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Abstract Eukaryotic genomes express numerous long intergenic non-coding RNAs (lincRNAs) 
that do not overlap any coding genes. Some lincRNAs function in various aspects of gene regu-
lation, but it is not clear in general to what extent lincRNAs contribute to the information flow 
from genotype to phenotype. To explore this question, we systematically analysed cellular roles of 
lincRNAs in Schizosaccharomyces pombe. Using seamless CRISPR/Cas9-based genome editing, we 
deleted 141 lincRNA genes to broadly phenotype these mutants, together with 238 diverse coding-
gene mutants for functional context. We applied high-throughput colony-based assays to determine 
mutant growth and viability in benign conditions and in response to 145 different nutrient, drug, and 
stress conditions. These analyses uncovered phenotypes for 47.5% of the lincRNAs and 96% of the 
protein-coding genes. For 110 lincRNA mutants, we also performed high-throughput microscopy 
and flow cytometry assays, linking 37% of these lincRNAs with cell-size and/or cell-cycle control. 
With all assays combined, we detected phenotypes for 84 (59.6%) of all lincRNA deletion mutants 
tested. For complementary functional inference, we analysed colony growth of strains ectopically 
overexpressing 113 lincRNA genes under 47 different conditions. Of these overexpression strains, 
102 (90.3%) showed altered growth under certain conditions. Clustering analyses provided further 
functional clues and relationships for some of the lincRNAs. These rich phenomics datasets associate 
lincRNA mutants with hundreds of phenotypes, indicating that most of the lincRNAs analysed exert 
cellular functions in specific environmental or physiological contexts. This study provides ground-
work to further dissect the roles of these lincRNAs in the relevant conditions.

Introduction
Genomes produce pervasive and diverse non-coding RNAs. How much genetic information is trans-
acted by this non-coding ‘dark matter’ remains a matter of debate. A substantial but poorly under-
stood portion of transcriptomes consists of long intergenic non-coding RNAs (lincRNAs). lincRNAs are 
longer than 200 nucleotides, lack long open reading frames, and do not overlap any neighbouring 
coding regions. While not all lincRNAs may be functional, several have well-defined roles in gene 
regulation and some other cellular processes. Different lincRNAs can control gene expression at 
different levels, from transcription to translation, and either in cis (acting on neighbouring genes) or 
in trans (acting on distant genes) (Fauquenoy et al., 2018; Popadin et al., 2013; Rinn and Chang, 
2012; Schlackow et al., 2017; Ulitsky and Bartel, 2013; Yamashita et al., 2016). Although lincRNAs 
show little sequence conservation between species, functional principles seem to be conserved which 
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can help us to understand their biology (Ulitsky, 2016). Specific lincRNAs have been implicated in 
complex human diseases (Batista and Chang, 2013 Kumar et al., 2013). For example, Xist exerts 
a tumour-suppressive function (Yildirim et  al., 2013), TUNA is associated with neurological func-
tion and Huntington’s disease (Lin et  al., 2014), and lincRNA1 delays senescence (Abdelmohsen 
et al., 2013). Moreover, lincRNAs are emerging as diagnostic molecular markers as they can be easily 
detected in blood and could provide more readily accessible drug targets than proteins (Bester et al., 
2018; DeWeerdt, 2019; Kim et al., 2016).

Despite these efforts and insights based on studying selected lincRNAs, the systematic picture 
remains incomplete as the importance of most lincRNAs is unknown. Functional analyses of lincRNAs are 
challenging given their profusion, poor annotation, low expression, and limited methodology (Bassett 
et al., 2014; Cao et al., 2018; Kopp and Mendell, 2018). Knowledge of lincRNA function is therefore 
scarce even in well-studied organisms, highlighting the need for more systematic approaches. Large-
scale genetic studies of lincRNAs and other non-coding RNAs have emerged, starting to provide a 
more global picture on their functions and contributions to phenotypes (Balarezo-Cisneros et al., 
2021; Bester et al., 2018; Huber et al., 2016; Joung et al., 2017; Liu et al., 2017; Parker et al., 
2018; Tuck et al., 2018; Wei et al., 2019). These findings suggest that many lincRNAs play special-
ized roles in specific conditions and, therefore, need to be analysed in the relevant conditions.

The fission yeast, Schizosaccharomyces pombe, is a potent genetic model system to study gene 
regulation and lincRNA function in vivo (Atkinson et al., 2018; Fauquenoy et al., 2018; Marguerat 
et al., 2012; Yamashita et al., 2016). Although only the most highly expressed lincRNAs show puri-
fying selection (Jeffares et al., 2015), their regulation is often affected by expression quantitative trait 
loci (Clément‐Ziza et al., 2014). Notably, transposon insertions in up to 80% of non-coding regions 
of the S. pombe genome can affect fitness (Grech et al., 2019). RNA metabolism of fission yeast 
is similar to metazoan cells. For example, RNA interference (RNAi), RNA uridylation, and PABPN1-
dependent RNA degradation are conserved from fission yeast to humans, but absent in budding 
yeast. Genome-wide approaches by us and others have uncovered widespread lincRNAs in fission 
yeast (Atkinson et al., 2018; Eser et al., 2016; Rhind et al., 2011; Wilhelm et al., 2008). Nearly 
all S. pombe lincRNAs are polyadenylated and transcribed by RNA polymerase II (Marguerat et al., 
2012). Transcription of lincRNAs starts from nucleosome-depleted regions upstream of positioned 
nucleosomes (Atkinson et al., 2018; Marguerat et al., 2012), and the regulation of some lincRNAs 
involves specific transcription factors such as Gaf1 (Rodríguez-López et al., 2020). Most S. pombe 
lincRNAs are cryptic in cells growing under standard laboratory conditions, being suppressed by RNA-
processing pathways such as the nuclear exosome, cytoplasmic exonuclease, and/or RNAi (Atkinson 
et al., 2018; Zhou et al., 2015), but they become induced during starvation or sexual differentiation 
(Atkinson et al., 2018). A substantial portion of lincRNAs are actively translated (Duncan and Mata, 
2014), raising the possibility that some of them code for small proteins. A few S. pombe lincRNAs 
have been functionally analysed: meiRNA, mamRNA, nam1, and rse1 control meiotic differentiation 
(Andric et  al., 2021; Ding et  al., 2012; Fauquenoy et  al., 2018; Touat-Todeschini et  al., 2017; 
Yamashita et al., 2016), SPNCRNA.1164 regulates the atf1 transcription factor gene in trans during 
oxidative stress (Leong et al., 2014), several lincRNAs activate the downstream fbp1 gene during 
glucose starvation (Oda et al., 2015), prt controls pho1 expression (Ard et al., 2014; Shah et al., 
2014), and nc-tgp1 inhibits the tgp1 gene by transcriptional interference (Ard et al., 2014).

Most S. pombe lincRNAs may not function under benign laboratory conditions when they are typi-
cally very lowly expressed (Atkinson et al., 2018; Marguerat et al., 2012). Phenomics approaches 
seek to rigorously characterize phenotypes associated with many gene variants under diverse condi-
tions (Brochado and Typas, 2013; Rallis and Bähler, 2016). Such broad, high-throughput (HTP) 
phenotyping is an effective approach to uncover functional clues for unknown genes. For example, 
while only 34% of all budding yeast gene-deletion mutants display a growth phenotype under the 
standard condition, 97% of these mutants show suboptimal growth in at least one condition when 
assayed under a large number of chemical or environmental perturbations (Hillenmeyer et al., 2008). 
We have established a sensitive, reproducible platform for HTP colony-based assays to determine 
cellular fitness under diverse conditions (Kamrad et  al., 2020b). Here we take advantage of this 
potent approach to broadly investigate phenotypes of 150 lincRNAs (12.6% of the 1189 lincRNAs; 
Atkinson et  al., 2018), using deletion and/or overexpression mutants, supplemented with HTP 
microscopy and flow cytometry assays of deletion mutants. Colonies of a representative set of 238 
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coding-gene mutants were phenotyped in parallel for functional comparison. Using these different 
assays, we collected quantitative data for over 1.1 million unique colonies and over 5.7 million cells in 
a wide range of conditions. This study reveals hundreds of novel lincRNA-associated phenotypes and 
provides a framework for follow-on studies.

