we observe
that in this setting the colored noise increases the mean first
passage time for smaller distances (x1 � 1.6) and decreases it
for larger distances. This also holds true for the mean-squared
first passage time. This example therefore further illustrates
that the effect of colored driving (or memory) on the Langevin
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FIG. 4. First-order correction to first and second moments of active thermal Ornstein-Uhlenbeck process (ATOU). Simulation parameters
are x0 = 0, Dx = 1, Dy = 1, α = 1, β = 1

2 and ε suitably chosen to fix ν = Dyβε2/(Dxα). Averages were taken over 106 samples. (a) Cor-
rection to mean first passage time of ATOU [cf. Eq. (76)] as obtained from Eq. (106) versus target positions x1, x0 = 0 fixed, and various
values of ν (plot marks) compared to theoretical result to first order in ν (black line) using Eq. (105) and the result obtained in (100). The inset
shows the mean first passage time τx0,x1 as measured vs x1 for values of ν = 0 to 0.8. Correction due to active driving noise increases MFPT for
x1 � 1.6 and decreases MFPT for x1 � 1.6. This behavior is fully captured by the analytic result. (b) Correction to mean-squared first passage
time of ATOU [cf. Eq. (76)] as obtained from Eq. (107) versus target positions x1, x0 = 0 fixed, and various values of ν (plot marks) compared
to theoretical result to first order in ν (black line) using Eq. (105) and the result obtained in (100). The inset shows the mean-squared first
passage time τx0,x1 as measured vs x1 for values of ν = 0 to 0.8.

dynamics is highly nontrivial, yet our framework is able to
capture this effect. The insets in both figures show the mea-
sured moments T̃ 1, T̃ 2.

B. Active thermal Brownian motion on a ring (ATBM)

In this section, we consider the case of a Brownian particle
at xt driven by colored noise which is placed on a ring of
radius r, thus satisfying periodic boundary conditions (x ≡
x + 2πr). The position of the particle satisfies the Langevin
equation

ẋt = ξt + εyt (108)

with 〈
ξt0ξt1

〉 = 2Dxδ(t1 − t0), (109)

yt0 yt1 = Dyβe−β|t1−t0|. (110)

We refer to this system as active thermal Brownian motion
(ATBM) on a ring (see Fig. 5 for illustration). In anal-
ogy to the previous subsection, we derive the correction to
the moment-generating function of the first passage time
distribution.

1. From eigenfunctions to the moment-generating function
of first passage times

The Fokker-Planck associated to the forward equation
corresponding to Langevin equation (108) is the Laplace
equation with periodic boundary conditions x ≡ x + 2πr.
Since its eigenfunctions are complex-valued square-integrable
functions, we follow the identical steps of the framework in-
troduced in Sec. II D but replace the scalar product in Eq. (48)
by its complex equivalent∫

dx v∗
m(x)un(x) = δmn. (111)

In what follows, we therefore consider the complex conjugate
of the left eigenfunctions and obtain

un(x) = 1√
2πr

ei nx
r , (112)

v∗
n (x) = 1√

2πr
e−i nx

r (113)

with corresponding eigenvalues

λn = Dxr−2n2 (n ∈ Z), (114)

where by allowing n ∈ Z, we enumerate the eigenfunctions
efficiently [cf. Eq. (43)]. The eigenfunctions are conjugate to
each other since the forward operator of simple diffusion L =
Dx∂

2
x is self-adjoint. From this follows that the noise-coupling

x0

x1

θ

r

yt, ξt

FIG. 5. A particle on a circle of radius r is driven by both white
(thermal) and colored (active) noise [cf. Eq. (108)]. We study the
first passage time distribution from x0 to x1 as a function of the angle
θ ∈ [0, 2π ).
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matrix defined in Eq. (61),


mn =
∫

dx v∗
m∂xun(x)

= 1

2πr

∫ 2πr

0
dx i

n

r
ei(n−m) x

r = i
n

r
δmn, (115)

is diagonal and purely imaginary. Because of scale invariance
and rotational symmetry, we simplify the following discussion
by introducing the dimensionless angle

θ := x1 − x0

r
, (116)

where we restrict ourselves to θ ∈ [0, 2π ), and the diffusive
timescale

α−1 = r2

Dx
(117)

with which we rescale the Fourier frequency ω to
s̄ = iα−1ω, (118)

again effectively evaluating the Laplace transform [cf. Eq. (7)]
of the respective probability densities. With this simplified
notation, the transition density to zeroth order reads as

