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Abstract—A comprehensive comparison between two multi-line thru-reflect-line calibration techniques
is provided. One of the methods is based on the classical combination of N measurements following the
Gauss-Markov theorem. The other one has been developed along this paper in a complete and detailed
way using the recently published idea of considering each of the N measurements as part of a tensor.
The measurement of a calibration kit that covers from 500 MHz to 20.5 GHz has been carried out
for both methods and the results discussed. From the analysis of the results, it seems that the tensor
approach could show some advantages in the (not uncommon) cases where a strictly white and Gaussian
noise is not the only perturbation of the measurements. On the other hand, the decomposition of the
tensor requires a higher computational effort, which would better be reduced.

1. INTRODUCTION

In the field of microwaves, the characterization of the manufactured devices is of great interest
for the correct operation of any system. Vector Network Analyzers (VNA) are essential for most
high-frequency circuit characterizations, and their calibration is an essential step to obtain reliable
measurements. Nowadays, the development of precise calibration techniques is of undeniable interest,
as the specifications of radio frequency and microwave devices are increasingly demanding. Thus, many
calibration techniques have been developed over the years [2–6,8, 9, 11,14,16].

Let’s focus on those calibrations that only consider the correction of linear errors throughout the
measurements, so it is not necessary to know the source and nature of the non-linearity. Under this
premise, one of the most common calibration techniques is the one known as thru-reflect-line (TRL) [3].
This is because the design of the calibration kit is simpler, as it uses a reflect instead of an open or
a short circuit, which makes the kit less expensive to manufacture than other calibration techniques
usually require. In case a higher degree of accuracy in the measurement results is needed, it is possible
to increase the number of calibration standards in what is known as multi-line thru-reflect-line (MTRL)
calibration. Recently, the basic ideas for the implementation of a MTRL calibration using a tensor
decomposition have been published in [12, 13]. However, in these papers the calibration procedure is
not fully completed, and some results are obtained through generic non-linear optimization, instead of
using the well-known optimal Gauss-Markov formulation presented in [2,8,9]. Moreover, the comparison
made there with the classical formulation of the method is not fair, since in the application of the classical
method the optimal combination of results is not used, neither in obtaining the propagation constant
nor in the calculation of the calibration coefficients.

The aim of this work is to complete the description of the calibration process as based on the
Canonical Polyadic Decomposition (CPD) algorithm [1], but using the optimal expressions presented
in [2] instead of a generic non-linear optimization, and then compare the results with a careful
implementation of the well-known method of [2]. The organization of this paper is as follows. First,
Section 2 gives the main characteristics of the classical multi-line calibration method. Then, Section 3
completes and details the CPD multi-line calibration procedure. Section 4 provides a comparison
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between the two implementations by measuring a microstrip MTRL kit covering the 0.5 to 20.5 GHz
frequency band. Finally, some conclusions are presented in Section 5.

2. CLASSICAL MULTI-LINE CALIBRATION METHOD

In the seminal MTRL article [9], an analysis of the error of TRL was derived, up to the first order and,
based on the analysis of the measurement errors, the MTRL technique was established. Being [9] hard
to follow, a subsequent publication that provides some understanding of the algorithm was presented
in [2]. Unfortunately, typos in some equations make it difficult to apply them directly. Furthermore,
the criteria for deriving the equations are not provided, assuming that the reader will make an intensive
reading of the previous publications. As a consequence, it seems that a certain misunderstanding of
this calibration method is widespread [7, 12, 13] (some misconceptions will be commented on later).
Therefore, the main objective of this section is to show the implementation options of the method,
along with their implications in the final result, hoping to clarify any doubts that may arise about this
calibration technique. The understanding of the classical calibration is mandatory in order to later
understand its alternatives such as the use of CPD presented in Section 3.

2.1. Determination of the Common Line

In [9] a method is provided based on the combination of N measurements following the Gauss-Markov
theorem. For this, N−1 independent linear equations are obtained. Thus, one of the lines is necessarily
used as a common line to form the different pairs that leads to the corresponding equations. The
selection of the common line is based on minimizing the TRL error of the line pairs that can be formed,
which implies that the sine of the difference in electrical length between the lines of the different pairs
should be as large as possible. As a consequence, the common line must be redefined at each frequency.

