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Abstract

Background: Genetic alterations of somatic cells can drive non-malignant clone
formation and promote cancer initiation. However, the link between these processes
remains unclear and hampers our understanding of tissue homeostasis and cancer
development.

Results: Here, we collect a literature-based repertoire of 3355 well-known or
predicted drivers of cancer and non-cancer somatic evolution in 122 cancer types
and 12 non-cancer tissues. Mapping the alterations of these genes in 7953 pan-
cancer samples reveals that, despite the large size, the known compendium of
drivers is still incomplete and biased towards frequently occurring coding mutations.
High overlap exists between drivers of cancer and non-cancer somatic evolution,
although significant differences emerge in their recurrence. We confirm and expand
the unique properties of drivers and identify a core of evolutionarily conserved and
essential genes whose germline variation is strongly counter-selected. Somatic
alteration in even one of these genes is sufficient to drive clonal expansion but not
malignant transformation.

Conclusions: Our study offers a comprehensive overview of our current
understanding of the genetic events initiating clone expansion and cancer revealing
significant gaps and biases that still need to be addressed. The compendium of
cancer and non-cancer somatic drivers, their literature support, and properties are
accessible in the Network of Cancer Genes and Healthy Drivers resource at http://
www.network-cancer-genes.org/.
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Background
Genetic alterations conferring selective advantages to cancer cells are the main drivers

of cancer evolution and hunting for them has been at the core of international cancer

genomic efforts [1–3]. Given the instability of the cancer genome, distinguishing driver

alterations from the rest relies on analytical approaches that identify genes altered more

frequently than expected or quantify the positive selection acting on them [4–6]. The

results of these analyses have greatly expanded our understanding of the mechanisms

driving cancer evolution, revealing high heterogeneity across and within cancers [7–9].

Recently, deep sequencing screens of non-cancer tissues have started to map posi-

tively selected genetic mutations in somatic cells that drive in situ formation of pheno-

typically normal clones [10, 11]. Many of these mutations hit cancer drivers, sometimes

at a frequency higher than the corresponding cancer [12–16]. Yet, they do not drive

malignant transformation. This conundrum poses fundamental questions on how gen-

etic drivers of normal somatic evolution are related to and differ from those of cancer

evolution. Addressing these questions will clarify the genetic relationship between

tissue homeostasis and cancer initiation, with profound implications for cancer early

detection.

To assess the extent of the current knowledge on cancer and non-cancer drivers, we

undertook a systematic review of the literature and assembled a comprehensive reper-

toire of genes whose somatic alterations have been reported to drive cancer or non-

cancer evolution. This allowed us to compare the current driver repertoire across and

within cancer and non-cancer tissues and map their alterations in the large pancancer

collection of samples from The Cancer Genome Atlas (TCGA). This revealed signifi-

cant gaps and biases in our current knowledge of the driver landscape. We also com-

puted an array of systems-level properties across driver groups, confirming the unique

evolutionary path of driver genes and their central role in the cell.

We collected all cancer and non-cancer driver genes, together with a large set of their

properties, in the Network of Cancer Genes and Healthy Drivers (NCGHD) open-access

resource.

Results
More than 3300 genes are canonical or candidate drivers of cancer and non-cancer

somatic evolution

We conducted a census of currently known drivers through a comprehensive literature

review of 331 scientific articles published between 2008 and 2020 describing somatic-

ally altered genes with a proven or predicted role in cancer or non-cancer somatic evo-

lution (Fig. 1a). These publications included three sources of experimentally validated

(canonical) cancer drivers, 311 sequencing screens of cancer (293) and non-cancer (18)

tissues, and 17 pancancer studies (Additional file 1, Table S1). Each paper was assessed

by at least two independent experts (Additional file 2, Fig. S1A-C) returning a total of

3355 drivers, 3347 in 122 cancer types and 95 in 12 non-cancer tissues, respectively

(Fig. 1a). We further computed the systems-level properties of drivers and annotated

their function, somatic variation, and drug interactions (Fig. 1a).