T̂ (0)(−is̄α) = 1

2παr

∞∑
n=−∞

e−inθ

s̄ + n2

= 1

2αr

cosh[(θ − π )
√

s̄]√
s̄ sinh(π

√
s̄)

, (119)

and the return probability, setting θ = 0, is

R̂(0)(−is̄α) = 1

2αr

cosh(π
√

s̄)√
s̄ sinh(π

√
s̄)

. (120)

Assuming the y-averaged moment-generating function has
an expansion of

M(s) = M0,BM
x1−x0

r

(
r2s

Dx

)
+ Dyε

2β

Dxα︸ ︷︷ ︸
ν

M1,BM
x1−x0

r

(
r2s

Dx

)

+ O(ν2), (121)

where we use as in the Ornstein-Uhlenbeck case the di-
mensionless perturbative parameter ν = Dyε

2β

Dxα
[here, α has,

however, a different definition than used in the OU case, see
Eq. (117)]. The zeroth-order contribution is, using the classic
result (11), and the results in (119) and (120),

M0,BM
θ (s̄) = cosh[(θ − π )

√
s̄]

cosh(π
√

s̄)
(122)

which expands around s̄ = 0 as

M0,BM
θ (s̄) = 1 +

(
θ2

2
− πθ

)
s̄

+ 1

24
(θ4 − 4πθ3 + 8π3θ )s̄2

+ 1

720
(θ6 − 6πθ5 + 40π3θ3 − 96π5θ )s̄3

+ · · · . (123)

Being a moment-generating function, the prefactors in front
of s̄n correspond to the (rescaled) moments of the first passage
time (−1)n

n! 〈τ n
x0→x1

〉( Dx
r2 )

n
.

We turn to higher orders in ε. To first order, the transition
density

T̂ (1)(−is̄α,−iβ̄α) = 1

2πα2r2

∞∑
n=−∞

ine−inθ

(s̄ + β̄ + n2)(s̄ + n2)

= 1

2πα2r2

∞∑
n=0

−2n sin nθ

(s̄ + β̄ + n2)(s̄ + n2)
.

(124)

Here, we introduced as before β̄ = α−1β as the dimension-
less correlation timescale of the colored noise. The function
R̂1(−is̄α,−iβ̄α), which corresponds to T̂ 1(−is̄α,−iβ̄α)
evaluated at θ = 0, vanishes. This implies that the contribu-
tion of integrals (II) and (III), as given in Eqs. (73) and (74),
vanish, leaving only (I) and (IV) as correction terms.

To second order, the transition density is

T̂ (2)(−is̄α,−iβ̄α, iβ̄α) = − 1

πα3r3

∞∑
n=−∞

n2e−inθ

(s̄ + n2)2(s̄ + β̄ + n2)

= − 1

πα3r3

∞∑
n=−∞

[
1

β̄2

n2e−inθ

s̄ + β̄ + n2
− 1

β̄2

n2e−inθ

s̄ + n2
+ 1

β̄

n2e−inθ

(s̄ + n2)2

]

= 2

α2r2

1

β̄2
∂2
θ [T̂ (0)(s̄ + β̄ ) − T̂ (0)(s̄) − β̄∂s̄T̂

(0)(s̄)]

= 2

α3r3

1

4β̄2
√

s̄

[
cosh[(θ − π )

√
s̄]

sinh(π
√

s̄)
[πβ̄

√
s̄ coth(π

√
s̄) − 2s̄ − β̄]

+ √
s̄

{
2
√

β̄ + s̄
cosh[(θ − π )

√
s̄ + β̄]

sinh(π
√

β̄ + s̄)
+ β̄(π − θ )

sinh[(θ − π )
√

s̄]

sinh(π
√

s̄)

}]
, (125)
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where ∂θ = r∂x1 . Setting θ = 0, one obtains the second-order response of the return probability:

R̂(2)(−is̄α,−iβ̄α, iβ̄α) = 1

2α3β̄2r3

[
πβ̄ coth2(π

√
s̄) − (β̄ + 2s̄) coth(π

√
s̄)√

s̄
+ 2

√
β̄ + s̄ coth(π

√
β̄ + s̄) − πβ̄

]
. (126)

Inserting these quantities into the FPT correction (75) gives

M(s = αs̄) = cosh[(θ − π )
√

s̄]

cosh(π
√

s̄)
+ Dyε

2

2Dx

√
s̄ tanh(π

√
s̄)