To improve the robustness of the numerical calculation, the concept of effective phase difference is
used for the determination of the common line:

Φeff = sin−1

∣∣∣∣eγest∆lij − e−γest∆lij

2

∣∣∣∣ (1)

where γest is a pre-estimation of the propagation constant of the lines that form the MTRL calibration
kit, and ∆lij the difference in physical length between i-th and j-th lines.

Thus, for each frequency, the common line turns out to be the one that maximizes the lowest
Φeff value of those obtained for all the lines with each possible common line. The determination of
the common line is important as the theory and experiments show that it influences the accuracy of
the calibration results. This influence will be shown at the end of this document by analyzing actual
measurements.

2.2. Determination of the Propagation Constant

The evaluation of the propagation constant not only offers the possibility of shifting the calibration
reference plane but is also necessary to complete the calibration, as it will be shown in Section 2.3. The
estimation of the propagation constant will also be a useful tool for the evaluation of the calibration
technique, so this section focuses on it.

In the procedure being described, [2,9], it is necessary to calculate, at each frequency, the solution
to the eigenvalue problems arising from the N − 1 pair of lines that make use of the common line. In
the same manner as in the conventional TRL [3], we have two measurements i and j, for lines of lengths
li and lj , respectively. Their wave-chain (or wave-cascading) matrices Mi and Mj can be written as:

Mi = XTiY
Mj = XTjY

(2)

where X and Y represent the VNA non-idealities and Ti is the transfer matrix of the i-th line:

Ti =

[
e−γli 0
0 e+γli

]
(3)
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So, we get that
MijX = XTij (4)

with Mij = Mj(Mi)−1 and Tij = Tj(Ti)−1. Then, Mij and Tij are similar matrices, and therefore,
they share their eigenvalues.

Once we have solved the eigenvalue problem for each pair of lines, its two solutions must be identified
as e−γ∆lij and e+γ∆lij , with ∆lij = li − lj . Although identification is an easy task in the absence of
noise, in case of small disturbances, such as non-ideal connection repeatability, the small values of the
attenuation constant often make identification a difficult task. So, to make the algorithm robust, a
pre-estimation of the propagation constant of the lines, γest, is used. As the reader may realize, many
identification algorithms can be developed but none of them influence the results of the calibration
as long as the identification is done correctly. Once this identification is made, the N − 1 pairs of
eigenvalues allow to obtain N − 1 propagation constants as

γij =
ln
(
e+γ∆lij

)
− ln

(
e−γ∆lij

)
2∆lij

(5)

Therefore, the algorithm obtains a single γij for each line pair, since both exponentials are combined
to obtain a more precise result. Contrary to the belief of [13], the results extracted independently from
the two exponentials cannot be exactly the same because the calculation of eigenvalues is carried out
through the measurement, Mij , instead of the ideal wave-chain matrix Tij . It is true that in [9] it
has been demonstrated that, under the measurement errors hypothesis, both propagation constants are
identical up to the consideration of the first order error. But they may differ when more terms are
considered.

Then we have to calculate, again for each of the frequencies, the estimation of the propagation
constant, γ̂, combining the N − 1 propagation constants γij of (5). Their combination following the
Gauss-Markov theorem is the main key of the multi-line algorithm. With it, it is possible to achieve
the best unbiased linear estimation under a series of considerations about the nature of measurement
uncertainties. This means, as it is said in [9], that the best estimation of the parameter must take into
account all measurements (and not only the best line pair, as it seems to be read in [12]).

Let’s define L, size (N − 1) × 1, as the array containing all the ∆lij values and G as the size
(N −1)×1 array with the N −1 values of γij . If we name V of size (N −1)× (N −1) the measurement
of the noise covariance we have that:

γ̂ =
LHV−1G

LHV−1L
(6)

where the superindex H stands for hermitian transpose.
The calculation of the V matrix is another key element that was presented in [9]. Realizing that the

eigenvalue solution uses the difference between two measurements (Mij), the noise covariance matrix
must be filled in accordingly. Therefore, assuming that there is no correlation between the measurement
of the different lines and that they are all equally noisy, we get:

V−1 =
1

σ2
k

[
1− 1

N − 1
N

− 1
N 1− 1

N

]
(7)

where σk is the variance of the noise in the individual line measurements, not being necessary its
determination because of its appearance in the numerator as well as in the denominator of (6).