Results and discussion
Experimental strategy for functional profiling of lincRNAs
We focused on lincRNAs, rather than other types of non-coding RNAs, because (1) they are poorly 
characterized in general but emerge as varied regulatory factors; (2) they can be deleted without 
directly interfering with coding gene function; and (3) they are more likely to function in trans as RNAs 
than antisense or promoter-associated ncRNAs which can affect neighbouring or overlapping genes 
via their transcription (Ard et al., 2017). For functional profiling, we selected 150 S. pombe lincRNA 
genes that produce well-defined transcripts and are well-separated from neighbouring coding regions 
(over  ~200  bp), based on genome browser views of RNA-seq data. We established efficient HTP 
methods to genetically manipulate these lincRNAs. For deletions, we applied a CRISPR/Cas9-based 
method (Rodríguez-López et al., 2016); this approach allowed us to knock out the precise regions 
transcribed into lincRNAs without inserting any markers or other alterations, thus avoiding indirect 
physiological effects. For overexpression, we applied restriction-free cloning to express the lincRNAs 
from a plasmid under the control of the strong, inducible nmt1 promoter (Maundrell, 1993). Gene 
overexpression (‘gain of function’) provides complementary phenotype information to gene deletion 
(Prelich, 2012); moreover, any phenotype caused by a lincRNA that is ectopically expressed from a 
plasmid points to a function that is exerted over a distance (in trans) via the lincRNA itself rather than 
via its transcription or other local effects. We managed to delete 141 different lincRNAs (111 of which 
with at least two independent guide RNAs) and to overexpress 113 lincRNAs, with 104 lincRNAs being 
both deleted and overexpressed. These lincRNAs ranged in length from ~90 to 5100 nucleotides and 
in GC content from 25% to 46%, with means of 820 nucleotides and 34% GC content, respectively. 
These lincRNAs are distributed across the entire nuclear genome (Figure 1A). Information for all dele-
tion and overexpression strains analysed is available in Supplementary file 1.

To provide functional context for the lincRNA deletion-mutant phenotypes, we also assayed 238 
coding-gene mutants from the S. pombe gene-deletion library using prototrophic mutants after 
crossing out the auxotrophic mutants (Malecki and Bähler, 2016). These mutants broadly cover the 
Gene Ontology (GO) slim Biological Process categories (Lock et  al., 2019), ageing-related genes 
(Rallis et al., 2014; Sideri et al., 2014), as well as 104 ‘priority unstudied genes’ (Wood et al., 2019; 
Supplementary file 1).

Figure 1B provides an overview of the colony- and microscopy-based phenomics assays for the 
deletion and overexpression mutants. To determine fitness-related traits from colony-based assays, 
we applied pyphe, our Python package for phenomics analyses (Kamrad et al., 2020b). Strains were 
arrayed randomly around a control grid at a density of 384 colonies per plate. We assayed the dele-
tion or overexpression strains in response to diverse environmental factors such as different nutri-
ents and drugs as well as oxidative, osmotic, heavy-metal, protein-homeostasis and DNA-metabolism 
stresses (Figure 1—figure supplement 1), including some combined factors which can reveal addi-
tional phenotypes by non-additive effects that are not evident from single conditions (Rallis et al., 
2013). For drugs and stressors, we applied low and high doses, where wild-type cell growth is normal 
or inhibited, respectively, to uncover both sensitive or resistant mutants. For the deletion mutants, we 
measured colony size to determine cell growth across 149 different nutrient, drug, and stress condi-
tions (Supplementary file 1). For 68 of these conditions, we also measured colony redness using the 
phloxine B dye, which stains dead cells and thus provides a measure for viable cells in colonies: bright 
red colonies have higher portions of viable cells than dark red colonies (Kamrad et al., 2020b; Lie 
et al., 2018). Cell growth and viability provided complementary functional information and produced 
strong biological signals (Figure 1C). For the overexpression mutants, we assayed cell growth across 
47 conditions (Supplementary file 1). All colony-based phenotyping was performed in at least three 
independent biological repeats per condition and strain, with a median number of nine indepen-
dent repeats per lincRNA, and at least two technical repeats (independently printed colony) for each 
biological repeat.

https://doi.org/10.7554/eLife.76000
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Figure 1. Phenomics assays of long intergenic non-coding RNA (lincRNA) mutants. (A) Representation of all non-coding RNAs across the three S. 
pombe chromosomes (Atkinson et al., 2018). lincRNAs analysed in this study are shown in red (if they showed no phenotypes) or purple (if they 
showed phenotypes in at least one condition), with all other non-coding RNAs in grey. (B) Schematic overview of experimental design and workflow for 
phenotyping and data analyses. (C) Colony size (growth) and redness (viability) provide orthogonal readouts with strong biological signals. These two 

Figure 1 continued on next page

https://doi.org/10.7554/eLife.76000
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Overall, we collected >1,100,000 phenotype data points for cell growth and >350,000 data points 
for cell viability. We established a normalization procedure based on control grids to correct for 
known variations between and within plates which effectively reduces noise in the data (Figure 1C, 
Figure 1—figure supplement 2A; Kamrad et al., 2020b). Together with the high number of repli-
cates, this normalization provided the statistical power to confidently measure growth differences as 
small as 5%, thus supporting the detection of subtle lincRNA mutant phenotypes (Figure 1—figure 
supplement 2B). Although control conditions measured in the same batch tended to be more similar, 
the batch effects remained much smaller than the biological signals (Figure 1—figure supplement 
2C). Thus, our colony-based phenotyping assays produce robust and reproducible results with high 
sensitivity. For the lincRNA deletion mutants, we also screened for cell-size and cell-cycle traits using 
HTP microscopy and flow cytometry analyses (Figure 1B). These assays added >20,000 phenotype 
datasets (microscopic fields analysed), with over 5.7 million cells analysed across 338 samples. Infor-
mation for all phenotyping conditions is provided in Supplementary file 1.

Phenotyping of deletion mutants in benign conditions
We screened for phenotypes of the lincRNA and coding-gene deletion mutants under benign, stan-
dard laboratory conditions using rich and minimal growth media. We looked for mutants showing a 
significant difference in colony growth and/or colony viability compared to wild-type cells. Among the 
141 lincRNA mutants tested, 5 and 10 mutants grew slower than wild-type cells in rich and minimal 
media, respectively, while 1 mutant grew faster in minimal medium (Figure 2A, Supplementary file 
2). Among the 238 coding-gene mutants tested, 26 and 48 mutants grew slower in rich and minimal 
media, respectively, while 4 mutants each grew faster in rich and minimal media, 3 of which in both 
media (Figure  2A, Supplementary files 3 and 4). Among the total of 51 coding-gene mutants 
growing slower in our assays, 49 have previously been associated with the phenotype ontology 
‘abnormal vegetative cell population growth’ (Harris et al., 2013), thus validating our assay for this 
phenotype. With respect to colony viability, three lincRNA mutants showed lower viability than wild-
type cells, two in rich medium and one in minimal medium (Figure 2B, Supplementary files 2 and 3). 
Among the coding-gene mutants, 103 and 42 mutants showed higher or lower viability, respectively, 
in either or both benign conditions (Figure 2B, Supplementary files 2 and 3). In conclusion, ~2–7% 
of the lincRNA mutants showed growth or viability phenotypes compared to ~11–43% of the coding-
gene mutants, respectively. These results suggest that coding-gene mutants are more likely to have 
phenotypes in standard growth conditions. The results also illustrate that colony-viability assays can 
uncover phenotypes for many additional mutants not evident from colony growth assays (Kamrad 
et al., 2020b; Lie et al., 2018).

We examined additional, cellular phenotypes in rich medium for 110 lincRNA deletion mutants. 
Abnormal cell length or altered duration of cell-cycle stages point to defects in the cell-division cycle. 
Using HTP microscopy, we determined the length and proportion of binucleated cells; these cells are 
fully grown and in G1/S phases of the cell cycle. In addition to wild-type cells, we used small wee1-50 
and large cdc10-129 cell-cycle mutants as controls (Nurse and Hayles, 2019). Binucleated wild-type 
cells showed a median length of 9.7 µm, consistent with published data for ethanol-fixed cells (Heisler 
et al., 2014). Two lincRNA mutants were significantly shorter than wild-type cells and four were longer 
(Figure 3A and B, Figure 3—figure supplement 1A, Supplementary file 2). Thus, these lincRNAs may 
be involved in the coordination of cell growth and division. Two of the size mutants, SPNCRNA.989Δ 
and SPNCRNA.236Δ, also showed strong slow-growth phenotypes (Figure 3C), but no anomalies in 
cell-cycle phases (Figure 3D, Figure 3—figure supplement 2A and B). We independently validated 

readouts are not correlated (rPearson = –0.022). Both methods are highly reproducible with overall coefficients of variation of 0.050 and 0.007 for size and 
redness, respectively (based on 3514 wild-type control colonies across all plates). The lower relative distribution spreads of control values (wild-type vs. 
entire dataset) indicates a strong biological signal. Fractions of unexplained variance were 0.56 for size and 0.40 for redness.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Overview of conditions used for phenotyping of long intergenic non-coding RNA (lincRNA) knock-out library.

Figure supplement 2. Noise, statistical power, and biological signals in phenomics assays.

Figure supplement 3. Expression patterns, GC content, and length of long intergenic non-coding RNAs (lincRNAs) studied.