We reviewed the three sources of canonical cancer drivers [17–19] to exclude false

positives (Additional file 3, Table S2) and fusion genes whose properties could not be
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mapped. Only 11% of the resulting 591 canonical drivers (Additional file 4, Table S3)

were common to all three sources (Fig. 1b), indicating poor consensus even in well-

known cancer genes. We further annotated the genetic mode of action for > 86% of ca-

nonical drivers, finding comparable proportions of oncogenes or tumor suppressors

(Fig. 1c). The rest had a dual role or could not be univocally classified.

We extracted additional cancer drivers from the curation of 310 sequencing screens

that applied a variety of statistical approaches (Additional file 2, Fig. S1 D) to identify

cancer drivers among all altered genes. After removing possible false positives (Add-

itional file 3, Table S2), the final list included 3177 cancer drivers, 2756 of which relied

only on statistical support (candidate cancer drivers) and 421 were canonical drivers

(Fig. 1d, Additional file 4, Table S3). Therefore, 170 canonical drivers have never been

detected by any method, suggesting that they may elicit their role through non-

mutational mechanisms or may fall below the detection limits of current approaches.

Given the prevalence of cancer coding screens (Fig. 1a), only coding driver alterations

have been reported for most genes (Fig. 1e) while 16% of them (531) were identified as

drivers uniquely in non-coding screens. Since the prediction of drivers with non-coding

Fig. 1 Collection of a comprehensive repertoire of cancer and healthy drivers. a Literature review and driver
annotation workflow. Expert literature curation of 331 publications led to a repertoire of cancer and healthy
drivers in a variety of cancer and non-cancer tissues. Combining multiple data sources, a set of properties and
annotations was computed for all these drivers. b Intersection of canonical drivers from three sources [17–19]
that passed our manual curation. c Classification of canonical cancer drivers in tumor suppressors and
oncogenes. Eighty-one cancer drivers had a dual role or could not be classified. d Intersection of canonical and
candidate driver genes from 310 sequencing screens. Genes whose driver role had only statistical support were
considered candidate cancer drivers. e Intersection between cancer drivers with coding and non-coding
alterations. f Level of support for the driver role of 531 cancer genes with non-coding driver alterations only.
Level 1 means that the gene was predicted as a driver only in one cancer sequencing screen; levels 2, 3, and 4
mean that it was predicted by two, three, or four screens or that it had experimental support. Experimental
support was gathered from the 19 publications reporting non-coding cancer drivers (Additional file 1, Table S1)
and from the CNCDatabase [20] and included in vitro and in vivo experiments, modification of gene
expression, and survival association. g Proportion of healthy drivers that are also canonical or candidate cancer
drivers, classified as canonical and candidate healthy drivers, respectively
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alterations remains challenging, we further investigated the type of support that these

genes had for their driver activity. The overwhelming majority of them (467 genes,

87%) have been predicted as drivers in only one screen. The remaining 64 genes are ca-

nonical drivers, have been predicted as drivers in multiple screens, or have additional

experimental support for their driver activity (Fig. 1f).

Applying a similar approach (Additional file 2, Fig. S1 A-C), we reviewed 18 sequen-

cing screens of healthy or diseased (non-cancer) tissues. They collectively reported 95

genes whose somatic alterations could drive non-malignant clone formation (healthy

drivers). Interestingly, only eight of them were not cancer drivers (Fig. 1g, Add-

itional file 4, Table S3), suggesting a high overlap between genetic drivers of cancer and

non-cancer evolution. However, since many non-cancer screens only re-sequenced can-

cer genes or applied methods developed for cancer genomics (Additional file 2, Fig.

S1E), this overlap may be overestimated.

The ability to capture cancer but not healthy driver heterogeneity increases with the

donor sample size

To compare cancer and healthy drivers across and within tissues, we grouped the 122

cancer types and 12 non-cancer tissues into 12 and seven organ systems, respectively

(the “Methods” section).