2.3. Determination of the Correction Coefficients

As in the first proposal of the TRL calibration technique, [3], the uncertainties of the non-ideal vector
network analyzer are collected, as shown in (2), into two wave-chain matrices: X for port 1 and Y for
port 2. The measurement of a device can be expressed as in (2), substituting the Ti by the device under
test wave-chain matrix. The X and Y matrices can be written as:

X = R1

[
A1 B1

C1 1

]
, Y = R2

[
A2 B2

C2 1

]
(8)
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where Y is the reversed, left to right, Y matrix. Reversing a wave-chain matrix can be done by simply:

Y =

[
0 1
1 0

]
Y−1

[
0 1
1 0

]
(9)

The main objective of reversing the matrix is to be able to use the same mathematical expressions for
both ports.

The values of Bi and Ci/Ai with i = {1; 2} in (8) are calculated for each of the N − 1 pair of
lines in a conventional way, making use of the solutions of the eigenvalue problems. Some care must
be taken, since the obtained eigenvectors are not suitably ordered and scaled to conveniently represent
the matrices X and Y of the VNA measurements (2). If required, the results of the eigenvalue sorting
procedure described in Section 2.2 can be applied.

The final step is to combine the N − 1 values of Bi and Ci/Ai, accumulated in vectors b1,2 and(
c1,2
a1,2

)
, at each frequency, through the expressions derived, again, from the best unbiased linear estimate:

B̂1,2 = hTV−1
B b1,2/σ

2
B̂C1,2/A1,2 = hTV−1

C

(
c1,2
a1,2

)
/σ2

C

(10)

where h is a vector whose elements all take the unit value and the superindex T stands for transpose.
Furthermore, σ2

B and σ2
c , which are dividing into (10) instead of multiplying as it has been stated

in [2], are the sum of all the elements in V−1
B and V−1

C , respectively. Covariance matrices depend
on the assumptions made about the nature of the noise measurement. In the classical MTRL these
assumptions are:

• all lines are equally noisy,

• the noise is uncorrelated between different lines,

• uncertainties come exclusively from the differences between the connectors,

• connectors are symmetrically noisy.

With these assumptions we obtain the expressions of the (m,n) terms of the covariance matrices,
with m,n ≤ (N − 1), similar to those of the original paper, but with the expressions written in a more
compact form and where a typo has been corrected:

VB|m=n =
|xm/xcom|2 + |xcom/xm|2 + 2|xmxcom|2

|xm/xcom − xcom/xm|2

VB|m<n =
(xm/xcom)(xn/xcom)∗ + |xcom|2xmx∗n

(xm/xcom − xcom/xm)(xn/xcom − xcom/xn)∗

VB|m>n = VB|∗m<n

(11)

and,

VC |m=n =
|xm/xcom|2 + |xcom/xm|2 + 2

|xmxcom|2

|xm/xcom − xcom/xm|2

VC |m<n =
(xcom/xm)(xcom/xn)

∗ + 1
|xcom|2xmx∗

n

(xm/xcom − xcom/xm)(xn/xcom − xcom/xn)∗

VC |m>n = VC |∗m<n

(12)

where xk = e−γ̂lk , xcom = e−γ̂lcom , and com is the index of the line chosen as common line.
As shown, the estimation of the propagation constant γ̂ has been used to calculate the covariance

matrices needed to combine the results of the N measurements.
Once we get them, Ai and Ci must be derived as individual values, as well as R, which is the

product of the Ri factors in (8). For this purpose, the thru measurement together with the reflect
measurements at both ports are used in a conventional way. It should be clarified that, in order to
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separate the factors Ai and Ci, the thru measurement is considered as if its calibrated response were an
ideal zero-length connection. Therefore, the measurement of the thru has more influence than the rest
of the lines. However, this is not critical, since all differences between lines have already been optimally

taken into account in the calculation of the quotient Ĉi/Ai and the B̂i factor. Finally, to get the R
factor, the measurement of the thru is forced to be reciprocal.