Figure 1 continued

https://doi.org/10.7554/eLife.76000
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Figure 2. Colony growth and viability of deletion mutants in benign conditions. (A) Volcano plot for colony size of long intergenic non-coding RNA 
(lincRNA) mutants (green) and coding-gene mutants (grey) growing in rich medium (top graph) and minimal medium (bottom graph). The dashed lines 
show the significance thresholds. Strains with lower fitness (smaller colonies) are <0 on the x-axis, and those with higher fitness are >0. We applied 
a significance threshold of 0.05 after Benjamini–Hochberg correction for multiple testing and a difference in fitness of abs(log2(mutant/wild type))> 
log2(0.05) to call hits based on colony size; this difference is similar to the median coefficient of variation (CV). (B) Volcano plot for colony viability 
(phloxine B redness score) of lincRNA mutants (green) and coding-gene mutants (grey) growing in rich medium (top graph) and minimal medium 
(bottom graph). The dashed lines show the significance thresholds. Strains showing lower fitness (redder colonies) are above zero on the x-axis, and 
those with higher fitness are below zero. We determined quantitative redness scores and applied a significance threshold of 0.05 after Benjamini–
Hochberg correction and an effect size threshold of abs(log2(mutant/wild-type))> log2(0.015) to identify colonies that are more or less red than wild-type 
colonies. The labels indicate the identity of the significant lincRNA genes.

https://doi.org/10.7554/eLife.76000
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the cell-length phenotypes of these two mutants by measuring calcofluor-stained cells growing in 
rich liquid medium fixed with formaldehyde. This analysis confirmed the shortened average length 
of SPNCRNA.989Δ cells (11.7 ± 0.89 µm; n = 114) and extended median length of SPNCRNA.236Δ 
cells (12.7 ± 0.92 µm; n = 155) compared to wild-type cells (12.1 ± 0.75 µm; n = 129). These two 
mutants showed a range of other phenotypes and are further discussed below. We also detected 
phenotypes pointing to defects in transitions between cell-cycle phases: 22 and 5 lincRNA mutants 
showed significantly reduced and increased proportions of binucleated cells, respectively, compared 
to the 13.2% binucleated wild-type cells (Figure 3D, Figure 3—figure supplement 1). Four mutants 
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Figure 3. Cell-size and cell-cycle traits of long intergenic non-coding RNA (lincRNA) mutants. (A) lincRNA deletion mutants showing ≥5% difference 
in median cell size (pWilcoxon<0.05), compared to wild-type (wt) cells and the conditional cell-size mutants wee1-50 and cdc10-129, captured at 60 min 
after release to permissive temperature. The sizes of binucleated cells were measured in 63 microscope fields using high-throughput microscopy. (B) 
Representative cells from (A), with binucleated cells in red. (C) Plot of cell growth vs. cell length of binucleated cells for all lincRNA mutants analysed 
here. The data on log2 growth of mutant relative to wild-type cells in rich medium are from the colony-based screen (Figure 2A). The length data 
of binucleated cells grown in rich medium are from the high-throughput microscopy (A). (D) lincRNA deletion mutants showing ≥20% difference in 
percentage of binucleated cells (pWilcoxon<0.05) compared to wt cells as in (A). The median proportion of binucleated cells was quantified from the 
proportion of binucleated cells in each microscope field, captured for each lincRNA mutant using high-throughput microscopy.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Cell length and binucleated cells for all long intergenic non-coding RNA (lincRNA) mutants.

Figure supplement 2. Cell-cycle phenotype analyses using high-throughput flow cytometry and high-throughput microscopy.

https://doi.org/10.7554/eLife.76000
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showed both aberrant cell lengths and proportions of binucleated cells: SPNCRNA.819Δ cells were 
shorter and had fewer binucleates, while SPNCRNA.323Δ, SPNCRNA.412Δ, and SPNCRNA.934Δ cells 
were longer and had more binucleates (Figure 3A and C). We validated these microscopy data with 
HTP flow cytometry, with the results showing a good correlation (Figure 3—figure supplement 2C). 
We conclude that several lincRNAs are involved in regulating cell-size and/or cell-cycle progression.

Phenotyping of deletion mutants in multiple nutrient, drug, and stress 
conditions
We assayed for colony size (growth) phenotypes of the lincRNA and coding-gene mutants in the 
presence of various stresses or other treatments, relative to the same mutants growing in benign 
conditions and normalized for wild-type growth (Materials and methods). To this end, we applied the 
same significance thresholds as for benign conditions. Among the 141 lincRNA mutants tested, 60 
(43%) showed growth phenotypes in at least one condition (Supplementary files 2 and 3). Together, 
these 60 mutants showed 211 growth phenotypes across conditions, with 69 of the 145 conditions 
producing phenotypes in at least one mutant (Figure 4A). The 211 hits included 150 resistant and 61 
sensitive phenotypes (i.e. mutants showing larger or smaller colonies, respectively, in assay conditions 
compared to the control condition, each relative to wild-type). Seven lincRNA mutants showed growth 
phenotypes in at least five conditions, with SPNCRNA.236Δ showing the most phenotypes, being 
resistant in 26 and sensitive in two conditions (Supplementary files 2 and 3). Among all conditions, 

Figure 4. Colony growth and viability of deletion mutants in diverse conditions. (A) Distributions of significant hits per mutant (left) or per condition 
(right) for long intergenic non-coding RNA (lincRNA) mutants with altered colony growth (blue) or viability (orange) compared to wild-type cells. (B) 
Plot showing the number of growth phenotype hits agreeing or disagreeing between independently generated lincRNA mutants. (C) Distributions of 
significant hits per mutant (left) or per condition (right) for coding-gene mutants with altered colony growth (blue) or viability (orange) compared to wild-
type cells. (D) Top Venn diagram: numbers of lincRNA mutants that showed phenotypes for colony growth (rapid or slow) and/or viability (low or high) in 
67 conditions. Bottom Venn diagram: numbers of coding-gene mutants showing a phenotype for both colony growth and viability in 67 conditions.

https://doi.org/10.7554/eLife.76000
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the most phenotypes were triggered by 0.075% MMS (causing DNA damage; 13 hits) and Brefeldin A 
(inhibiting protein transport from endoplasmic reticulum to Golgi; 18 hits).

Due to possible off-target mutations introduced by CRISPR/Cas9, we generated independent 
deletion mutants using different guide RNAs targeting the same lincRNA gene. These independent 
mutants generally produced highly similar growth phenotypes (Figure 4B). Of the 161 phenotypes 
associated with lincRNAs represented by two or more independent mutants, 112 phenotypes agreed 
between the corresponding mutants (all mutants showed median effect sizes [MES] > 5%), and 27 hits 
showed a similar trend (MES > 2%). In 16 cases, at least one guide RNA showed no phenotype (MES < 
2%), and in only 6 cases did the guide RNAs show opposite effects (Figure 4B). These results indicate 
that any secondary effects from CRISPR/Cas9-based gene deletions did not affect the consistency of 
our phenotype results in the vast majority of cases.

Among the 238 coding-gene mutants tested, 223 (93.7%) showed growth phenotypes in at least 
one condition, 104 of which represent priority unstudied genes that have remained entirely unchar-
acterized (Wood et al., 2019). Together, these 223 mutants showed 1924 growth phenotypes across 
conditions, with 119 of the 145 conditions tested producing phenotypes in at least one mutant 
(Figure 4C, Supplementary files 3 and 4). The 1924 hits included 651 resistant and 1273 sensitive 
phenotypes.

We also assayed for colony-viability phenotypes of the lincRNA and coding-gene mutants across 
stress or other treatments relative to mutant cells growing in benign control conditions, normalized 
for wild-type growth. To this end, we applied the same quantitative redness scores and significance 
thresholds as for the benign conditions. Among the 141 lincRNA mutants tested, 25 (17.7%) differed 
in viability in at least one condition compared to wild-type cells (Supplementary file 2). Together, 
these 25 mutants showed 98 phenotype hits across conditions, with 45 of the 67 conditions tested 
producing phenotypes in at least one mutant (Figure 4A). The 98 hits included 86 resistant and 12 
sensitive phenotypes (higher and lower viability than wild-type, respectively). Two lincRNA mutants, 
which were sensitive in the benign condition, caused ~56% of the hits, all resistant, in conditions that 
partially suppressed this sensitive phenotype: SPNCRNA.989Δ (31 hits) and SPNCRNA.1343Δ (24 
hits) (Supplementary file 2). These lincRNAs are discussed further down. Among all conditions, the 
highest number of hits with viability phenotypes were observed in rich medium with 0.5 M KCl or with 
0.005% MMS (six hits each) and in minimal medium with canavanine (five hits).

Among the 238 coding-gene mutants tested, 172 (72.3%) showed viability phenotypes in at least 
one condition. Together, these 172 mutants showed 1874 phenotype hits across conditions, with 57 
of the 67 conditions tested producing phenotypes in at least one mutant (Figure 4C, Supplementary 
files 3 and 4). The 1874 hits included 1535 resistant and 339 sensitive phenotypes.

We then explored the relationships between colony growth and viability for the 67 conditions 
used to measure both phenotypes. The lincRNA mutants produced 140 growth phenotypes and 
98 viability phenotypes, but in only 24 instances were both phenotypes associated with the same 
mutant (Figure 4D). The coding-gene mutants showed 1216 growth phenotypes and 1874 viability 
phenotypes, with only 310 instances where both phenotypes were associated with the same mutant 
(Figure 4D). A large excess of high-viability phenotypes was evident for coding-gene and, even more 
so, for lincRNA mutants (Figure 4D). Thus, slowly growing mutants did often show higher viability 
rather than lower viability, especially in coding-gene mutants. Together, these results further high-
light that the colony-viability assays produce orthogonal phenotype information to the colony growth 
assays and can uncover many additional phenotypes (Kamrad et al., 2020b; Lie et al., 2018).