Despite the high numbers of sequenced samples (Additional file 5, Table S4) and de-

tected drivers (Fig. 1), several lines of evidence indicated that our knowledge of cancer

drivers is still incomplete. First, we detected a strong positive correlation between can-

cer drivers and donors overall (Fig. 2a) and in individual organ systems (Additional file

2, Fig. S2). This suggests that the current ability to identify new drivers depends on the

number of samples included in the analysis. Second, candidates outnumbered canonical

drivers in all organ systems except those with a small sample size or low mutation rate

such as pediatric cancers, where only the most recurrent canonical drivers could be

identified (Fig. 2b). Third, large donor cohorts enabled the detection of a broader repre-

sentation of canonical drivers than small cohorts (Fig. 2c). For example, pooling thou-

sands of samples together led to > 60% of canonical drivers being detected in adult

pancancer re-analyses. Therefore, the size of the cohort influences the level of com-

pleteness and heterogeneity of the cancer driver repertoire. This is not surprising since

all current approaches act at the cohort level, searching for positively selected genes al-

tered more frequently than expected (Additional file2, Fig. S1D).

Our analysis also showed that the contribution of non-coding driver alterations re-

mains largely unappreciated and non-coding drivers have not yet been reported in sev-

eral tumors, including all pediatric cancers (Fig. 2d). Owing to the re-analysis of large

whole-genome collections [21–26], almost 40% of adult pancancer drivers were instead

modified by non-coding alterations (Fig. 2d). Hematologic and skin tumors also had a

high proportion of non-coding driver variants thanks to screens focused on non-coding

mutations [27, 28]. Therefore, the re-analysis of already available whole-genome data

and further sequencing screens of non-coding variants are needed to fully appreciate

their driver contribution.

Compared to cancer, sequencing screens of non-cancer tissues are still in their in-

fancy, as reflected by the lower numbers of screened tissues and detected drivers
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Fig. 2 Distribution of driver annotations by organ system. a Correlation between numbers of sequenced donors
and identified cancer drivers across organ systems. Spearman correlation coefficient R and associated p-value are
shown. b Number of canonical, candidate, and healthy drivers in each organ system. Horizontal lines indicate the
median number of canonical (92), candidate (160), and healthy (17) drivers across organ systems. c Proportion of
canonical drivers detected in each organ system over canonical drivers detected in all cancer screens (421). The
horizontal line indicates the median across all organ systems (22%). d Proportion of genes with non-coding driver
alterations over all cancer drivers in each organ system. The horizontal line indicates the median across all organ
systems (4%). Number of canonical (e), candidate (f), and healthy (g) drivers across screens and organ systems.
Representative genes with different recurrence between cancer and healthy tissues are indicated. h Organ system
distribution of the top eight recurrent healthy drivers. The full list is provided as Additional file 6, Table S5. i
Correlation between numbers of sequenced donors and identified healthy drivers across organ systems. Spearman
correlation coefficient R and associated p-value are shown
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(Fig. 2b). Despite this, some similarities and differences with cancer drivers could

already be observed. Like cancer drivers (Fig. 2e, f, Additional file 6, Table S5), also

healthy drivers were mostly organ-specific (Fig. 2g) and the most recurrent healthy

drivers were also cancer drivers in the same organ system (Fig. 2h, Additional file 6,

Table S5). However, some recurrent cancer drivers (KRAS, PI3KCA, NRAS, NF1) were

reported to drive non-cancer clonal expansion only in one or two organ systems

(Fig. 2g). Therefore, differences start to emerge at the tissue level between drivers of

cancer and non-cancer evolution. Moreover, unlike cancer drivers, no correlation

existed between the numbers of drivers and donors (Fig. 2i). This is likely affected by

the lower number of non-cancer sequencing studies available so far. If additional stud-

ies will confirm the absence of correlation, this may indicate that the healthy driver rep-

ertoire is easier to saturate since fewer drivers are needed to initiate and sustain non-

cancer clonal expansion [10, 11].

Alteration pattern hints at driver mode of action and confirms the incompleteness of the

driver repertoire

To gain further insights into their mode of action, we mapped the type of alterations

acquired by cancer and healthy drivers in 34 cancer types from TCGA. After predicting

the damaging alterations in 7953 TCGA samples with matched mutation, copy number,

and gene expression data (the “Methods” section), we identified the drivers with loss-

of-function (LoF) and gain-of-function (GoF) alterations in these samples, respectively

(Fig. 3a).