3. CPD IMPLEMENTATION

In [13] the propagation constant of a line is obtained from the decomposition of a tensor which includes
the data of N simulations of N lines that only differ in length. However, many of the details of the
procedure are omitted or insufficient when it comes to real measurements instead of simulations. In
addition, the calibration process is not fully described. Therefore, throughout this section, all the
necessary details are given as well as the complete calibration method.

3.1. Building the Tensor

As an alternative to the method of Section 2, the measured data from all lines could be processed at
the same time. Let us write Mi as

Mi =

[
x11 x12
x21 x22

]
A

[
p 0
0 1

]
P︸ ︷︷ ︸

X

TiPB

[
q 0
0 1

] [
y11 y12
y21 y22

]
︸ ︷︷ ︸

Y

(13)

where P is a permutation matrix and A, p, B and q are unknown scalar values. So,

Mi = ABpq

[
x11y11 x11y12
x21y11 x21y12

]
e∓γli+

AB

[
x12y21 x12y22
x22y21 x22y22

]
e±γli

(14)

which can be written as:

Mi = λ1e
∓γli

[
x11
x21

]
[y11 y12] +

λ2e
±γli

[
x12
x22

]
[y21 y22]

(15)

or
Mi = λ1e

∓γlia⊙ b+ λ2e
±γlic⊙ d (16)

where ⊙ denotes the outer product between two column vectors a ⊙ b = abT being the superindex T
the transpose operation. Hence, the external product of two vectors results in a matrix. Extending this
definition to tensors, each new vector outer product adds a new dimension to the result. Then, we can
write:

T = λ1a⊙ b⊙ e1 + λ2c⊙ d⊙ e2 (17)

where e1 and e2 contain the propagation factors of the N lines considered in the problem.
We can define the factor matrices:

Ẋ = [a c] =

[
x11 x12
x21 x22

]
= XP

1

A

[
1/p 0
0 1

]
(18)

ẎT = [b d]
T
=

[
y11 y12
y21 y22

]
=

1

B

[
1/q 0
0 1

]
PY (19)
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and

D = [e1 e2] =


e∓γl1 e±γl1

e∓γl2 e±γl2

e∓γl3 e±γl3

...
...

e∓γlN e±γlN

 (20)

The D matrix is written this way to show that in each column of D we can obtain either a positive
or a negative exponential, as a result of the presence of the permutation matrix P. But it is not possible
that both types of exponentials are mixed in the same column, as it can be deduced from (16).

Then, with λλλ = [λ1 λ2]:

T = [λλλ; Ẋ, Ẏ,D] (21)

which corresponds with the Canonical Polyadic Decomposition (CPD) operation. The CPD is a tensor
decomposition that is unique, up to a permutation and scaling factors, when the sum of the factor
matrices ranks, defined as the number of linearly independent columns, is greater or equal to 2F + 2
being F the number of summing elements in (16). So, in the MTRL calibration technique uniqueness is
achieved. Therefore, if a tensor T containing the transmission parameters of N lines of different lengths,
but with identical launchers is formed, then the CPD gets the matrices Ẋ, Ẏ and D in equations (18) to
(20). The matricesX andY, which define the VNA uncertainties, can be obtained once the permutation
P and the scaling factors are found.

3.2. CPD algorithm

The CPD is usually implemented via a trilinear alternating least square algorithm, as it is the case for
most of the procedures in [15]. Not because it is the best in convergence but because of its simplicity.
The algorithm is based on minimizing the difference between each of the tensor dimensions with its
value obtained by the product of its factor matrices. Two of the three factor matrices are fixed and
the difference is calculated. Then another factor matrix is fixed. This procedure is repeated until one
of the convergences criteria is achieved. In [17] it is shown that for the usual number of samples in
signal processing applications the trilinear least square converges, or at least remains relatively close,
to the Cramer Rao Bound in all the three dimensions for zero-mean identically distributed (i.i.d.)
complex circularly symmetric Gaussian noise. Throughout this work, the trilinear alternating least
square algorithm has been used, as well as others provided by [15], such as the non-linear least square
or the algorithm based on the simultaneous generalized Schur decomposition. No differences in results
have been detected among any of these algorithms.