The lincRNAs that showed phenotypes were distributed across the genome (Figure  1A). They 
were not enriched in any particular gene expression patterns, showing diverse responses to genetic 
or physiological perturbations (Figure  1—figure supplement 3A). The lincRNAs associated with 
phenotypes were of similar length as those without phenotypes, but they tended to have a higher 
GC content (Figure 1—figure supplement 3B). This result raises the possibility that the GC content 
reflects or even determines the likelihood of lncRNA function.

In conclusion, substantial proportions of the lincRNA mutants showed growth (43%) and/or viability 
(18%) phenotypes in some stress conditions, and the majority of coding-gene mutants showed pheno-
types in these conditions (72–94%). With respect to viability phenotypes, much larger proportions 
of both lincRNA and coding-gene mutants were resistant (87.8% and 81.9%, respectively). This bias 
could partly reflect that many mutants are growing somewhat more slowly in benign conditions 
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(Figure 2A), a trade-off that may render them more resilient to stresses (López-Maury et al., 2008). 
Together, these analyses show that phenomics assays can effectively uncover functional clues not only 
for protein-coding genes but also for many lincRNAs.

Integrated analyses of functional signatures from deletion mutants
Using unsupervised clustering, we mined the rich deletion-mutant phenotype data to explore func-
tional profiles for both protein-coding and lincRNA genes. For the phenotype calling described 
above, we wanted to identify functional clues and gene-environment interactions with high confi-
dence (i.e. low false discovery rate). Here, using a less conservative analysis, we applied a multivariate, 
global approach by converting effect sizes to a modified z-score to indicate the deviation from the 
expected phenotype value in units of standard deviations from the wild-type control in the same 
condition. Several conditions involved the same stressor, for example, the same drug used at different 
doses (Supplementary file 1). We aggregated such related conditions and used the strongest median 
response for each mutant and set of conditions (Materials and methods). The protein-coding mutants 
generally showed stronger phenotypes than the lincRNA mutants as measured by the magnitude of 
the effect sizes (Figure 5—figure supplement 1A). To compare phenotypes across the two types of 
mutants, we discretized the data, classing mutants as either sensitive (–1), resistant ( + 1), or similar (0) 
to their fitness in the corresponding control condition (Figure 5—figure supplement 1B, Supplemen-
tary file 5). Thresholds were chosen at ±1.5 standard deviations for both growth and viability data, 
which resulted in ~23% of all data points classed as non-zero in each dataset. We limited this analysis 
to 41 sets of aggregated ‘core’ conditions in which all mutants were phenotyped (Supplementary 
file 5).

Applying this analysis, most lincRNA mutants showed few or no phenotypes across the 41 core 
conditions, while 16 lincRNA mutants showed strong phenotype profiles across many conditions. Such 
uneven distribution in the phenotype numbers associated with lincRNAs indicates that the data reflect 
biology rather than technical noise. In total, 194 mutants showed a phenotype in five or more sets 
of conditions, including the 16 lincRNA mutants, and these mutants were used for hierarchical clus-
tering. Clear patterns were evident, and we divided the genes into three main clusters (Figure 5A, 
Figure 5—figure supplement 1C, Supplementary file 5). Clusters 1, 2, and 3 contained 2, 10, and 4 
lincRNAs, respectively, providing an opportunity to infer function through ‘guilt by association’ with 
known protein-coding genes in the same clusters. This approach was somewhat limited because only 
115 of the 178 protein-coding genes in the clusters had known or inferred biological roles. Using the 
AnGeLi tool (Bitton et al., 2015), we identified functional enrichments for the clusters as described 
below.

Cluster 1 showed the most defined phenotype signature, characterized by many mutants displaying 
higher viability in 15 stress conditions, lower viability in the benign conditions and in canavanine A, 
and slow growth in benign conditions and several drugs tested, including hydrogen peroxide and 
antimycin A (Figure 5A, Figure 5—figure supplement 1C, Supplementary file 5). This cluster was 
enriched in various GO categories related to protein localization/transport, cellular respiration, phos-
phate metabolism, and protein translation (the latter including five cytosolic/mitochondrial ribosomal 
subunits, six translation factors, and three subunits of the elongator complex). The cluster also included 
nine genes involved in nutrient- or stress-dependent signalling (Supplementary file 5). With respect 
to phenotype ontology (Harris et al., 2013), this cluster was enriched in multiple terms related to 
cytoskeleton aberrations, abnormal respiration and translation, as well as altered cell growth and 
stress sensitivity. Indeed, 80% of the mutants in this cluster have previously been associated with 
decreased cell population growth, and 87% are associated with increased sensitivity to chemicals. 
These enrichments validate our phenotype data.

Cluster 1 contained the two lincRNAs, SPNCRNA.989 and SPNCRNA.1343, which accounted 
for  ~56% of the colony-viability phenotypes among the lincRNA deletion mutants. When overex-
pressed, however, they generated just 1–2 hits, much fewer than average (see below). This pattern 
suggests that these lincRNAs may function in cis, regulating nearby genes. Notably, both lincRNAs are 
located upstream of genes regulated by the Pho7 transcription factor (Schwer et al., 2017), which func-
tions during phosphate starvation and other stresses (Carter-O’Connell et al., 2012): SPNCRNA.989 
and SPNCRNA.1343 are divergently expressed to atd1 and tgp1, respectively (Figure  5—figure 
supplement 2). SPNCRNA.1343 partially overlaps with the nc-tgp1 RNA that regulates phosphate 
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Figure 5. Functional signatures in long intergenic non-coding RNA (lincRNA) phenotype profiles. (A) Hierarchical clustering of discretized data for 16 
lincRNA mutants (green) and 178 coding-gene mutants (grey), as indicated above the columns. Clustering was limited to the core conditions where 
phenotypes for all mutants were available, including growth phenotypes (brown) and viability phenotypes (purple), as indicated to the right of rows. 
Only mutants with at least five hits across the 41 conditions are shown. Resistant (dark red) and sensitive (dark blue) phenotypes are indicated for 

Figure 5 continued on next page
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homeostasis by repressing the adjacent tgp1 gene via transcriptional interference; deletion of 
SPNCRNA.1343 has been shown to increase tgp1 expression by inhibiting nc-tgp1 expression (Ard 
et al., 2014; Ard and Allshire, 2016; Garg et al., 2018; Shah et al., 2014; Yague-Sanz et al., 2020). 
Inspection of the region upstream of SPNCRNA.989 suggested a regulatory mechanism similar to 
tgp1, with divergent transcripts towards atd1 likely driven by a bidirectional promoter from the 
nucleosome-depleted region upstream of SPNCRNA.989 (Figure 5—figure supplement 2). These 
patterns suggest that additional Pho7-regulated genes, like atd1, are controlled via upstream RNAs, 
similar to the tgp1, pho84, and pho1 genes that respond to phosphate limitation (Carter-O’Connell 
et al., 2012). The similar phenotypes of SPNCRNA.989Δ and SPNCRNA.1343Δ mutants therefore 
suggest that these lincRNA deletions interfere with the expression of their neighbouring genes and 
thus with processes affected by this regulon. In spotting assays, the phenotypes of SPNCRNA.989Δ 
and SPNCRNA.1343Δ often differed from those of tgp1Δ and atd1Δ (Figure 5—figure supplement 
3). These results are consistent with the lincRNA deletion leading to induction, rather than repression, 
of their coding-gene neighbours.

Cluster 2 contained a majority of genes that are not associated with any functional annotations, 
including 10 lincRNAs genes (Figure 5—figure supplement 1C, Supplementary file 5). This cluster 
was enriched for long-lived mutants and for genetic interactions (based on Biogrid data; Breitkreutz 
et al., 2007), meaning that the protein-coding genes within this cluster are approximately four times 
more likely to interact with each other than expected by chance. This cluster included seven genes 
involved in stress and/or nutrient signalling pathways and six genes for transcription factors func-
tioning during stress/nutrient responses or in unknown processes. The phenotype data in this cluster 
were sparse and lacked a convincing functional signature across the coding and lincRNA genes.

Cluster 3 was characterized by most mutants showing rapid growth in VPA, formamide, and sodium 
orthovanadate, and many of these mutants also showed higher viability in benign conditions but 
lower viability in VPA. This cluster was enriched for long-lived mutants and for energy metabolism, 
including four genes each functioning in glycolysis and the TCA cycle. Intriguingly, one of the four 
lincRNA genes in this cluster, SPNCRNA.236, is located upstream the pyruvate-kinase gene pyk1, 
which is involved in the last step of glycolysis to generate pyruvate for the TCA cycle or fermentation. 
The finding that the SPNCRNA.236Δ mutant leads to a similar phenotypic signature as does dele-
tion of glycolysis or TCA cycle genes raises the possibility that SPNCRNA.236 acts in cis to control 
pyk1 expression. Consistent with this idea, SPNCRNA.236Δ mutants grow slowly (Figure 2A) while 
increased activity of Pyk1 leads to faster growth (Kamrad et al., 2020a). However, SPNCRNA.236 also 
generates phenotypes in 11 conditions when overexpressed from a plasmid (Supplementary file 6), 
including faster growth in minimal medium, which is the opposite of the slower growth of the deletion 
mutant in the same condition. Thus, it is also possible that SPNCRNA.236 can act in trans.