The comparison between canonical cancer drivers detected and undetected in se-

quencing screens (Fig. 1d) revealed that the latter were damaged in a significantly lower

number of samples, due to fewer LoF alterations (Fig. 3b, Additional file 2, Fig. S3A).

GoF alterations were instead comparable between the two groups, suggesting that

current driver detection methods fail to identify drivers that undergo copy number

gains but are rarely mutated.

We confirmed that the driver alteration patterns reflected their mode of action, with

canonical tumor suppressors and oncogenes showing a prevalence of LoF and GoF al-

terations, respectively (Fig. 3c). Canonical drivers with a dual role resembled the alter-

ation pattern of oncogenes while those still unclassified had a prevalence of LoF

alterations, suggesting a putative tumor suppressor role (Fig. 3c). While all frequently

altered (> 500 samples) oncogenes were overwhelmingly modified by GoF alterations

(Additional file 7, Table S6), 16 of the 22 most frequently altered tumor suppressors

had a prevalence of GoF alterations (Fig. 3d). In the majority of cases, this was due to

different alteration patterns across organ systems (Additional file 2, Fig. S3B), and a

possible oncogenic role has been documented for some others [29–38].

Since candidate drivers had no annotation of their mode of action, we reasoned that

their alteration pattern could hint at their role as tumor suppressors or oncogenes. Ac-

cording to their prevalent pancancer alterations, 1318 candidates could be classified as

putative tumor suppressors and 1405 as putative oncogenes (Additional file 7, Table

S6). Interestingly, while candidates with predicted coding driver alterations showed

similar distributions of LoF and GoF alterations (Fig. 3e), those with only non-coding

driver alterations had a significantly lower occurrence of LoF alterations (Fig. 3f,
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Fig. 3 (See legend on next page.)
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Additional file 2, Fig. S3C). This may suggest an activating role for their non-coding al-

terations too. Almost all candidates damaged in ≥ 500 samples (111/115) were putative

oncogenes (Fig. 3e, Additional file 7, Table S6). Of the four putative tumor suppressors,

CSMD3 has a disputed cancer role [39–41] and a likely inflated mutation rate [42],

while CDKN2B cooperates with its paralog CDKN2A to inhibit cell cycle [43], support-

ing its tumor suppressor role.

The number of damaged cancer drivers in individual TCGA samples confirmed that,

despite all efforts, the current driver repertoire is still largely incomplete. The large ma-

jority of samples (71% and 87%, considering all drivers or only canonical drivers, re-

spectively) had less than five damaged drivers, and ~ 15% of them had no damaged

driver (Fig. 3g).

Given their high overlap with cancer drivers, most healthy drivers were recurrently

damaged in cancer samples with no prevalence of GoF or LoF alterations (Fig. 3h, Add-

itional file 7, Table S6). Interestingly, all healthy drivers, even the eight with no cancer

involvement, were damaged in significantly more cancer samples than the rest of hu-

man genes (Fig. 3i). Moreover, 57% of TCGA samples had at least two altered drivers,

one of which was a healthy driver, further supporting the hypothesis that more than

one driver may be needed to promote the transformation of non-malignant clones into

cancer [10, 11].

Properties of cancer and healthy drivers support their central role in the cell

A substantial body of work including our own [44–53] has shown that cancer drivers

differ from the rest of the genes for an array of systems-level properties (Fig. 1a) that

are a consequence of their unique evolutionary path and role in the cell. Using our

granular annotation of drivers, we set out to check for similarities and differences

across the driver groups.