3.3. CPD Solution

Note that the lines in (20) are sorted according to the order in which the measured data are included
in T , since permutation P does not affect it. However, the numerical result of (21) for D matrix
can include two arbitrary scale factors: one of them multiplies the entire matrix, the other multiplies
one column and divides the other. Because of the exponential form of the matrix terms, this second
factor can be interpreted as a change of the reference plane. Therefore, some information about the
line lengths should be used to fully determine the D matrix. In [13] an optimization is carried out,
whose results are both the scale factors and the estimation of γ. In the implementation described here
the obtainment of the propagation constant has been separated from the deduction of the scale factors
in order to use the Gauss-Markov results. Thus, it can be ensured that the best linear estimation of
the propagation constant can be found, at least when only considering the zero-mean additive white
Gaussian noise (AWGN). Therefore, focusing throughout this section on the sole objective of determining
the D matrix, a two-step normalization has been established. Firstly, just for simplicity and although
it is not indispensable, the length of the line chosen as thru is set as zero. Then, each of the columns on
(20) is normalized by the value on the position of the thru. This normalization gives special precedence
to the accuracy of the result for the line chosen as thru. But the objective of the CPD is to make an
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approximation to the Ẋ, Ẏ and D values that best fit the tensor T , without prioritizing any of the
lines. This is why a second step has been included. The second step is based on an optimization, which
finds the ξ factor that best fits that all the elements in e1, multiplied by their corresponding elements
in e2, are equal to one. So, this second step can be seen as the fine-tuning of a factor ξ that must divide
both columns in (20). The optimization problem is stated as:

ξ = min
ν

N∑
i=1

∣∣ei1ei2 − ν2
∣∣2 (22)

where the summation includes the thru, and the sign of ξ is chosen so that the terms corresponding to
the thru in the normalized D are close to +1 (and not to −1).

Furthermore, it is necessary to find the permutation that the CPD has introduced. As in the case
of the classical MTRL, an estimation of the propagation constant has been used in our implementation.
The main reason for such a decision is that, when considering low-loss transmission lines and noise,
there is no trivial way to clearly distinguish which is the positive exponential and which is the negative
one in the rows of D. The permutation P is found by minimizing the distance between the exponential
terms of D and the exponentials calculated with an estimation of the propagation constant. One must
be cautious not to take a line that is too short or too long to find the permutation. A short one increases
the possibility to misidentify the exponential factors. But, if the line is too long, identification errors
also arise because of the indetermination introduced by the periodicity of the phase.

After all these steps, everything is ready to extract both the propagation constant and the correction
coefficients of the multi-line TRL calibration technique.

3.4. Propagation Constant by CPD

In order to compare both methods in all their properties, the propagation constant has also been
extracted with this formulation of the multi-line method. However, it should be noted that obtaining
the propagation constant only allows shifting the calibration reference planes, i.e., it does not influence
the calibration correction coefficients, as it can be derived from Section 3.5.

Once the permutation is found, the values of the propagation constant are calculated at each
frequency, as given by each of the elements in both columns of D (excluding those corresponding
to the thru). The possible phase jumps are then removed (the phase is unwrapped) so that the
resulting propagation constant is continuous with frequency. As in the classical multi-line method,
the propagation constants of the waves propagating in both directions are averaged to minimize the
influence of second-order errors that may arise from differences between the connectors. In this way,
N−1 values of γ are obtained. Their combination can be optimally carried out using (6). This approach
is better than the optimization proposed and used in [13], since at least (6) provides the best linear
estimator.

3.5. Correction Coefficients by CPD

In order for the Ẋ and Ẏ matrices to be consistent with a VNA measurement, the permutation found
for D and the scaling factors mentioned in Section 3.3 are conveniently applied to these matrices. Then,
the correction coefficients are found following the same steps as in Section 2.3, that is, making use of
the thru measurement along with the measurements of the reflect at both ports of the VNA.

If the noise is considered to be zero-mean i.i.d. complex circularly symmetric Gaussian noise, the
calibration coefficients in the X and Y matrices are essentially the same, whether the least-square
alternate algorithm of the CPD has converged or the classical multi-line method has been followed,
except for the scale factors introduced by the impossibility of independently determining the factors of
the R1R2 product.