We validated phenotypes of five lincRNA deletions from clusters 1 and 3 as well as deletions from 
neighbouring coding genes using serial dilution spotting assays under 13 conditions. Detection of 
subtle phenotypes involving 5% differences in growth is difficult with such spotting assays. Never-
theless, we could confirm 11 (84%) of the phenotypes detected by the HTP colony-based assays 
(Figure 5—figure supplement 3). We conclude that there is generally a good agreement between 
these different phenotyping assays.

corresponding mutant-condition combinations. Hierarchical clustering of both mutants and conditions was performed with the Ward method using 
Euclidean distances. Based on the dendrogram, the genes were divided into three clusters indicated in different colours (top row). A detailed version 
of this cluster specifying the conditions and mutants is provided in Figure 5—figure supplement 1C. (B) Cytoscape gene network representing 
phenotype correlations between lincRNA and coding-gene mutants. Yellow and blue edges show positive and negative phenotype correlations, 
respectively. The lincRNAs are shown in green and the protein-coding genes in grey, including a pink border if their function is unknown. Clusters 
discussed in the main text are highlighted in colour.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Effect sizes, data discretization, and cluster details.

Figure supplement 2. Genome browser view of the chromosomal regions surrounding SPNCRNA.1343 (left) and SPNCRNA.989 (right).

Figure supplement 3. Spot assays with fivefold serial dilutions to validate selected long intergenic non-coding RNA (lincRNA) deletion phenotypes 
from the screen.

Figure 5 continued
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To further explore our dataset, we discretized all deletion-mutant phenotypes, both from lincRNAs 
and coding genes (Supplementary files 2-4). Pearson correlations of phenotype profiles were then 
used for constructing a network that was visualized with Cytoscape (Shannon et  al., 2003). The 
network included several distinct clusters. A large, tight cluster consisted mostly of protein-coding 
genes (Figure 5B, highlighted in red). This cluster, which was similar to cluster 1 (Figure 5A), included 
SPNCRNA.989 and was enriched for genes involved in phosphate metabolism and translation, and 
89% of the mutants in this cluster displayed slow growth phenotypes (Figure  5B). Another large 
cluster was enriched for lysine metabolism with 18% of the mutants showing ageing-related pheno-
types such as increased lifespan during quiescence (Sideri et al., 2014). This cluster also included 
three lincRNAs: SPNCRNA.318, SPNCRNA.426, and SPNCRNA.965 (Figure 5B, highlighted in blue). 
Network analysis of the whole phenotypic dataset revealed further connections between several 
lincRNAs and coding genes. For example, a negative phenotypic correlation was evident between 
SPNCRNA.1460 and fbp1 (Figure 5B, upper left); fbp1 is a key gene responding to glucose starvation 
that is regulated by upstream non-coding RNAs (Hirota et al., 2008; Hoffman and Winston, 1990 
Oda et al., 2015). SPNCRNA.1460 is located upstream of scr1, encoding a transcriptional repressor 
that negatively regulates fbp1 (Tanaka et  al., 1998; Vassiliadis et  al., 2019). This link raises the 
possibility that SPNCRNA.1460 controls scr1 expression and, therefore, fbp1 expression. The same 
cluster also included car2, which is also implicated in carbon metabolism, and two priority unstudied 
genes, whose association suggests that they function in similar processes. Interestingly, some clusters 
consisted exclusively or mostly of lincRNAs (Figure 5B, upper left). Naturally, these clusters showed 
no functional enrichments, but they point to several lincRNAs acting in related cellular processes, 
possibly together.

Phenotyping of lincRNA overexpression mutants in multiple conditions
Gene overexpression provides complementary phenotype information to gene deletion (Prelich, 
2012). We constructed strains that ectopically overexpressed 113 lincRNAs from a plasmid under 
the strong nmt1 promoter in minimal medium (Materials and methods). A real-time quantitative PCR 
(RT-qPCR) analysis of eight overexpression constructs showed that the lincRNAs were 35- to 2200-fold 
overexpressed relative to the empty-vector control strain, which expresses the lincRNAs at native 
levels (Figure 6—figure supplement 1A).

We then looked for differences in colony growth under benign conditions compared to empty-
vector control cells. We also looked for growth phenotypes in the presence of various stresses or 
other treatments, relative to growth in benign control conditions and normalized for the growth of 
empty-vector control cells. In the benign condition, most lincRNA overexpression strains grew faster 
compared to the empty-vector control. This pattern may reflect an indirect effect of lincRNA transcrip-
tion by increasing plasmid copy numbers and/or expression of the budding yeast LEU2 marker that 
is limiting for growth. Therefore, we normalized the colony growth of overexpression mutants in the 
stress conditions by the growth in the benign condition to correct for this potential bias. We used a 
more stringent significance threshold for the overexpression mutants than for the deletion mutants 
(Figure 6A) because ectopic overexpression of genes involves cell-to-cell variation in plasmid copy 
numbers, leading to higher phenotypic heterogeneity (Siam et al., 2004). Among the 113 lincRNA 
overexpression strains tested, 102 (90.3%) showed growth phenotypes in at least one condition 
(Figure 6A, Supplementary file 6). Together, these 102 overexpression strains showed 565 growth 
phenotypes across conditions. The 565 hits included 347 resistant and 218 sensitive phenotypes (i.e. 
mutants showing larger or smaller colonies, respectively, in the assay condition than in the control). 14 
lincRNA overexpression strains showed more consistent phenotypes in 10 or more conditions, topped 
by SPNCRNA.335 that showed sensitive and resistant phenotypes in 12 and 3 conditions, respectively 
(Figure  6—figure supplement 1B). No clear pattern was evident between expression levels and 
phenotype hits, for example, lincRNAs without phenotypes when overexpressed showed similar fold-
changes as a lincRNA showing 13 phenotypes (Figure 6—figure supplement 1A).

With respect to the 47 conditions tested, 42 produced phenotypes in at least one mutant (Supple-
mentary file 6). Over 80% of the 565 phenotypes came from only 21 of the 47 conditions, and ~24% 
of the phenotypes came from just three conditions: proline as a nitrogen source, 5 mM valproic acid 
(VPA), and 10 mM hydroxyurea (HU) (Figure 6—figure supplement 1C). Proline is a poor nitrogen 
source which causes nitrogen stress and slows growth (Davie et al., 2015). Notably, the expression of 
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Figure 6. Growth phenotypes of long intergenic non-coding RNA (lincRNA) overexpression mutants in different conditions. (A) Distributions of 
significant phenotype hits per strain (left) and condition (right) for lincRNA overexpression strains with altered growth under benign and stress 
conditions. Overall, 113 overexpression strains were phenotyped under 47 different conditions, based on 31 distinct environmental factors. We 
applied a significance threshold of p≤0.01, after correction for multiple testing, and a difference in fitness of ≥5% to call hits based on colony size. (B) 
Hierarchical clustering of discretized relative log2 median effect sizes for lincRNA overexpression strains (rows) using only the strains and conditions 
with at least five hits (59 mutants, 29 conditions). Resistant (red) and sensitive (blue) phenotypes are indicated for strain-condition combinations. The 
sub-cluster highlighted in red is discussed in the main text. (C) Comparison of phenotype data from lincRNA deletion vs. overexpression mutants. Plot 
showing maximum median effect sizes for 104 lincRNA mutants represented in both deletion and overexpression libraries, phenotyped under 22 shared 
conditions. The pairwise Pearson correlation coefficient is indicated. To aid visualization, 10 extreme outliers were removed out of 2288 data points.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Expression fold-changes and phenotypes per strain or condition for long intergenic non-coding RNA (lincRNA) overexpression 
strains.

Figure supplement 2. Meiotic phenotypes of long intergenic non-coding RNA (lincRNAs) from sub-cluster in Figure 6B.
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many lincRNAs is strongly induced under nitrogen starvation (Atkinson et al., 2018). Together with 
the results presented here, this indicates that several lincRNAs function during nitrogen stress. VPA 
is an inhibitor of histone deacetylases, and some lincRNAs are involved in histone modification (Rinn 
and Chang, 2012). Roles for lincRNAs in neurological disorders such as epilepsy are also emerging, 
and VPA can ameliorate epilepsy partly by repressing some of these lincRNAs (Hauser et al., 2018). 
HU inhibits DNA synthesis, and our findings suggest that several lincRNAs are involved in related 
processes. For example, some lincRNAs have been implicated in double-strand break repair (Bader 
et al., 2020). We propose that several lincRNAs can influence cellular growth in trans when ectopically 
overexpressed under conditions that affect certain cellular processes.

