
Title: Evaluating predictive capabilities in Industry 4.0 framework using Regression Models  

 

Author: Shibajyoti Banerjee 

Faculty of Instrumentation and Biotechnical Systems (alumnus) 

Saint Petersburg ElectroTechnical University (ETU LETI) 

shbanerdzhi@stud.eltech.ru 

 

Abstract  

 

The recent trends and changes brought by the Fourth Industrial Revolution (I4.0) have succeeded in 

proposing a better future as well as ways to handle enormous amounts of entangled data generated 

daily. However, there is a need for visualizing and processing this information, so that it can be uti-

lized fruitfully. To assess the performance of industrial and manufacturing equipment’s overtime, 

prolonged monitoring of data in real-time is required. Predictive analysis is a topology that relies on 

prevising the future parameters of an automated process or system using computerized algorithms 

and previously obtained data or information and notifying about the fall in performance parameters. 

 

This work focuses on analyzing the data obtained from a fatigue machine-based experiment, followed 

by applications of regression algorithms to predict and compare theoretically and predicted values. 

 

Keywords:  Predictive Regression, System Performance, Fourth Industrial Revolution, Fault Diag-

nosis 

 

1. Introduction  

 

Three Industrial Revolutions have so far prompted worldview changes in the area of assembling au-

tomation through water and steam power, large-scale manufacturing in the get-together lines, and 

computerization utilizing data innovation. Compared to the previous years, businesses together with 

analysts and approach producers worldwide have progressively pushed towards a Fourth Industrial 

Revolution (I 4.0). The I4.0 is described by the presentation of the Internet of things (IoT) into as-

sembling, which empowers brilliant industrial facilities with coordinated frameworks. The subse-

quent intelligent processing plants can satisfy dynamic client requests with high fluctuation while 

coordinating human resourcefulness and automation. To help the assembling business during this 

transition and improve worldwide intensity, arrangement creators in a few nations have built up re-

search and innovation plans. This shows that information has become a critical theme for scientists 

and businesses around the world. The fundamental object is the supposed Cyber-physical systems 

(CPS): Physical Elements (e.g., machines, vehicles, and workpieces), furnished with advancements, 

such as RFIDs, sensors, chips, telematics, or complete installed frameworks [1]. 

 

1.1. The Fourth Industrial Revolution or Industry 4.0 (I 4.0) 

 

At the yearly Davos meeting of the World Economic Forum (WEF) of 2016, there was a serious 

discussion on the issue of the Fourth Industrial Revolution or I4.0, and a few parts of this new stage 

or pattern of industrial advancement were introduced by participants, as indicated by WEF Chairman 

Klaus Schwab who presented the term and subject of the Fourth Industrial Revolution in Davos dis-



cussion [2]. The popularity of I 4.0 is further uplifted by factors such as digitization and steady cor-

respondence, stepwise increment in proficiency, adequacy of the financial framework activity, and 

finally the accomplishment of self-governing conduct using brainpower integrated with autonomous 

control [3].  

 



1.2. Smart Manufacturing 

 

Smart Manufacturing coordinates fabricating resources of today and tomorrow with sensors, pro-

cessing stages, correspondence innovation, and information-based demonstration, control, reproduc-

tion, and predictive engineering. Smart Manufacturing aggregate CPS, IoT, Cloud Computing, ad-

ministration situated registering, Artificial Intelligence (A.I.) and Data Science into one. When actu-

alized, these covering ideas and innovations make fabricating the sign of an efficient change in in-

dustrial systems. The following elucidates the typical requirements of an intelligent manufacturing 

process [4]:  

 

i. New materials, component and additive manufacturing, laser and net-shape manufacturing, 

manufacturing integration, factory automation, sensor, and software implementation.  

ii. Implementing sensors, wireless technology, and data analytics. Collection of data from di-

verse sources, to power applications and build predictive models. Preserving and extracting 

past knowledge related to manufacturing. 

iii. For process monitoring, quality control, and productivity analysis. Predictive engineering al-

lows exploring the future aspects of present data to support decisions concerning future pro-

ductions. 

iv. Sustainable product design for manufacturing sustained manufacturing process, as well as the 

creation of sustainable development and processes. 

v. Resource Sharing and Networking allows the sharing of vital information among businesses 

to gain competition. 

 

1.3. Predictive Maintenance 

 

The development of current strategies (e.g., Internet of Things, Sensor innovation, Artificial Intelli-

gence, and so forth.) mirrors a change of support techniques from Reactive Maintenance (RM), Pre-

ventive Maintenance (PM) to Predictive Maintenance (Pd.M.). RM is just executed to re-establish the 

working condition of the device after a fault happens, and in this way will in general reason result in 

high responsive fix costs. PM is completed by an arranged calendar-dependent schedule or procedure 

emphasized to forestall breakdown, and along these lines may perform superfluous upkeep with high 

counteraction costs. Pd.M. permits the support recurrence to be as low as possible by forestalling 

impromptu RM, without bringing about expenses related to doing an excessive amount of PM [5]. 