4. COMPARISON

A multi-line microstrip calibration kit (see Fig. 1), consisting of nine lines and an open end, has
been manufactured using 30-mil thick ARLON25N as substrate. The line lengths have been chosen
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Figure 1. Manufactured calibration kit

to minimize the TRL calibration uncertainty in the range from 500 MHz to 20.5 GHz, namely, 40, 42.1,
44, 54.9, 69.4, 87.5, 97.3, 109 and 119.5 millimeters. The microstrip open end used as reflect has been
located 20 mm away from the launcher. Thus, the use of the 40 mm line as a zero-length thru places
the reflect in the reference plane of the measurements.

Two comparisons are made throughout this section. Firstly, the circuit simulation of the calibration
kit shows that both methods achieve the same results, as long as the only perturbation is a zero-mean
i.i.d. complex circularly symmetric Gaussian noise. A check of the propagation constant estimation is
also included. Secondly, the manufactured kit is measured, and the results using both the classical and
the CPD methods are shown and discussed.

4.1. Simulation of a nine-line MTRL calibration kit

The frequency responses of the nine lines in the kit have been simulated with ADS using its circuital
models for microstrip lines. Then, a complex Gaussian noise has been added to the resulting scattering
parameters. Actually, both the real and imaginary parts of the noise follow a truncated Gaussian
distribution, since the numerical values of the added uncertainties have been kept below 2σ in the normal
distribution. The choice of a circuital instead of an electromagnetic simulator avoids the accuracy errors
introduced by the discrete mesh of full-wave simulators that cannot be represented by a linear error,
even less by an AWGN.

To contrast the results of the two implementations (classical and CPD), the calibrated
measurements obtained by both methods for one of the lines (for instance the one chosen as thru)
have been compared by using a formulation similar to that given in [10, (8)]. It must be noted that
in [10] a worst-case measurement error bounds are derived with respect to a benchmark calibration of
known accuracy. Here, it is preferred to focus on the formulation of this paper, since no approximations
(such as linearization of uncertainties) have been made.

For this, the matrix ∆ is defined as:

∆ = 20 log
∣∣X−1

classicM
tY−1

classic −X−1
CPDM

tY−1
CPD

∣∣ (23)

where Xclassic and Yclassic are the matrices with the correction coefficients of the MTRL calibration
using the classical implementation, the matrices with the subscripts CPD are those of the CPD
implementation, and Mt is the measured wave-chain matrix of the thru. If both calibrations were
identical then ∆ = 0.

To check the proper coding of CPD procedure the elements of matrix ∆ are shown in Fig. 2 in the
case of no added noise. It is apparent that both methods obtain the same calibration coefficients, except
for some numerical noise. In fact, the values of the elements ∆11 and ∆22 correspond to the minimum
possible error (−320), taking into account that double precision has been used in the calculations
(around 16 significant decimal digits).
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Figure 2. Comparison between the correction coefficients of the classical MTRL and the tensor-based
method for noiseless simulations.
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Figure 3. Attenuation constant and effective relative permittivity obtained by the classical MTRL and
the tensor-based method for noiseless simulations.

It is also worth comparing the result of both formulations for the propagation constant. Fig. 3
shows the attenuation constant and the effective relative permittivity. Also shown in Fig. 3 is the pre-
estimated propagation constant that is used in the identification step of the algorithms (see Section 2.2)
and that has been borrowed from a quasi-static model of the microstrip. The coincidence of both
formulations is confirmed, as well as the irrelevance of the pre-estimation of the propagation constant
in the final results.

A zero-mean i.i.d. complex circularly symmetric Gaussian noise with standard deviation σ = 0.0283
has then been added to the simulated S-parameters. The coefficients of the difference matrix (23) are
shown in Fig. 4. The differences are higher than in the noiseless case, but remain at low values. Note
that the CPD algorithm has some numerical noise associated with the convergence of the decomposition,
while by definition the classical method is optimal when there are no error correlations.