β̄

[
cosh[(θ − π )

√
β̄ + s̄]

sinh(π
√

β̄ + s̄)
2
√

β̄ + s̄

+ cosh[(θ − π )
√

s̄]

cosh(π
√

s̄)
[πβ̄ − 2

√
β̄ + s̄ coth(π

√
β̄ + s̄)] + sinh[(θ − π )

√
s̄]

sinh(π
√

s̄)
β̄(π − θ )

]
+ O(ε4). (127)

This expression is the full moment-generating function up to second order in ε (first order in ν) in elementary functions. In line
with our previous notation, we identify the dimensionless scaling functions

M0,BM
θ (s̄) = cosh[(θ − π )

√
s̄]

cosh(π
√

s̄)
, (128)

M1,BM
θ (s̄) =

√
s̄ tanh(π

√
s̄)

2β̄2

[
cosh[(θ − π )

√
β̄ + s̄]

sinh(π
√

β̄ + s̄)
2
√

β̄ + s̄

+ β̄(π − θ )
sinh[(θ − π )

√
s̄]

sinh(π
√

s̄)
+ [πβ̄ − 2

√
β̄ + s̄ coth(π

√
β̄ + s̄)]

cosh[(θ − π )
√

s̄]

cosh(π
√

s̄)

]
(129)

which together form the first-order correction of the moment-generating function

M(s) = M0,BM
x1−x0

r

(
r2s

Dx

)
+ Dyε

2β

Dxα
M1,BM

x1−x0
r

(
r2s

Dx

)
+ O(ε4). (130)

An expansion around s̄ = 0 gives corrections to all moments. The correction to first order in ν of the mean first passage time
over an angle of θ , 〈τ0→θ 〉, for instance, reads as

α〈τ0,θ 〉 = πθ − θ2

2︸ ︷︷ ︸
αT 0

1 (θ )

−ν
1

2β̄3/2

(√
β̄(2π − θ )θ − 2π coth(π

√
β̄ ) + 2π

cosh[
√

β̄(θ − π )]

sinh(π
√

β̄ )

)
︸ ︷︷ ︸

=:−αT 1
1 (θ,β̄ )

+ O(ν2), (131)

where we indicated that the result can be written as the clas-
sical contribution (T 0

1 ) plus the dimensionless perturbative
coefficient ν times a dimensionless scaling function T 1

1 (θ, β̄ ).
By successive derivation, any higher-order moment may be
obtained from Eq. (127).

In the limit of an infinitely large radius r → ∞ one obtains,
under suitable rescaling, the moment-generating function for
an active thermal Brownian motion on the real line. We have
confirmed that the perturbative approximation (127) agrees,
up to second order in ε, with the analytic solution for a run-
and-tumble process subject to additional white noise in the
limit of small tumble noise which has been calculated in [34].

2. Numerical validation

In order to validate the analytic result of the moment-
generating function of first passage times (127) and the mean
first passage time (131), we follow the same steps as in the
previous Sec. III A 2. Using Monte Carlo simulations, we
sample the first passage times τ̃i of the integrated stochastic
equation (108). To validate the moment-generating function,
we average over N � 106 to 107 iterations to sample

M̃ = 1

N

N∑
i=1

e−sτ̃i (132)

for various values of ν and across x̄1 − x̄0 ∈ (0, π ] (with r =
1). Again, symbols with a tilde denote quantities which are
measured numerically. To validate the theoretically predicted
first-order correction (129), we introduce the numerically
measured corrections:

M̃1|ν = M̃|ν − M|ν=0

ν
, (133)

M̃2|ν = M̃1|ν − M1

ν
. (134)

In Fig. 6, we show the analytic result M1 [cf. Eq. (129)] and
numerically obtained M̃1|ν [cf. Eq. (133)] for various values
of 0 � ν � 0.8. The agreement is again excellent, and the dis-
crepancy between simulated result and theoretical first-order
correction grows, as expected, with larger values of ν. The
rescaled discrepancy M̃2, to leading order the second-order
correction M2 [cf. Eq. (134)], is plotted in the inset and
collapses, indicating that the discrepancy is systematic and
confirming the validity of the result in Eq. (129). By numeri-
cally computing the inverse Laplace transform, we obtain the
perturbative correction to the first passage time distribution
[cf. Eq. (103)] which in Fig. 2(b) is compared to the numer-
ically sampled distribution. The inset shows the numerical
estimate of the first-order correction [cf. Eq. (104)] which
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FIG. 6. Numerical validation of first-order correction to FPT
moment-generating function M1 of ATBM [cf. Eq. (108) and
Sec. III B for discussion] for various values of 0.1 � ν � 0.8. The
moment-generating functions were sampled for x0 = 0, x1 = π ,
Dx = 1, α = 1, Dy = 1, β = 1 and ε suitably chosen to fix ν =
Dyr2βε2/(D2