We looked for functional signatures in the lincRNA overexpression phenotypes using hierarchical 
clustering (Figure 6B). Unlike for lincRNA deletion mutants, this dataset did not provide the functional 
context from coding-gene mutants. We observed a conspicuous sub-cluster of four lincRNA overex-
pression strains that showed slower growth in many of the conditions (Figure 6B, highlighted in red). 
One of these four overexpressed lincRNAs was the well-characterized meiRNA that functions in the 
induction of meiosis (Watanabe and Yamamoto, 1994). In mitotically growing cells, meiRNA binds 
to Mmi1 via its DSR motif and is degraded by the nuclear exosome, while upon induction of meiosis, 
meiRNA binds to the RRM motif of Mei2, which in turn promotes meiosis (Yamashita, 2019). The 
other three lincRNAs in this sub-cluster contain motifs for potential Mei2 binding, including two DSR 
motifs. Moreover, like meiRNA, the other three lincRNAs are also de-repressed in nuclear-exosome 
mutants and during meiosis (Atkinson et  al., 2018). Together, these findings raise the possibility 
that the three unknown lincRNAs in the sub-cluster also function in meiosis. To test this hypothesis, 
we deleted these three lincRNA genes, along with the meiRNA gene, in a homothallic h90 back-
ground (to allow self-mating). We then analysed meiosis and spore viability of these four deletion 
strains together with a wild-type control strain. While cell mating was normal in the deletion mutants 
(Figure 6—figure supplement 2A), meiotic progression was somewhat delayed in SPNCRNA.1154Δ 
and SPNCRNA.1530Δ mutants as well as, most strongly, in meiRNAΔ mutants (Figure  6—figure 
supplement 2B), with the latter reported before (Yamashita, 2019). Notably, all four deletion 
mutants showed significantly reduced spore viability compared to the control strain (Figure 6—figure 
supplement 2C). As predicted by the clustering analysis, these results indicate that SPNCRNA.1154, 
SPNCRNA.1530, and SPNCRNA.335 play roles in meiotic differentiation.

We compared the phenotype data from deletion and overexpression mutants. We obtained data 
for both types of mutants for 104 lincRNAs in 22 conditions, 18 of which showed phenotypes. Of 
these 104 lincRNAs, only 7 did not produce any phenotypes in any condition tested. Under the 18 
conditions, a higher proportion of lincRNA overexpression mutants (86.5%) than deletion mutants 
(32.7%) produced phenotype hits in at least one condition. Moreover, lincRNA overexpression gener-
ally resulted in larger effect sizes, that is, stronger phenotypes, than did lincRNA deletion (Figure 6C). 
Similar trends have been reported for coding-gene mutants. For example, 646 and 1302 growth pheno-
types are caused by deletion and overexpression mutants, respectively, of non-essential budding yeast 
genes (Yoshikawa et al., 2011), and 64 transcription factor genes of fission yeast show growth pheno-
types when overexpressed but not when deleted (Vachon et al., 2013). Only a few lincRNAs showed 
phenotypes as both deletion and overexpression mutants. For example, SPNCRNA.236 showed rapid 
growth (resistant) phenotypes in both overexpression and deletion mutants in five conditions, while 
in the benign condition, the overexpression and deletion mutant showed rapid and slow growth, 
respectively (Supplementary files 2 and 6). In general, our phenotype data for lincRNA deletion and 
overexpression mutants showed little overlap and poor correlation (Figure 6C). These results illustrate 
the complementary information provided by these two types of mutants.

How might lincRNA overexpression result in more phenotypes than lincRNA deletion? Overexpres-
sion of a protein-coding gene can burden cells via resource-consuming translation or toxic protein 
levels (Bolognesi and Lehner, 2018; Moriya, 2015). Although overexpression of a single lincRNA 
should not affect resource allocation, it is possible that these AT-rich RNAs engage in non-specific 
molecular interactions. Recent findings indicate that RNAs are assembly prone and must be tightly 
regulated as they can promote paraspeckles, stress granules, and phase separation (Fox et al., 2018; 
Van Treeck et  al., 2018). Such processes could trigger the overexpression phenotypes in certain 
physiological conditions, reflecting that lincRNAs are biologically active molecules. Nevertheless, the 
observed 565 phenotype hits amount to only 10.6% of the potential 5311 hits if overexpression of 
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all 113 lincRNAs caused phenotypes in the 47 conditions tested (Supplementary file 6). Thus, over-
expressed lincRNAs do not generally lead to any non-specific or toxic effects, and the observed 
phenotypes may, therefore, mostly reflect specific lincRNA functions. Given that many lincRNAs may 
function in specialized conditions (Atkinson et al., 2018; Cabili et al., 2011; Derrien et al., 2012; 
Hon et al., 2017; Pauli et al., 2012), deletion mutants will only reveal phenotypes when assayed in 
the relevant conditions. On the other hand, the ‘gain-of-function’ overexpression mutants may also 
reveal phenotypes in conditions where the lincRNAs do not normally function. Notably, phenotypes 
that are caused by lincRNAs being ectopically expressed from plasmids point to a function that is 
exerted in trans, via the lincRNA itself, rather than via its transcription or other cis effects. Our findings 
therefore raise the possibility that many of the lincRNAs tested can function over a distance.

Conclusions
We applied a phenomics approach to explore the functional importance of S. pombe lincRNAs, 
including colony-based and cellular assays of deletion mutants and colony-based assays of overex-
pression strains. A panel of deletion mutants of coding genes were screened in parallel for compar-
ison and functional context. Together, these assays revealed phenotypes for 84 of 141 deleted 
lincRNAs, 229 of 238 deleted coding genes, and 102 of 113 overexpressed lincRNAs. This extensive 
phenotyping uncovers lincRNAs that contribute to cellular resistance or sensitivity in specific condi-
tions, reflected by altered colony growth and/or viability, and lincRNAs that are involved in the size 
control and the cell-division cycle. Systematic screening for genetic interactions between lincRNA 
and coding-gene mutants (Dixon et al., 2008) could provide valuable clues about functional rela-
tionships. As expected, higher proportions of coding-gene mutants showed phenotypes, and these 
phenotypes tended to be stronger (larger effect sizes) than for lincRNA mutants. In benign condi-
tions, the lincRNA mutants were ~3- and 30-fold less likely to show phenotypes for colony growth or 
viability, respectively, than coding-gene mutants. This difference was less pronounced in the nutrient, 
drug, and stress conditions, where many more lincRNA mutants revealed phenotypes, at only approx-
imately two- to fourfold lower proportions than coding-gene mutants for colony growth or viability, 
respectively. Moreover, compared to lincRNA deletion mutants, the lincRNA overexpression strains 
were approximately twofold more likely to show phenotypes, which also tended to be stronger. As 
predicted from clustering of overexpression phenotypes, deletion mutants for three lincRNAs showed 
defects in meiotic differentiation. Together, these findings support the notion that most lincRNAs play 
specialized roles in specific conditions. The findings also indicate that lincRNAs in general have subtler 
functions than proteins, for example, in fine-tuning of gene expression. Accordingly, it was important 
that our HTP assays were highly sensitive to detect subtle phenotypes. We conclude that a substantial 
proportion of lincRNAs exert cellular functions under certain conditions, and many of which may act in 
trans as RNAs. This analysis provides a rich framework to mechanistically dissect the functions of these 
lincRNAs in the physiologically relevant conditions.

Materials and methods
Deletion and overexpression strain libraries
Using a CRISPR/Cas9-based approach and primer design tool for seamless genome editing (Rodríguez-
López et al., 2016), we deleted 141 different lincRNA genes located across all the S. pombe chro-
mosomes (Figure 1A; see Supplementary file 1 for coordinates). In total, 113 lincRNA genes were 
deleted in the 972 h- background, and 73 lincRNA genes were deleted in the 968 h90 background, the 
latter including 15 newly identified lincRNAs (Atkinson et al., 2018). 30 lincRNAs were deleted with 
one guideRNA (gRNA), 103 were deleted using two gRNAs, and 8 were deleted using three gRNAs. 
All lincRNA deletion strains were checked for missing open-reading frames by PCR, and for 20 strains 
we also sequenced across the deletion scars (Rodríguez-López et al., 2016). We rechecked all strains 
by PCR after arraying them onto the 384 plates to ensure that no errors occurred during the process. 
For the protein-coding deletion mutants, we generated a prototroph version of Bioneer V.5 deletion 
library (Kim et al., 2010) as described (Malecki and Bähler, 2016). Strains were arranged into 384-
colony format using a RoToR HDA colony-pinning robot (Singer Instruments), including a 96-colony 
grid of wild-type 972 h- strains for plate normalization (Kamrad et al., 2020b). We selected a subset 
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of genes to broadly cover all main GO categories, together with 91 uncharacterized genes. Supple-
mentary file 1 provides information on the individual strains.

We generated ectopic overexpression constructs for 113 long intergenic lincRNAs using the nmt1 
promoter (Maundrell, 1993). The full-length lincRNA sequences, as annotated in PomBase (Lock 
et al., 2019), were amplified by PCR using the high-fidelity Phusion DNA polymerase (NEB) and cloned 
into the pJR1-41XL vector (Moreno et al., 2000) using the CloneEZ PCR Cloning Kit (GenScript). All 
primer sequences used for cloning are provided in Supplementary file 1. Each plasmid was checked 
by PCR for correct insert size. We also checked inserts of the overexpression plasmids by Sanger 
sequencing in a 96-well plate format (Eurofins Genomics) using a universal forward primer (5′ ​CGGA​
TAAT​GGAC​CTGT​TAATCG 3′) for the pJR1-41XL plasmid upstream of the cloning site. This HTP 
sequencing produced reliable sequence data for 80 inserts, including full insert sequences for (62 
plasmids and the first ~900 bp of inserts for 18 plasmids). Of these, only the insert for SPNCRNA.601 
showed a sequence error compared to the reference genome, a T to C transition in position 559. 
Plasmids were transformed into S. pombe cells (h-, leu1-32), and leucine prototroph transformants 
were selected on solid Edinburgh Minimal Medium (EMM2) plates. An empty-vector control strain was 
created analogously. Of the 113 lincRNAs, 67 were represented by two independently cloned vectors 
(Supplementary file 1).