The differences between the results for the attenuation constant and the effective permittivity,
Fig. 5, are negligible.
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Figure 4. Comparison between the correction coefficients of the classical MTRL and the tensor-based
method with AWGN of zero-mean and standard deviation σ = 0.0283
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Figure 5. Attenuation constant and effective relative permittivity obtained by the classical MTRL and
the tensor-based method with AWGN of zero-mean and standard deviation σ = 0.0283

.

4.2. Measurement of a Calibration Kit

The multi-line calibration kit in Fig. 1, which includes the Southwest Microwave 292-04A-5 SMA female
end-launch connectors on each side of the lines, has been measured with an Agilent N5230A VNA, and
the resulting S-parameters have been processed with Matlab.

Results are shown throughout this section using the classical and CPD calibration formulations.
Then, an analysis of the calibration results using different number of lines has been carried out to show
their influence on the calibration coefficients.

It is worth insisting that both calibration methods achieve an optimum when considering zero-
mean AWGN. However, in the case of measurements, the noise is no longer of this nature and there are
correlations between measurements. Therefore, it is not possible to determine which procedure offers
the most accurate calibration.

For these measurements the differences in the calibration coefficients resulting from the two
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Figure 6. Comparison between the correction coefficients of the classical MTRL and the tensor-based
method for the measured calibration kit.

0 5 10 15 20 25

2.65

2.7

2.75

2.8

2.85

2.9

0 5 10 15 20 25

0

5

10

15

20

25

Classic

CPD

Figure 7. Attenuation constant and effective relative permittivity obtained by the classical MTRL and
the tensor-based method for the measured calibration kit.

formulations are shown in Fig. 6, using the matrix of differences defined in (23). This figure shows
that the results are quite similar to each other, except for the higher frequencies, at which the ∆12 and
∆21 terms reach values up to −35. That value (∆mn = −35) implies differences in the second or third
significant digit.

The propagation constant, as extracted from the measurements, is shown in Fig. 7. Its real part,
the attenuation constant, is the most sensitive parameter. The results for the attenuation constant
using the classical formulation show some spikes (see Fig. 7), more numerous and of greater amplitude
at the higher frequencies, which do not appear with the CPD approach. The classical formulation also
shows some spikes in the effective permittivity (Fig. 7), although of much lesser amplitude than in the
case of the attenuation constant, that do not appear with the tensor-based method (only a ripple that
increases in amplitude with frequency is appreciable).

Let’s first focus on determining the nature of the peaks that occur when using the classical
implementation of MTRL. For this purpose, the results of the attenuation constant have been calculated
for three different common lines. The first common line is the optimal, as given by the maximization
of the lowest Φeff in (1); the second line is the second-best in the maximization of Φeff , and so on.
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Figure 8. Attenuation constant obtained by the classical MTRL calculated with different common
lines for the measured calibration kit.
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Figure 9. Calibrated reflection coefficient of the reflect using both the classical MTRL and the tensor-
based method.

Fig. 8 shows that the sensitivity of the measurements to the chosen common line is very high when
actual measurements are analyzed, which is not the case when dealing with simulations. Although with
some caution, since both formulations of the MTRL calibration have been geared to the only presence
of AWGN, it could be stated that the CPD has the advantage, when dealing with real measurements,
that there is no need for a common line in the determination of D in (20). It should be noted that the
propagation constant is in both implementations the best linear estimator from the set of eigenvalues
obtained. However, this is not the case when obtaining the eigenvalues from which the best estimation
of the propagation constant is extracted. It should be mentioned that both calibration procedures show
an increase in ripple as the measurement frequency increases. The authors relate this phenomenon to
the response of the connectors.

To complete the classical vs. CPD comparison, Fig. 9 shows the measurement of the reflection
coefficient of the reflect, calibrated with the results of the two procedures. The results for this
measurement are very similar.

An interesting issue may be to analyze the effect of adding more and more lines to a MTRL
calibration kit. The aim of this analysis is to see its influence on the ripple that appears at high
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Figure 10. Comparison between the correction coefficients of the tensor-based MTRL approach, with
four lines and with nine lines, using the measured calibration kit.

frequencies for the more sensitive parameter, the attenuation constant. It has already been shown that
the classical method is very sensitive to the choice of the common line, so it will also be sensitive to
a change in the number of lines used during calibration. Therefore, only the tensor-based method has
been explored for this purpose. Four subsets of lines have been formed from the kit in Fig. 1.