x ) (plot marks). For small values of ν, agreement with
theoretical first-order correction (black line) is very good. For larger
values of ν, the deviation increases. The rescaled deviations M̃2 [see
Eq. (134)] (inset) collapse and thus confirm that these deviations
are systematic higher-order corrections. See Sec. III B 2 for further
results and discussion.

agrees well for small ν. For larger values of ν, second-order
corrections play an increasing role as indicated in Fig. 6. In
Figs. 7(a) and 7(b), we show the first and second moments
of first passage times and how their deviations to the ν = 0
case are captured by the first-order correction obtained using
Eqs. (106) and (107) with the result of Eq. (129). For the
first and second moments, the agreement is again excellent,
showing that the correction induced by the active driving noise
is accurately captured to leading order. The insets of Figs. 7(a)

and 7(b) show the respective moments of the FPT for various
ν, indicating the systematic decrease for increased values of
ν.

C. Limit cases

The framework we introduce here allows to study colored
driving noises at any correlation time β−1. In particular, this
includes two limit cases of β → 0 and β → ∞. For appropri-
ate rescaling of Dy, the former limit corresponds to a particular
quenched-disorder model, and the latter to additional white
noise. In what follows we discuss these limit cases in more
detail.

1. White-noise limit

For very small autocorrelation times β−1 the driving noise
yt appears more and more as white noise. The correlator of yt

tends towards

yt0 yt1 = Dyβe−β|t1−t0| → 2Dyδ(t1 − t0), β → ∞. (135)

In this limit, the driving noise features in the Langevin equa-
tion (1) as additional white noise and is absorbed as

ẋt = −V ′(xt ) +
√

2(Dx + ε2Dy)ξt , (136)

with 〈ξt0ξt1〉 = δ(t1 − t0), such that effectively the diffusion
constant is shifted by Dx �→ Dx + ε2Dy. In the white-noise
limit, the theory is Markovian and Eq. (11) may be applied
using the shifted diffusivity to obtain exact results. The pertur-
bation theory presented here then corresponds to an expansion
of the Markovian result in a perturbation to the diffusion
constant Dx, and as a result the following identity must hold:

lim
β→∞

βM1
x0,x1

(s) = αDx
∂

∂Dx
M0

x0,x1
(s). (137)
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FIG. 7. First-order correction to first and second moments of first passage times of active thermal Brownian motion (ATBM) with periodic
boundary conditions. Simulation parameters are x0 = 0, Dx = 1, r = 1, Dy = 1, β = 1

2 and ε suitably chosen to fix ν = Dyr2βε2/(D2
x ).

(a) Correction to mean first passage time of ATBM on a ring [cf. Eq. (108)] as obtained from Eq. (106) versus target position x1 and various
values of ν (plot marks). This is compared to theoretical result of Eq. (131) (solid black line). The inset shows the measured mean first passage
time versus a varying target position x1 and different values of ν. (b) Correction to mean-squared first passage time of ATBM on a ring [cf.
Eq. (108)] as obtained from Eq. (107) versus target position x1 and various values of ν (plot marks). This is compared to theoretical result
of twice differentiating Eq. (129) (solid black line). The inset shows the measured mean-squared first passage time versus a varying target
position x1 and different values of ν.
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One can verify that this relation is indeed satisfied for the
Brownian motion case [Eqs. (128) and (129)] as well as the
Ornstein-Uhlenbeck case [Eqs. (99) and (100)].