For eight lincRNA overexpression constructs and the empty-vector control strain, we carried out 
RT-qPCR assays to determine the expression of selected overexpressed lincRNAs relative to their 
native genomic expression (Figure 6—figure supplement 1A). For this, cells were grown in EMM2 
to an OD600 of ~0.5. RNA was extracted with TRIzol reagent (Invitrogen) according to the manufac-
turer’s protocol, followed by DNase digestion (Invitrogen, Turbo DNase). RNA (1  µg) was reverse 
transcribed with SuperScript III reverse transcriptase and random hexamers (Invitrogen), according to 
the manufacturer’s recommendations. Then, 4 µl of a 1:5 dilution of the resulting cDNA was used to 
quantify the transcripts for a 10 µl reaction with 5 µl of Fast SYBR Green Master Mix (Applied Biosys-
tems) and 250 nM of each primer in a QuantStudio 6 Flex instrument (Applied Biosystems) in the fast 
cycling mode, according to the manufacturer’s recommendations. Transcript levels of all samples were 
normalized to act1, and final lincRNA transcript levels were calculated relative to the empty-vector 
control. All primers used for the assay are listed in Supplementary file 1.

HTP phenotyping of deletion mutants on solid media
The deletion mutants were broadly phenotyped using a colony-based phenomics platform as described 
(Kamrad et al., 2021; Kamrad et al., 2020b). Mutants were assayed on solid media with a variety of 
55 unique stressors using different concentrations and, in some cases, combinations of stressors. In 
total, we assayed 134 different conditions, with the viability dye phloxine B being included in 66 of 
these conditions. Figure 1—figure supplement 1 provides a description of the conditions used for 
phenotyping. Supplementary file 1 contains the concentrations of all the stressors used. Cells were 
grown for 24 hr on yeast extract supplement (YES) plates in 384-colony format containing a wild-
type control grid, followed by pinning cells onto plates containing the stressors using reduced pres-
sure (4% pinning pressure to transfer a small amount of biomass). Plates were wrapped in plastic to 
avoid drying out and incubated for ~40 hr at 32°C, unless stated otherwise, before image acquisition 
and phenotype assessment. Deletion strains were assayed with at least three independent biolog-
ical repeats using two or more colonies (technical repeats) for each biological repeat. In most cases, 
we had two or more independently generated deletion strains for each lincRNA (using the same or 
different gRNAs), and we performed at least three biological repeats for each strain. The numbers of 
independent strains for each lincRNA are provided in Supplementary file 1 (sheet: lincRNA_meta-
data; column: n_independent_ko_mutants). The total numbers of repeats carried out for each condi-
tion after QC filtering are available in Supplementary file 2 (columns: observation_count).

Image acquisition and quantitation, data normalization and processing, as well as hit calling were 
performed using our pyphe pipeline, which is available here: https://github.com/Bahler-Lab/pyphe 
(Kamrad et al., 2020b). Images of plates were acquired with a flatbed scanner (Epson V800 Photo), 
controlled by pyphe-scan through SANE. Images for quantifying colony area (growth) were taken 
by transmission scanning using the --mode Grey argument. For quantifying redness/viability, images 
were taken by reflective scanning using --mode Color. Images were acquired at 300 or 600 dpi resolu-
tion. For colour images, to determine colony redness for viability, we used an opaque fixture to hold 
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the plates in place, the white cover was installed in the scanner lid, and the scanner was covered by 
a cardboard box to prevent external light interfering with image acquisition. Images were inspected 
individually and excluded if one or more of the following applied: several colonies were missing due 
to pinning errors (usually in the corners), evidence of contamination, white background had not been 
inserted during colour scanning, and/or plate had slipped significantly during scanning so that a whole 
row/column of colonies was missing from the image. The overall number of excluded plates was low 
and generally did not result in significant data loss in the final dataset due to the large number of 
replicate plates. For image quantification, greyscale transmission images for colony area quantitation 
were analysed with the R package gitter (Wagih and Parts, 2014) using the following parameters: ​
plate.​format = 384, inverse="TRUE", ​remove.​noise="TRUE", autorotate="TRUE". Images for which 
gitter failed (very few) were excluded from further analysis. Colour images for redness/viability quan-
tification were analysed with pyphe-quantify using default parameters.

For data normalization and processing, an experimental design table was prepared for each dataset 
which listed for each plate the path to the data file produced during image quantification, plate layout 
information, the condition, as well as other metadata (e.g. batch number, replicate counter, and free-text 
comments). Data from all images of the same dataset were parsed and processed simultaneously using 
pyphe-analyse, producing a single data report table in tidy format per experiment, containing all data 
associated with a single measured colony on each line. For analysis of colony areas, the following param-
eters were used: --format gitter --load_layouts --gridnorm standard384 --rcmedian --check. For colony 
redness analysis, the options were -format pyphe-quantify-redness --load_layouts --rcmedian --check.

pyphe performs some automated quality control. Specifically, during grid normalization, missing 
reference grid colonies are flagged and all neighbouring colonies are set to NA. pyphe also checks 
data for negative and infinite fitness values (rare artefacts of normalization procedures). For the colony 
size datasets, additional quality control of the data was performed as follows: missing colonies (colony 
size 0 reported by gitter and fitness 0 reported by pyphe-analyse) were set to NA as these are pinning 
errors; colonies with a circularity (reported by gitter) below 0.85 were set to NA; plates with a coeffi-
cient of variation (CV) of >0.2 for wild-type controls were set to NA. For viability datasets, the only QC 
step was to exclude plates with a wild-type CV of >0.05.

For statistical analysis, tables reporting summary statistics and p-values for each lincRNA gene 
and condition were obtained with pyphe-interpret. Hits were called separately for control conditions 
(where we tested for difference in means between each lincRNA mutant and wild-type control in the 
same condition) and all other conditions (where we tested for difference in means between each 
lincRNA mutant in test condition vs. corresponding control condition). Welch’s t-test, which does not 
assume homogeneity of variances, was used, and the obtained p-values were corrected for multiple 
testing for each condition separately using the Benjamini–Hochberg method (Benjamini and Hoch-
berg, 1995).

The dataset for clustering (Supplementary file 5, Figure 5) was derived from Supplementary files 
2 and 4 by subtracting one from the MES and dividing by the standard deviation of the wild-type 
control for each condition. Conditions were then aggregated by choosing the strongest response 
across all repeats of the same stressor (the stressor is indicated in the ‘stress_description’ column in 
the knock-out_condition_metadata sheet of Supplementary file 1). As not all lincRNA mutants were 
phenotyped in all conditions, clustering was restricted to a set of 41 core stressors. lincRNA or coding-
gene mutants with less than five responses were excluded, leaving 194 mutants in total, including 
16 ncRNAs. The final dataset only contained 17 NA values which were imputed with 0. Hierarchical 
clustering was done with scipy (Virtanen et al., 2020) using the Ward method and the Euclidean 
distance metric. Clusters were obtained by cutting the dendrogram using the fcluster function with 
the ‘maxclust’ method. Functional enrichments in clusters 1–3 were analysed using AnGeLi (Bitton 
et al., 2015), with all protein-coding genes as background list.

Data for the phenotypic correlation network (Figure 5B) were generated from phenotypes for all 
lincRNA and coding-gene deletions using a ternary system: resistant, sensitive, and no phenotype 
encoded as 1, –1, and 0, respectively. The network was generated following general instructions 
(Contreras-López et al., 2018; Shannon et al., 2003). Briefly, we used Pearson correlations to calcu-
late the network and filtered on absolute r values above 0.6 and adjusted p<0.01. Clustering of the 
network in Cytoscape was done using community clustering (GLay) from the clustermaker extension 
(Morris et al., 2011).

https://doi.org/10.7554/eLife.76000
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HTP microscopy and flow cytometry for cell-size and cell-cycle 
phenotypes
Strains, frozen in glycerol in 384-colony format, were revived in YES solid plates, resuspended into 
150 μl of liquid YES in 96-well plates and incubated at 32°C for 16 hr. Then, 100 μl from these pre-
cultures were added to 1.5 ml of preheated (32°C) liquid YES in 96 deep-well plates and incubated 
at 32°C for 8 hr. Cells were collected by centrifugation, cell pellets were resuspended in 70% ice-cold 
ethanol, and stored in the dark at 4°C until further processing. As cell-size and cell-cycle pheno-
type controls, we used two temperature-sensitive cell-cycle mutants: cdc10-129 and wee1-50. These 
mutants were grown in 50 ml YES at 25°C, centrifuged, and resuspended in 50 ml of prewarmed 
(37°C) YES and incubated for 4 hr at 37°C to block cell-cycle progression. After 4 hr, 1 ml of the 
samples was fixed for microscopy and flow cytometry. The remaining cells were centrifuged and resus-
pended in 50 ml of prewarmed YES (25°C), incubated at 25°C, and samples collected and fixed after 
20 and 60 min. Over 80% of the 110 lincRNA mutants screened for cellular phenotypes were assayed 
in at least two independent biological repeats.