We confirmed that cancer drivers, and in particular canonical drivers, were more

conserved throughout evolution and less likely to retain gene duplicates than other hu-

man genes (Fig. 4a, Additional file 8, Table S7). They also showed broader tissue ex-

pression, engaged in a larger number of protein complexes, and occupied more central

and highly connected positions in the protein-protein and miRNA-gene networks

(Fig. 4a). We reported substantial differences between tumor suppressors and

(See figure on previous page.)
Fig. 3 Damaging alteration pattern of drivers in TCGA. a Identification of damaged drivers in 7953 TCGA
samples. Mutations, gene deletions, and amplifications were annotated according to their predicted
damaging effect. This allowed to distinguish drivers acquiring loss-of-function (LoF) or gain-of-function
(GoF) alterations. b Number of TCGA samples with damaging alterations (all, LoF, GoF) in canonical drivers
that were detected (421) or undetected (170) by cancer driver detection methods. c Proportion of TCGA
samples with GoF and LoF alterations in tumor suppressors, oncogenes, and canonical drivers with a dual
or unclassified role. Proportion of TCGA samples with GoF and LoF alterations in (d) canonical drivers and
(e) candidate drivers. Genes mentioned in the text are highlighted. The two-dimensional Gaussian kernel
density estimations were calculated for each driver group using the R density function. f Number of TCGA
samples with damaging alterations (all, LoF, GoF) in drivers previously reported in coding and non-coding
sequences. g Proportion of samples with variable numbers of all damaged drivers or only canonical drivers.
h Proportion of TCGA samples with GoF and LoF alterations in healthy drivers. Canonical and candidate
healthy drivers correspond to genes with a known or predicted cancer driver role. i Number of TCGA
samples with damaged canonical, candidate, and remaining healthy drivers and the rest of human genes.
All distributions were compared using a two-sided Wilcoxon rank-sum test
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Fig. 4 (See legend on next page.)
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oncogenes, with the former enriched in old and single-copy genes showing broader tis-

sue expression (Fig. 4b, Additional file 8, Table S7).

We further expanded the systems-level properties of cancer drivers by exploring their

tolerance towards germline variation, because this may indicate their essentiality. Using

germline data from healthy individuals [54], we compared the loss-of-function ob-

served/expected upper bound fraction (LOEUF) score, which quantifies selection to-

wards LoF variation [54] as well as the number of damaging mutations and structural

variants (SVs) per coding base pairs (bp) between drivers and the rest of genes (the

“Methods” section). Cancer drivers, and in particular canonical drivers, had a signifi-

cantly lower LOEUF score and retained fewer damaging germline mutations and SVs

than the rest of the genes (Fig. 4a). This indicates that they are indispensable for cell

survival in the germline. Selection against harmful variation was stronger in tumor sup-

pressors than oncogenes (Fig. 4b). This was supported by a significantly higher propor-

tion of cell lines where cancer drivers, and in particular tumor suppressors, were

essential (Fig. 4a, b), as gathered from the integration of nine genome-wide essentiality

screens [55–63] (the “Methods” section).

Genes with non-coding driver alterations had weaker systems-level properties than

those with coding alterations (Fig. 4c, Additional file 8, Table S7) and the subset of

them with > 50% GoF alterations resembled the property profile of oncogenes when

compared to tumor suppressors (Fig. 4d, Additional file 8, Table S7). In general, all

candidate drivers with a prevalence of GoF were similar to oncogenes, showing a higher

proportion of duplicated genes, narrower tissue expression, and higher tolerance to

germline variation than tumor suppressors (Fig. 4e, Additional file 8, Table S7). Con-

versely, candidate drivers with a prevalence of LoF were older, less duplicated, and less

tolerant to germline variation than oncogenes (Fig. 4f, Additional file 8, Table S7).

Systems-level properties of healthy drivers varied according to the overlap with can-

cer drivers (Fig. 4g, Additional file 8, Table S7). Intriguingly, canonical healthy drivers

showed stronger systems-level properties than any other group of drivers. In particular,

they were enriched in evolutionarily conserved and broadly expressed genes encoding

highly inter-connected proteins are regulated by many miRNAs. Moreover, these genes

showed a strong selection against germline variation and high enrichment in essential

genes (Fig. 4g). They therefore represent a core of genes with a very central role in the

cell, whose modifications are not tolerated in the germline but are selected for in