2. Quenched-disorder limit

In the opposite limit of β → 0, provided Dyβ = w2 re-
mains fixed, the driving noise “freezes” to a random constant
since

yt0 yt1 = Dyβe−β|t1−t0| → w2, β → 0. (138)

Effectively, the Langevin equation (1) therefore turns into
ẋt = −V ′(xt ) + ξt + v, (139)

where v is a constant driving velocity which is normal
distributed according to v ∼ N (0, ε2w2). The driving noise
average e−sτx0 ,x1 then corresponds to a quenched average over
the ensemble of normal distributed velocities v. If we treat
M1 as a functional of the potential V (x) in which the particle
is embedded, then formally

w2ε2

Dxα
lim
β→0

M1
x0,x1

(s; [V (x)]) (140)

= 1

2
ε2w2︸︷︷︸
=v2

∂2
v

∣∣
v=0M (0)

x0,x1
(s; [V (x) − vx]). (141)

Our framework therefore predicts the first-order correction
in v2.

Example: Brownian Motion with periodic boundary condi-
tions and a random drift. For Brownian motion with periodic
boundary conditions, as studied in Sec. III B, one can compute
the moment-generating function of first passage times for a
particular fixed drift v exactly. [See Appendix B and in par-
ticular Eq. (B16) for the result. We could not find this result
elsewhere in the literature.] On expanding this result in orders
of the drift v and averaging v2 over its distribution N (0, ε2w2)
we obtain a resulting quenched average approximation in or-
ders of v2, M(s; v) = M(s; v = 0) + 1

2∂2
v |v=0M(s; v)v2 + · · · .

When employing our framework and letting β → 0 in our
general result (127) we recover precisely 1

2∂2
v |v=0M(s; v). The

necessary calculations are given in Appendix C and show that
this is indeed the case. By way of this relation, our framework
for instance returns the correction to the mean first passage
time of a Brownian motion with quenched-disordered drift to
first order in ν as [compare to Eq. (131)]

α〈τ0,θ 〉 = θ (2π − θ )

2
− ε2w2

α2r2

θ2(θ − 2π )2

24
+ · · · (142)

such that quenched disorder lowers the mean first passage
time for any choice of parameters. Further, for the mean-
squared first passage time we obtain

α2
〈
τ 2

0,θ

〉
= 1

12
θ (θ − 2π )(θ − 2ϕπ )(θ − 2π + 2ϕπ )

+ ε2w2

α2r2

θ (θ − 2π )[θ − π (1 + ψ+)][θ − π (1 − ψ+)]

120

× [θ − π (1 + ψ−)][θ − π (1 − ψ−)], (143)

where ϕ = 1+√
5

2 is the golden ratio, and ψ± = 1±√
10√

3
.

IV. CONCLUSION

In this work, we introduce a perturbative approach to
study the first passage time distribution of stochastic processes
which are driven both by white and colored noise. This class
of stochastic processes lies at the heart of the study of active
particles in a thermal environment. The activeness, which can
either represent self-propulsion or hidden degrees of freedom,
is modeled by colored noise yt with characteristic timescale
β−1 while the thermal bath is modeled by white noise ξt with
diffusion constant Dx. The expansion parameter in which the
perturbation takes place is a dimensionless quantity ν, which
indicates how strong the fluctuations of the active noise are in
comparison to the strength of thermal fluctuations. We study
the regime in which ν is small.

Setting out from a renewal equation which gives the
moment-generating function of first passage times, we employ
a functional expansion to obtain its perturbative corrections.
This key equation (17) stands at the center of this work. In
order to solve it perturbatively, one needs to calculate the
expansion terms [cf. Eqs. (31) and (33)] which involve the
eigenfunctions of the Fokker-Planck operator associated to the
nondriven process [cf. Eq. (43)]. To first order in ν, we obtain
an analytic result of the moment-generating function in terms
of the associated eigenfunctions [cf. Eq. (75)]. Higher-order
contributions can be obtained by further iterating the steps
outlined in Sec. II D.

To illustrate the capabilities of our framework, we study
two systems. First, we consider an active thermal particle in
a harmonic potential, the active thermal Ornstein-Uhlenbeck
process. In Sec. III A 1, we calculate all necessary response
functions to find the first-order correction to the moment-
generating function of first passage times [cf. Eq. (100)]. By
taking derivatives, we could in principle obtain closed-form
expressions for the first-order correction to any moment of
the first passage time distribution. We confirm these analytical
results by numerical simulations. Sampling the experimental
moment-generating function, we obtain an excellent agree-
ment with the first-order correction (see Fig. 3). For larger
values of ν, the perturbative parameter, the deviations sys-
tematically indicate higher-order corrections. Further, we
compare the theoretically predicted correction to the first two
moments of the first passage times to numerical results [see
Figs. 4(a) and 4(b)] which are in excellent agreement. Sec-
ond, we study active thermal Brownian motion on a ring (see
Sec. III B). Again, we illustrate our framework by finding the
first-order correction to the moment-generating function [cf.
Eq. (127)]. Numerical simulations show excellent agreement
and systematic higher-order corrections (see Fig. 6). Both first
and second moments of the first passage time are obtained
from Eq. (127) and show good agreement with numerical
simulations.