For cell-size and cell-cycle phenotypes, fixed cells were washed in 50 mM sodium citrate buffer, 
spun down at 3000 × g for 5 min, resuspended in 50 mM sodium citrate containing 0.1 mg/ml RNAse 
A, and incubated at 37°C for 2 hr. Cells were then spun down at 3000 × g for 5 min and resuspended 
in 500 μl of 50 mM sodium citrate +1 µM SYTOX Green (Thermo Fisher Scientific, cat. # S7020). 
Immediately prior to analysing samples using either HTP flow cytometry or HTP microscopy, cells in 
the deep well plates were sonicated for 40 s at 50 W (JSP Ultrasonic Cleaner model US21) to increase 
the efficiency of singlets.

For HTP image acquisition, cells were further stained with a 1:1000 dilution of CellMask Deep Red 
Plasma membrane dye (Thermo Fisher Scientific, cat. # C10046), according to the manufacturer’s 
instructions. Then, 2.5 µl of fixed and stained cells were transferred from 96-well plates into a poly-
lysine-coated 384-well Perkin Elmer Cell Carrier Ultra imaging plate (PerkinElmer, cat. # 6057500), 
pre-filled with 25 µl of 1 µM SYTOX Green using a Biomek Fx robot. Cells were spun down for 3 min 
at 200 × g before imaging. Imaging was performed on a Perkin Elmer Opera Phenix microscope using 
a water immersion 63× lens to capture confocal stacks of 12 planes in both Alexa488 (SYTOX Green) 
and Alexa647 (CellMask) channels, with 63 microscopic fields being captured per sample. The images 
were projected and analysed using the associated Phenix software Harmony for the automated identi-
fication of mono- and binucleated cells and respective cell length. Features were exported for further 
analysis using R studio.

For HTP flow cytometry, 250 µl of cells were transferred into 96-well plates and 30,000 cells were 
measured in a Fortessa X20 Flow cytometer (BD Biosciences) using the HTS plate mode on the DIVA 
software and a 488  nm excitation laser to capture the SytoxGreen DNA staining. Populations of 
interest were gated as described (Knutsen et al., 2011) using the FlowJo software version 10.3.0. 
Features of interest (populations with different DNA content) were then exported for further analysis 
using R studio. The determined percentage of cells in each cell-cycle phase per sample was used 
to validate the HTP imaging data. For correlation with the HTP imaging (binucleated cells), S- and 
G1-phase cell populations were grouped together (Supplementary file 2).

Data analysis was carried out in R (v.3.5.2), using the package tidyverse for data manipulation, visu-
alization, and statistical analysis. All tests were two-sided unless otherwise stated. For HTP imaging 
analysis, cell density was checked for each sample in the multi-well plate and given a score of 0–5, 
where 0 is very low to no density (<50 cells/well) and 5 is at too high density; samples scoring 0 and 
5 were excluded from analysis. For cell-size analysis, the median cell size of binucleated cells for each 
mutant was used to calculate fold-changes relative to wild-type values, applying the Wilcoxon test to 
determine significant differences (p<0.05), only considering cells showing a ≥ 5% difference in size 
compared to wild-type cells. For cell-cycle analysis by HTP imaging, the percentage of binucleated 
cells per microscopic field (63 fields/sample) was used to calculate the median value per lincRNA 
mutant, followed by fold-change analysis calculated by normalizing the percentage of binucleated 
cells in each sample relative to wild-type values, applying the Wilcoxon test to determine significant 
differences (p<0.05), only considering cells showing a ≥20% difference in binucleated cells compared 
to wild-type.

https://doi.org/10.7554/eLife.76000
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HTP phenotyping of overexpression mutants on solid media
Overexpression strains were arrayed in 384 format together with the empty-vector control strain and 
a grid of the wild-type strain (972 h-) for normalization. Strains were revived from glycerol stocks 
in YES and grown for 2 days at 32°C. Colonies were then transferred to new YES plates, grown for 
1 day, and pinned onto EMM2 (with NH4Cl but without amino acid supplements) with or without the 
specified drugs/supplements. YES medium contains thiamine that represses the nmt1 promoter and 
leucine that compromises the maintenance of the overexpression plasmid (which contains the LEU2 
marker). We screened the lincRNA overexpression library for colony growth phenotypes in 47 condi-
tions (Supplementary files 1 and 6). Each overexpression strain was represented by at least 12 colo-
nies across three different plates and experiments were repeated at least three times. Each condition 
was assayed in three independent biological repeats, together with control EMM2 plates, resulting in 
at least 36 data points per strain per condition. Plates were incubated at 32°C if not stated otherwise 
for the condition. Plates were imaged as described for deletion mutants after 40 or 64 hr in order to 
capture as many hits as possible.

Image acquisition and quantification, data normalization and processing, as well as hit calling 
were performed using the pyphe pipeline as described above for greyscale transmission images 
to quantify colony sizes. During grid correction, 24,683 colonies were excluded due to missing 
grid colonies and 2539 missing colonies were set to ‘NA’ (pinning errors), and data from 290 of 
2772 plates were discarded because they either showed a fraction of unexplained variance (FUV) 
above 1 or a control CV of >0.5. The final dataset contained 917,368 data points. The colonies 
which passed the above quality control steps were normalized with the grid first, and the resulting 
colony sizes were additionally normalized to the control condition (EMM2) for the conditions with 
stressors. All data from the pyphe analysis are provided in Supplementary file 6. The hits were 
defined by adjusted (Benjamini–Hochberg) p-values ≤ 0.01  and MES  ≥5% compared to empty-
vector control.

For clustering analyses, we first filtered the relative log2 MES data (relative to empty-vector control) 
for genes with five or more hits followed by conditions with five or more hits, resulting in 59 lincRNA 
mutants with MES data for 29 conditions. Then we discretized the data, classing mutants as either 
sensitive (–1), resistant (+1), or similar to their fitness in the corresponding control condition (0). We 
performed hierarchical clustering with the complete method using the Canberra distance metric and 
plotted the heatmap (Figure 6B) with the ComplexHeatmap r-package (Gu et al., 2016).

For correlation analyses between deletion vs. overexpression data, we filtered the phenotyping 
data for the 104 shared lincRNA mutants and the 22 shared stress conditions between the two mutant 
types. As the overexpression strains could only be assayed on minimal media while the deletion 
strains were mainly assayed on rich media, we matched conditions based on the added drug/stressor 
only, disregarding the media background. In case of multiple related conditions (e.g. same stress in 
different doses), the strongest response was used (maximum MES).

Phenotyping of meiotic differentiation for selected lincRNA mutants
We used CRISPR/Cas9 deletion mutants in the homothallic h90 background for the lincRNAs in the 
sub-cluster of Figure 6B: SPNCRNA.335, SPNCRNA.1154, SPNCRNA.1530, and meiRNA, along with 
a wild-type h90 control strain (968). The strains were grown in liquid YES medium at 32°C to an OD600 
of ~0.5. Cells were washed 3× in EMM-N medium and resuspended in EMM-N to an OD600 of ~1.5. 
Cultures were then grown at 25°C in a shaking incubator at 180 rpm.

To assess meiotic differentiation, 1 ml samples were harvested at 24 and 72 hr after the medium 
change, centrifuged, and pellets resuspended in 70% ethanol at 4°C. For microscopy, 100  µl of 
ethanol-fixed cells were rehydrated in 50 mM sodium citrate and incubated overnight at 4°C. Cells 
were centrifuged for 5 min at 1500 × g, the pellets were resuspended in 10 µl of 50 mM sodium citrate, 
and 2 µl of cell suspension was spread onto a slide and mounted with DAPI containing mounting 
media. Cells were imaged using a Zeiss ApoTome.2 microscope with a Hamamatsu digital camera 
and 63× objective. At least 500 cells per sample were counted using Fiji (Schindelin et al., 2012) 
by differentiating between cells, zygotes, asci, or free spores. Mating efficiency was determined as 
described (Rodríguez-Sánchez et al., 2011), calculated as {[2× (number of zygotes + number of asci)] 
+ ½ number of spores} divided by {[2× (number of zygotes + number of asci)]+ ½ number of spores 
+ number of non- mating cells}.

https://doi.org/10.7554/eLife.76000
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To measure spore viability (Escorcia and Forsburg, 2018), 5 ml samples were harvested at 72 hr 
after the medium change, centrifuged, resuspended in 1 ml 0.5% glusulase solution (1:10 dilution 
of 5% glusulase in sterile H2O), and incubated for ~16 hr at 25°C. These glusulase suspensions were 
diluted at 1:5 to 1:20 in sterile H2O, and spore numbers were counted using a hemocytometer. For 
each strain, ~200 spores were plated onto three YES-agar plates and incubated at 32°C until colonies 
formed. The colony numbers were counted and divided by the number of spores plated to determine 
the proportion of viable spores. This entire procedure was repeated in three independent biological 
replicates.
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