(See figure on previous page.)
Fig. 4 Systems-level properties of cancer and healthy drivers. Comparisons of systems-level properties
between (a) canonical or candidate cancer drivers and the rest of human genes, (b) tumor suppressors and
oncogenes, and (c) cancer genes with coding driver alterations and cancer genes with non-coding driver
alterations. The normalized property score was calculated as the normalized difference between the median
(continuous properties) or proportion (categorical properties) values in each driver group and the rest of
human genes (the “Methods” section). Comparisons of systems-level properties between (d) candidate
oncogenes with non-coding driver alterations (324) and canonical tumor suppressors, (e) candidate
oncogenes (1405) and canonical tumor suppressors, and (f) candidate tumor suppressors (1318) and
canonical oncogenes. g. Comparisons of systems-level properties between canonical healthy, candidate
healthy, and remaining healthy drivers and the rest of human genes. Proportions of old (pre-metazoan),
duplicated, essential genes, and proteins involved in the complexes were compared using a two-sided
Fisher’s exact test. Distributions of gene and protein expression, protein-protein, miRNA-gene interactions,
and germline variation were compared using a two-sided Wilcoxon rank-sum test. False discovery rate
(FDR) was corrected for using Benjamini-Hochberg
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somatic cells because they confer selective growth advantages. Candidate healthy

drivers and those not involved in cancer had a substantially different property profile

(Fig. 4g). Although numbers are too low for any robust conclusion, it is tempting to

speculate that genes able to initiate non-cancer clonal expansion but not tumorigenesis

may follow a different evolutionary path.

The Network of Cancer Genes: an open-access repository of annotated drivers

We collected the whole repertoire of 3347 cancer and 95 healthy drivers, their literature

support, and properties in the seventh release of the Network of Cancer Genes and

Healthy Drivers (NCGHD) database. NCGHD is accessible through an open-access portal

that enables interactive queries of drivers (Fig. 5a) as well as the bulk download of the

database content.

In addition to the known or predicted mode of action and systems-level properties of

cancer and healthy drivers, NCGHD 7.0 also annotates their function, alteration pattern,

and gene expression profile in TCGA and cancer cell lines, reported interactions with

antineoplastic drugs, and potential role as treatment biomarkers (Fig. 5b). Altogether,

this constitutes an extensive compendium of annotation of driver genes, including in-

formation relevant for planning experiments involving them.

Functional gene set enrichment analysis showed that at least 60% of enriched path-

ways (FDR < 0.05) in any driver group converge to five broad functional processes (sig-

nal transduction, gene expression, immune system, cell cycle, and DNA repair, Fig. 5b,

Additional file 9, Table S8). Within these, tumor suppressors showed a prevalence in

cell cycle and DNA repair pathways, while oncogenes were enriched in the gene expres-

sion and immune system-related pathways (Additional file 9, Table S8). Healthy drivers

closely resembled the functional profile of cancer drivers, given the high overlap

(Fig. 5b). Because of the low number, it was not possible to assess the functional en-

richment of healthy drivers not involved in cancer.

More than 9% of canonical cancer drivers are targets of anti-cancer drugs and cancer

drivers constitute around 40% of their targets (Fig. 5c). Moreover, most of the genes

used as biomarkers of resistance or response to treatment in cell lines (Fig. 5d) or clin-

ical trials (Fig. 5e) are cancer drivers, with an overwhelming prevalence of canonical

cancer drivers.

Discussion
The wealth of cancer genomic data and the availability of increasingly sophisticated

analytical approaches for their interpretation have substantially improved the under-

standing of how cancer starts and develops. However, our in-depth analysis of the vast

repertoire of drivers that have been collected so far shows clear limits in the current

knowledge of the driver landscape.

The identification of drivers as genes under positive selection or with a higher than

expected mutation frequency within a cohort of patients has biased the current cancer

driver repertoire towards genes whose coding point mutations or small indels fre-

quently recur across patients. This strongly impairs the ability to map the full extent of

driver heterogeneity leading to an underappreciation of the driver contribution of rarely

altered genes and those modified through non-coding or gene copy number alterations,
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particularly amplifications. It also results in a sizeable fraction of samples with very few

or no cancer drivers. This gap can be solved by complementing cohort-level approaches

with methods that account for all types of alterations and predict drivers in individual

samples, for example identifying their network deregulations [64–66] or applying ma-

chine learning to identify driver alterations [67]. Alternatively, we have shown that