Further, since the perturbation theory we present makes no
assumption on β−1, we are able to recover the limiting cases
for β → 0 and ∞, respectively. The case of β → 0 is of par-
ticular interest since it recovers quenched- disorder averages
over processes with additional fixed and normal distributed
drift (see Sec. III C).

The framework requires to find the eigenfunctions of
a differential operator, and to express all transition and
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TABLE I. Overview of symbols used for various probability densities and their functional transforms. When possible, the lower subscripts
x0, x1 are omitted.

Symbol Description

px0,x1 (t0, t1) First passage time probability density at (x1, t1) starting from (x0, t0)
p̂x0,x1 (ω) Fourier transform (characteristic function) of FPT density
Mx0,x1 (s) Laplace transform (moment-generating function) of FPT density
Tx0,x1 (t0, t1) Probability density of progress from (x0, t0 ) to (x1, t1)
T̂x0,x1 (ω) Fourier transform of transition probability [cf. Eq. (9)]
Rx1 (t0, t1) Probability density of return at x1 at time t1 starting at t0

R̂x1 (ω) Fourier transform of return probability [cf. Eq. (9)]
T̂ (n)

x0,x1
(ω1, ω̃1, . . . , ω̃n) Expansion functionals of transition probability in εyt [cf. Eq. (29)]

R̂(n)
x1

(ω1, ω̃1, . . . , ω̃n) Expansion functionals of return probability in εyt [cf. Eq. (30)]
M0

x0,x1
, M1

x0,x1
, . . . yt -averaged coefficients to moment-generating function Mx0,x1 (s) in ν expansion

return densities as sums over these eigenfunctions. This often
requires certain calculations that for more unusual eigenfunc-
tions may be difficult to perform.

Our approach further allows for the presence of an ex-
ternal potential provided the associated differential operator
[Eq. (41)] can be diagonalized. This significantly extends the
range of systems our framework can be applied to. In this
work, we focused on Fourier modes and Hermite polynomials
which are suitable for flat and harmonic potentials. It is, how-
ever, also possible to study piece-wise combinations of the
potentials using these eigenfunctions. This may be relevant
when studying bistable processes, for instance. Further, as
long as Eq. (41) can be diagonalized, this framework also
allows for a space-dependent thermal diffusivity by letting
Dx = D(x). For future work, for instance, it would be in-
teresting to study first passage time behavior of particles at
the boundary between two heat baths at different temperature
[e.g., D(x) = D0 + sgn(x)
D].

Moreover, the functional expansion in ŷ(ω) [cf. Eq. (28)]
drastically simplifies in the case of yt being a periodic driving
force. This framework therefore would not only be able to
capture stochastic y, but also oscillating deterministic driving
forces. This will possibly be addressed in future work.

To first order in ν, the corrections, as given in Eqs. (70) to
(74), involve simple complex integrals which can be solved

by the residue theorem. For higher-order corrections, how-
ever, the integration runs over more than one free internal
variable and will require more work. This corresponds to the
problems of typical Feynman diagrams of higher order in
statistical field theories which often involve nontrivial inte-
grals. To study higher orders, field theory therefore would
provide the necessary toolbox to solve the required correc-
tion terms. Already, the general result obtained in Eq. (75)
can be analogously derived using field-theoretic methods (see
[52]).

In conclusion, by casting a broad class of non-Markovian
processes into a perturbative language, our framework will
prove itself useful in tackling a diverse range of future chal-
lenges.
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APPENDIX A: NOTATIONS

For reference, we list the most commonly used notations in Table I.