Predictive Maintenance (Pd.M.) is a widely used technique and typically follows the algorithms of 

conditional monitoring, fault diagnosis, fault prognosis, and finally maintenance. It possesses the ca-

pability of predetermining areas of prospective lags, faults, and breakdowns taking into consideration 

factors that govern the efficiency of the system.  

 

1.4. Predictive Maintenance in Industry 4.0 and Fault Diagnosis  

 

Pd.M. 4.0, lined up with I 4.0 standards, paints an outline for insightful Pd.M. frameworks. I 4.0 is a 

change in the outlook of modern procedures and items pushed by intelligent data handling, corre-

spondence frameworks, future arranged methods, and so forth. Smart machines and production lines 

utilize cutting-edge innovations, for example, organizing, associated gadgets, information examina-

tion, and synthetic reasoning to arrive at a progressively proficient Pd.M. This move on Pd.M. under 

the setting of Industry 4.0 is termed as Pd.M. 4.0 [6]. The method of Pd.M. involves a thorough 



analysis of collected data for premature detection of devices, hardware failure, and/or crashes. The 

maintenance strategies are further classified into four steps: 

 

i. Level 1- Visual reviews: this level of behaviors, intermittent physical reviews, and upkeep 

methodologies are given on investigators' skills. 

ii. Level 2- Instrument investigations: this level of behaviors occasional examinations and up-

keep systems are based on a blend of investigators' aptitude and instrument outputs. 

iii. Level 3- Ongoing condition checking: this level behaviors nonstop constant observing of ben-

efits and cautions are given dependent on pre-built-up rules or basic levels. 

iv. Level 4- Pd.M. 4.0: this level behaviors nonstop real-time checking, and alarms are conveyed 

based on prescient strategies, for example, regression analysis. 

 

The phases in fault diagnosis involve feature extraction and selection as the first stage where the raw 

deciding features are extracted; this is followed by fault classification in which supervised or semi-

supervised algorithms are deployed to detect anomaly [7], [8]. At present, the most effective algo-

rithms for diagnosing faults include physical, data-driven, and statistical model-based assessment 

methods.  

 

2. State of the Art  

 

Quality has become a key factor for assembling organizations. To guarantee top-notch items, broad 

reviews are unavoidable. Because of the high asset utilization, the advancement of elective method-

ologies relates to the incredible enthusiasm to a look into and mechanical application. This empowers 

data-driven technologies, for example, the application of AI in industry. One field of intrigue along 

these lines is the perceptive quality where machine learning (ML) models are utilized to foresee the 

normal last item quality because of recently recorded procedure parameters. ML approaches for pre-

dictive maintenance have also been mentioned [8], where the authors propose a hybrid ML algorithm 

to tackle multiple data types and formats used in the Pd.M. context. 

 

Data is indeed a vital part of Pd.M. A good dataset is one of the most primal requirements for effective 

implementation of Pd.M. since it links with the outcome to be recorded for future applications and 

prospects. Studies like those by [9], [10] dedicate their attention to this domain. The author proposes 

a methodology for Pd.M. of data by utilizing a physical Fischertechnik model processing plant that 

is furnished with a few sensors, can collect, process, and store the recorded data. Integration Planning 

is an essential part of the manufacturing process and has been discussed taking into account 

production and maintenance planning with predictive analysis [11]. Similarly, the work done by 

LaCasse et. al [12] encompasses surveys related to feature set reduction for data analysis methods in 

context with general industrial applications, specific industrial applications, and data reductions. The 

study highlights prospects for feature-based data prioritization. An article by Hapuwatte and Jawahir 

[13] presents a novel structure consolidating perceptive model with Total Life Cycle (TLC) 

contemplations. In addition, similar to the one described before by Cho et. al [8],   Bezarov et. al [14] 

elaborates on the abilities and efficacy of Artificial Intelligence (AI) and Deep Neural Networks 

(DNN) in the I4.0 era. A review by Lee et. al [15] proposes practical applications of Pd.M. in 

designing Quality Management Systems. The study takes into account cases provided by 

organizations and the type of Pd.M. system they enforce in each case. 



3. A Regression Model-Based Analysis Example 

 

As mentioned previously, Pd.M. systems are implemented as a part of the I4.0 paradigm; the frame-

work helps medium and large-scale industries and organizations to keep track of performance factors, 

as well as in handling the vast amounts of data that are regularly produced by embedded sensing and 

computation. In this work, the dataset was derived from an online data repository (TU Delft) [17] 

and it details a performance record for the parameters on a fatigue-based crack growth experiment 

[16] using a combination of experiments and numerical modeling. The parameters indicate measure-

ments that were obtained. A two-dimensional analysis problem was considered to observe how the 

changes in one parameter reflect in the second. Additionally, since the study is intended to conclude 

Pd.M. analysis, the system under consideration is assumed as Non-Linear Time-Invariant. 