Fig. 5 NCGHD annotations of driver genes. a Example of the type of annotation provided in NCGHD for cancer
and healthy drivers (in this case PTEN). Annotation boxes can be expanded for further details, with the
possibility of intersecting data interactively (for example, in the case of protein-protein or miRNA-gene
interactions) and downloading data for local use. b Proportion of Reactome levels 2–8 enriched pathways
mapping to the respective level 1 in each driver group. Enrichment was measured comparing the proportion
of drivers in each pathway to that of the rest of human genes with a one-sided Fisher’s exact test. FDR was
calculated using Benjamini-Hochberg. The numbers of drivers and enriched Reactome pathways are reported
for each group. Proportion of canonical and candidate cancer divers and rest of genes that are (c) targets of
FDA-approved antineoplastic drugs or biomarkers of response or resistance to oncological drugs in (d) cancer
cell lines and (e) clinical studies. The corresponding numbers for each group are also shown
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systems-level properties capture the main features of cancer drivers, justifying their use

for patient-level driver detection [68, 69].

Our comprehensive study has also shown that cancer sequencing screens have so far

mostly focused on resequencing and analyzing the protein-coding portion of cancer ge-

nomes, leaving the contribution of non-coding drivers mostly uncovered. This bias may

be addressed by performing additional cancer whole genome sequencing screens and

improving analytical methods for the prediction of non-coding driver alterations.

Biases are starting to emerge also in the knowledge of healthy drivers. Many non-

cancer sequencing screens only targeted cancer genes and healthy driver detection

methods used so far were originally developed for cancer genomics. Both these factors

may contribute at least in part to explain the high overlap between drivers of cancer

and non-cancer evolution. An unbiased investigation of altered genes able to promote

clonal expansion but not tumorigenesis could confirm whether their properties are in-

deed different from cancer drivers as suggested by our initial analysis on the few of

them that have been identified so far. Additionally, the investigation of somatically mu-

tated clones in non-cancer tissues has just started and new screens are continuously

published. The integrated analysis of these new studies will broaden our understanding

of non-cancer clonal expansion and further clarify its relationship with cancer

transformation.

Our literature review did not cover driver genes deriving from chromosomal rear-

rangements or epigenetic changes because of their scattered annotations in the litera-

ture and difficulty in mapping their properties. Adding these genes to the repertoire

when their knowledge will be mature will help close the gaps in the knowledge of the

genetic drivers of tumorigenesis.

Conclusions
Our comprehensive analysis of cancer sequencing screens showed that the current rep-

ertoire of cancer driver genes is still incomplete and biased towards frequent mutations

altering the gene coding sequence. This calls for the need for additional screens and

methods to identify further coding and non-coding cancer drivers at single patient

resolution. We confirmed the central role of cancer drivers within the cell, which is

reflected in their evolutionary path and is shared by the majority of known healthy

drivers. Further sequencing screens of healthy tissues are needed to clarify whether this

is a feature of all genes whose mutations can driver non-cancer clonal expansion or

there is a group of healthy drivers that underwent a different evolutionary path.

Methods
Literature curation

A literature search was carried out in PubMed, TCGA (https://www.cancer.gov/tcga)

and ICGC (https://dcc.icgc.org/) to retrieve cancer screens published between 2018 and

2020 (Additional file 2, Fig. S1A). This resulted in 135 coding and 154 non-coding can-

cer screens. Of these, only 80 and 37 were retained after examining abstracts and full

text, respectively. Criteria for removal were the absence of driver genes or driver detec-

tion methods and the impossibility to map non-coding driver alterations to genes. The

37 new cancer screens were added to 273 publications previously curated by our team
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[70], totaling 310 publications (Additional file 1, Table S1). A similar literature search

retrieved 24 sequencing screens of non-cancer tissues publications, 18 of which were

retained after the abstract and full-text examination (Additional file 2, Fig. S1A; Add-

itional file 1, Table S1). Each paper was reviewed independently by two experts and fur-

ther discussed if annotations differed to extract the list of driver genes, the number of

donors, the type of screen (whole-genome, whole-exome, target gene re-sequencing),

the cancer or non-cancer tissues, and the driver detection method (Additional file

2, Fig. S1B).