APPENDIX B: FIRST PASSAGE TIMES OF BROWNIAN MOTION ON A RING WITH DRIFT

We calculate the first passage time distribution of a Brownian motion with drift v on a ring of radius r departing from the
methods outlined in [53, Chap. V] although the explicit formula is not given there. Instead of considering the first passage event
of transition x0 → x1, we calculate the exit probability of a Brownian motion on the real line over the absorbing boundaries at
x1 and x1 − 2πr where without loss of generality we chose x1 − 2πr < x0 < x1. The transition density T (t ) ≡ Tx0,x1 (t ) satisfies
the Fokker-Planck equation

∂t T (t ) = Dx∂
2
x1

T (t ) − v∂x1 T (t ) (B1)

and the Kolmogorov backward equation

∂t T (t ) = Dx∂
2
x0

T (t ) + v∂x0 T (t ) (B2)

013075-18



FIRST PASSAGE TIME DISTRIBUTION OF ACTIVE … PHYSICAL REVIEW RESEARCH 3, 013075 (2021)

with absorbing boundary conditions for t � 0

Tx0,x1 (t ) = 0, (B3)

Tx0,x1−2πr (t ) = 0, (B4)

and initial condition

Tx0,x(t = 0) = δ(x − x0). (B5)

The net flux of the surviving probability over the boundary is related to the first passage time distribution via

px0,x1 (t ) = −∂t

∫ x1

x1−2πr
dx Tx0,x(t ). (B6)

Using the backward equation (B2), and applying a further derivative in time one finds

∂t px0,x1 (t ) = −(Dx∂
2
x0

+ v∂x0

)
∂t

∫ x1

x1−2πr
dx Tx0,x(t ) (B7)

= (
Dx∂

2
x0

+ v∂x0

)
px0,x1 (t ). (B8)

At the boundary, the first passage time distribution is given by

px1,x1 (t ) = px1−2πr,x1 (t ) = δ(t ) (B9)

since the particle is immediately absorbed, while at time t = 0 for x0 away from the boundary

px0,x1 (t = 0) = 0 (B10)

since the particle has not yet begun to diffuse. Under Laplace transform in t , the differential equation (B8), together with these
boundary and initial conditions, returns{

sMx0,x1 (s) = (
Dx∂

2
x0

+ v∂x0

)
Mx0,x1 (s), x1 − 2πr < x0 < x1

Mx0,x1 (s) = 1, x0 = x1 − 2πr or x0 = x1.
(B11)

The ordinary differential equation (away from the boundary) is solved by the exponential ansatz

Mx0,x1 (s) = Aeω1x0 + Beω2x0 . (B12)

Inserting this ansatz into (B11) enforces

ω1,2 = − v

2Dx
±
√

v2 + 4Dxs

2Dx
. (B13)

The boundary conditions (B11) fix the normalizing constants A, B to

A = −eπrω1−ω1x1
sinh(πrω2)

sinh[πr(ω1 − ω2)]
, (B14)

B = sinh(πrω1)
eπrω2−ω2x1

sinh[πr(ω1 − ω2)]
. (B15)

After some further simplifications one arrives at the v-dependent moment-generating function

Mx0,x1 (s; v) = e
rv

2Dx
(θ−2π ) sinh

( r
√

v2+4Dxs
2Dx

θ
)− e

rv
2Dx

θ sinh
( r

√
v2+4Dxs
2Dx

(θ − 2π )
)

sinh
(
π

r
√

v2+4Dxs
Dx

) (B16)

with θ = (x1 − x0)/r following the notation from the main text. We note that, for v → 0,

r
√

v2 + 4Dxs

2Dx
→ √

s̄ (B17)

and one recovers the undriven moment-generating function

Mx0,x1 (s; v = 0) = Mx0,x1 (s) = sinh(θ
√

s̄) − sinh[(θ − 2π )
√

s̄]

sinh(2π
√

s̄)
= cosh[(θ − π )

√
s̄]

cosh(π
√

s̄)
(B18)

in agreement with the independently found expression (122). In Appendix C, we show that to second order in v this result is
identical to the first-order correction M1 from Eq. (127) in the limit of β → 0.

013075-19



WALTER, PRUESSNER, AND SALBREUX PHYSICAL REVIEW RESEARCH 3, 013075 (2021)

APPENDIX C: EQUIVALENCE OF QUENCHED AVERAGES

In this Appendix, we provide a more detailed proof showing that Eq. (141) indeed holds for the case of Brownian motion
driven by colored noise, i.e., that our framework perturbatively gives the correct moment-generating function of first passage
times when taking the quenched average over Eq. (139) with normal distributed drift v ∼ N (0, ε2w2). To that end, we take the
β → 0 limit of the analytically found M1 [cf. Eq. (129)]:

lim
β→0

M1 = 1

8
√

s̄
{θ cosh(θ

√
s̄)[θ

√
s̄ − tanh(π

√
s̄)]