The lines involved in each calibration subset have been chosen to keep the TRL first term error
as constant as possible in the calibration bandwidth (from 500 MHz to 20.5 GHz) and to keep at least
one of the electrical lengths of the lines, θ, between the usual limits 60◦ < θ < 120◦. Obviously, it
is expected that when fewer lines are used in the calibration the error will increase in some frequency
ranges. The subsets of calibration lines that have been used along this analysis are:

• The full set of nine lines.

• The six lines of lengths 40, 44, 54.9, 69.4, 87.5 and 109 mm.

• The five lines of lengths 40, 44, 54.9, 69.4 and 119.5 mm.

• The four lines of lengths 40, 44, 87.5 and 109 mm.

Using the measurements already made, the CPD approach to MTRL calibration has been applied to
each subset, with the results discussed below. To simplify the comparison and the calculation of the
MTRL coefficients the shortest line (40 mm) has been used in all cases as thru (which is assigned zero
length) to maintain the phase reference plane at the location of the reflect.

In Fig.10 the elements of matrix ∆′ are shown. Similar to (23), this matrix is the difference between
the calibrated measurement of the thru using the CPD implementation, but when different number of
lines have been used (including the one chosen as thru). It is defined as

∆′ = 20 log
∣∣X−1

9 MtY−1
9 −X−1

4 MtY−1
4

∣∣ (24)

where X9 and Y9 are the matrices with the correction coefficients of the MTRL calibration using the
whole nine-lines set, while X4 and Y4 are the same matrices when the subset of four lines is used.

The differences of using four or nine lines are greater than those given by the choice of the calibration
method as the reader can verify through the comparison of Figs. 6 and 10. Therefore, it can be
concluded that the choice of the algorithm, classical or CPD, is of less relevance when only the results
of the calibration are considered.

Focusing again on the most sensitive parameter, Fig. 11 shows the attenuation constant obtained
with subsets of different number of lines. It should be highlighted that the more lines used, the less
variability there is in the measurement. Figs. 11 and 12 compare the results for the effective relative
permittivity and for the calibrate reflection coefficient of the reflect, respectively. In this particular case
there seems to be virtually no difference in calibration accuracy when six or more lines are used.



14 Buesa-Zubiria and Esteban

0 5 10 15 20 25

0

2

4

6

8

10

12

14

16

18

20
4 lines

5 lines

6 lines

9 lines

0 5 10 15 20 25

2.65

2.7

2.75

2.8

2.85

2.9

Figure 11. Attenuation constant and effective relative permittivity obtained by the tensor-based
MTRL approach, with different number of lines, using the measured calibration kit.
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Figure 12. Calibrated reflection coefficient of the reflect obtained by the tensor-based MTRL approach,
with different number of lines, using the measured calibration kit.

5. CONCLUSIONS

Through the rigorous completion of the MTRL calibration technique by tensor decomposition, it
has been confirmed that both the classical and the tensor-based MTRL algorithm are essentially
identical when considering a zero-mean i.i.d. complex circularly symmetric Gaussian noise as the only
perturbation. When considering other types of noise and correlations (as in measurements) then the
algorithms diverge, not being possible to decide which of them is more accurate, since there is no optimal
estimator to check with. However, there are some spikes in the resolution of the eigenvalue problem
by means of the classical implementation, which the CPD avoids. Nonetheless, it has been shown that
the differences between the calibration coefficients of the two methods are negligible compared to the
differences that arise from the selection of the number of lines involved in the calibration.

Additionally, a major difference in their implementations must be highlighted. The classical
method, relying on an eigenvalue decomposition, always has an exact solution, regardless of the nature
of the error affecting the standards, which is not the case with CPD. The CPD must find the error
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matrices that fit the measurements of all lines simultaneously. This process can be tedious for a large
number of lines, and there is no exact solution when the noise is considered. The computation time
required by the CPD should certainly be reduced by using a more complex and efficient algorithm than
those used throughout this study (mainly the trilinear alternating least square algorithm). This would
make the tensor-based calibration method an attractive alternative for the implementation of multi-line
TRL calibration.
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