 

In this study, an analysis of two variables has been done; ‘N’ represents the number of cycles measured 

by the fatigue machine; while the observation variable is Cyclic_Energy in mJ which gives the output 

as the Cyclic energy produced by the machine per cycle (N). We conducted statistical computations 

using these two variables with the hopes of getting a better insight into the predictive analysis. The 

following are the steps that are levied for the above-mentioned analysis: 

 

i. In the first step, the parameters of interest from the dataset were extracted a data frame or 

table was created. As mentioned earlier, the machine cycle counts i.e. Number of cycles (N) 

was taken to be the dependent variable while the Cyclic_Energy in millijoules was the inde-

pendent variable. 

ii. The slope and intercept values for the dataset were derived and plotted in log-scale.  

iii. A box plot was created to visualize the data distribution. It was observed that most of the data 

lie on the outliers indicating a continued inconsistency (randomness) within the dataset. 

iv. A regression plot of the data in steps of 100, 200, 1000, and a full dataset (6805 observations) 

was made to view its deviation and spread. 

v. To implement a machine learning procedure, the model was initially trained with a ratio of 

85% and 15% (ratio of training set to testing set). 

vi. The next step was to run the model to assess and predict new values learned by the model 

using the Ordinary Least Square (OLS) method. 

vii. Plots describing the comparison between original and predicted values have been depicted, 

and OLS statistics were computed. 

 

4. Observations and Results 

 

Two parameters as mentioned was extracted from the data set. In most cases, the data format from 

the available source is not always suitable for automated analysis and manipulation. Hence there is a 

need to pre-process the data. Additionally, the data for the dependent variable (N) was exponential. 

The dataset is a Comma Separated Value (.csv) type file bearing dimensions of 6805 × 2 as shown in 

Table 1.  



Observation No. Number of Cycles (N) Cyclic Energy (milliJoules) 

1 99.0 330.0 

2 100.0 330.0 

3 200.0 325.0 

4 200.0 325.0 

5 299.0 323.0 

............... ............... ............... 

6801 342000.0 149.0 

6802 342000.0 149.0 

6803 342000.0 148.0 

6804 342000.0 148.0 

6805 342000.0 148.0 

 

Table 1: List of Observations (6805 data points) 

 

In this step, the slope, intercept, and plot of Cyclic_Energy vs N was made. It is to be noted that the 

horizontal axis is logarithmic to accumulate all the relevant data points, while the vertical axis is 

linear-scaled as shown in Fig. 1. From the analytics, it was also observed that the calculated slope is 

downwards (negative) indicating a decline in performance. 

 

Figure 1: Cyclic_Energy (mJ) vs Number of Cycles  

A Box and Whisker plot (Fig.2) was made to check the data distribution. It was observed that most 

of the data lie on the outliers stating a continued inconsistency (randomness) within the dataset. 



 

Figure 2: Box-Whisker spread Analysis 

As a test for linearity of data which is an essential condition for predictive analytics. a regression plot 

was drawn taking into account samples of 50 (Fig 3a) 200 (Fig 3b), 1000 (Fig 3c), and complete 

dataset, i.e. 6805 samples (Fig 3d). As the number of observations increased, the linearity gradually 

disappears; and the output becomes non-linear. This is as depicted below. 

 

 

Figure 3: Loss of Functional Linearity over time 

 

As a simple testing methodology, a predictive linear regression model was implemented. For experi-

mental purposes, the ratio of training to testing data was taken at 85 % (~5784) and 15 % (~1021). 

Table 2 shows the values obtained after training with the model. 

 

  



Observation Number 
Actual Value  

(Cyclic Energy) 

Predicted Value 

(Cyclic Energy) 
Absolute  Errors 

2818 168.0 177.930258 9.930258 

3688 161.0 168.575367 7.575367 

5041 154.0 153.781585 0.218415 

5878 152.0 144.557227 7.442773 

6747 148.0 135.071802 12.928198 

............... ............... ............... ............... 

1400 185.0 193.441973 8.441973 

3569 161.0 169.663145 8.663145 

4886 155.0 155.304474 0.304474 

5248 153.0 151.388473 1.611527 

6805 238.0 206.647817 31.352183 

 

Table 2: Predicted Value for test data (1021 values) 

Fig 4 shows a bar diagram to visualize the correlations between the predicted and the original values. 

The graph shows a decent amount of proximity between the two variables.  

 

Figure 4: Original vs. Predicted value (50 Random observations) 

A calculation of various statistical parameters was made to assess the viability of the results. Fig 1 

indicates a negative slope of magnitude = - 0.000218 and an intercept of 209.047. Further calculations 

reveal a coefficient of determination R2 ~ 0.69, which indicates a decent model performance. A skew 

value of 3.492 indicates extreme positive skewness, while kurtosis of ~ 21.630 implies heavy tails or 

outliers that conform to the observation in Figure 2. 

  



5. Conclusion  

 

Variations in data gathered in real-time often become hard to analyze. However taking resort of sta-

tistical and computational benefits, using big data and analytics, industrial efficiency can surge with 

better performance. 

This work was limited to basic regression modeling (OLS). In the near future, with the help of supe-

rior algorithms and efficient methods, smart systems are expected to handle non-linear and inhomo-

geneous data with better efficiency. 
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