+ sinh(θ
√

s̄)[−(θ2 − 2πθ + 2π2)
√

s̄ tanh(π
√

s̄) + 2π (π − θ )
√

s̄ coth(π
√

s̄) + π tanh2(π
√

s̄) + θ − π ]}. (C1)

In Eq. (141), it is claimed that this equals

Dxα

2ε2w2

∫ ∞

−∞
dv

e− v2

2ε2w2

√
2πε2w2

v2 ∂2
v

∣∣
v=0Mx0,x1 (s; v). (C2)

Evaluating this expression using the result from Eq. (B16) and setting v = 0 results in

Dxα

2
∂2
v

∣∣
v=0Mx0,x1 (s; v) = 1

8
√

s̄

{
1

sinh(2π
√

s̄)
[sinh((θ − 2π )

√
s̄)[2π coth(2π

√
s̄) − θ2

√
s̄] + θ cosh(θ

√
s̄)

+ (2π − θ ) cosh((θ − 2π )
√

s̄) + sinh(θ
√

s̄)[(θ − 2π )2
√

s̄ − 2π coth(2π
√

s̄)]]

}
. (C3)

The expressions in (C1) and (C3) are indeed equal as can be shown with the help of Mathematica [50].

APPENDIX D: EXPLICIT EXPRESSIONS FOR FUNCTIONAL DERIVATIVES OF TRANSITION PROBABILITY DENSITIES
OF ORNSTEIN-UHLENBECK PROCESSES

Following the notation from Sec. III A 1, we here give the explicit expressions of T̂ (1), T̂ (2) as implicitly given in Eqs. (95)–
(97). We confine ourselves to the case of x̄0 < x̄1. Starting from the Fourier-transformed transition probability density [cf.
Eq. (93)], all other functional derivatives are given as partial derivatives of this density. From formula (95), one obtains

T̂ (1)(−is̄α,−iβ ) = − e
x̄2
0−x̄2

1
4√

2π�2α2(1 − β̄ )
[�(β̄ + s̄)D−β̄−s̄(−x̄0)D−β̄−s̄+1(x̄1) − �(s̄ + 1)D−s̄−1(−x̄0)D−s̄(x̄1)], (D1)

where �(s̄) is the usual gamma function. Letting x̄0 → x̄1 gives the first functional derivative of the return probability at x̄1:

R̂(1)(−is̄α,−iβ ) = −�(β̄ + s̄)D−β̄−s̄(−x̄1)D−β̄−s̄+1(x̄1) − �(s̄ + 1)D−s̄−1(−x̄1)D−s̄(x̄1)√
2π�2α2(1 − β̄ ).

(D2)

These results further imply

T̂ (1)(−is̄α − iβ, iβ ) = −e
x̄2
0−x̄2

1
4 [�(s̄)D−s̄(−x̄0)D1−s̄(x̄1) − �(β̄ + s̄ + 1)D−β̄−s̄−1(−x̄0)D−β̄−s̄(x̄1)]√

2π (1 + β̄ )�2α2
(D3)

and

R̂(1)(−is̄α − iβ, iβ ) = −�(s̄)D−s̄(−x̄1)D1−s̄(x̄1) − �(β̄ + s̄ + 1)D−β̄−s̄−1(−x̄1)D−β̄−s̄(x̄1)√
2π (1 + β̄ )�2α2

. (D4)

The second-order derivative of the transition probability is

T̂ (2)(−is̄α,−iβ, iβ ) = e
x̄2
0−x̄2

1
4√

2π (β̄2 − 1)�3α3
[2�(β̄ + s̄ + 1)D−β̄−s̄−1(−x̄0)D−β̄−s̄+1(x̄1)

+ (β̄ − 1)�(s̄)D−s̄(−x̄0)D2−s̄(x̄1) − (β̄ + 1)�(s̄ + 2)D−s̄−2(−x̄0)D−s̄(x̄1)] (D5)

and of the return probability

R̂(2)(−is̄α,−iβ, iβ ) = 1√
2π (β̄2 − 1)�3α3

[2�(β̄ + s̄ + 1)D−β̄−s̄−1(−x̄1)D−β̄−s̄+1(x̄1)

+ (β̄ − 1)�(s̄)D−s̄(−x̄1)D2−s̄(x̄1) − (β̄ + 1)�(s̄ + 2)D−s̄−2(−x̄1)D−s̄(x̄1)]. (D6)
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