Canonical cancer drivers were extracted from two publications [17, 18] and the

Cancer Gene Census [71] v.91. In the latter case, all tiers 1 and 2 genes were retained,

except those from genomic rearrangements leading to gene fusion (Additional file

2, Fig. S1B). Collected genes were further classified as tumor suppressor, oncogene, or

having a dual role according to the annotation in the majority of sources. Genes with

conflicting or unavailable annotation were left unclassified.

Drivers from cancer screens and canonical sources underwent further filtering (Add-

itional file 2, Fig. S1C). First, they were intersected with a list of 148 possible false posi-

tives [18, 42]. After a manual check of the supporting evidence, two drivers were

retained as canonical, five were considered as candidates, and 41 were removed (Add-

itional file 3, Table S2). The three resulting lists (canonical drivers, drivers from cancer

screens, and healthy drivers) were intersected to annotate canonical drivers in cancer

screens, remaining drivers in cancer screens (candidate cancer drivers), canonical

healthy drivers, candidate healthy drivers, and remaining healthy drivers (Additional file

2, Fig. S1C; Additional file 4, Table S3).

Cancer types and non-cancer tissues were mapped to organ systems using previous

classification [72]. Cancer types not included in this classification were mapped based

on their histopathology (retinoblastoma to central nervous system, vascular and periph-

eral nervous system cancers to soft tissue, penile tumors to urologic system).

Pancancer TCGA data

A dataset of 7953 TCGA samples with quality-controlled mutation (SNVs and indels),

copy number, and gene expression data in 34 cancer types was assembled from the

Genomic Data Commons portal I [73] (https://portal.gdc.cancer.gov/). Mutations were

annotated with ANNOVAR [74] (April 2018) and dbNSFP [75] v3.0 and only those

identified as exonic or splicing were retained. Damaging mutations included (1) trun-

cating (stopgain, stoploss, frameshift) mutations, (2) missense mutations predicted by

at least seven out of 10 predictors (SIFT [76], PolyPhen-2 HDIV [77], PolyPhen-2

HVAR, MutationTaster [78], MutationAssessor [79], LRT [80], FATHMM [81], PhyloP

[82], GERP++RS [83], and SiPhy [84]), (3) splicing mutations predicted by at least one

of two splicing-specific methods (ADA [75] and RF [75]), and (4) hotspot mutations

identified with OncodriveCLUST [85] v1.0.0.

Copy number variant (CNV) segments, sample ploidy, and sample purity values were

obtained from TCGA SNP arrays using ASCAT [86] v.2.5.2. Segments were intersected

with the exonic coordinates of 19,756 human genes in hg19 and genes were considered

to have CNV if at least 25% of their transcribed length was covered by a CNV segment.

RNA-Seq data were used to filter out false-positive CNVs. Putative gene gains were
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defined as copy number (CN) > 2 times sample ploidy and the levels of expression were

compared between samples with and without each gene gain using a two-sided Wil-

coxon rank-sum test and corrected for multiple testing using Benjamini-Hochberg.

Only gene gains with a false discovery rate (FDR) < 0.05 were retained. Homozygous

gene losses had CN = 0 and fragments per kilobase per million (FPKM) values < 1 over

sample purity. Heterozygous gene losses had CN = 1 or CN = 0 but FPKM values > 1

over sample purity. This resulted in 2,192,832 redundant genes damaged in 7921

TCGA samples.

In total, 518,115 genes were considered to acquire LoF alterations because they

underwent homozygous deletion or had truncating, missense damaging, splicing muta-

tions, or double hits (CN = 1 and LoF damaging mutation), while 1,674,717 genes were

considered to acquire GoF alterations because they had a hotspot mutation or under-

went gene gain with increased expression (Fig. 3a).

Systems-level properties

Protein sequences from RefSeq [87] v.99 were aligned to hg38 using BLAT [88]. Unique gen-

omic loci were identified for 19,756 genes based on gene coverage, span, score, and identity

[89]. Genes sharing at least 60% of their protein sequence were considered as duplicates [46].

Evolutionary conservation was assessed for 18,922 human genes using their orthologs

in EggNOG [90] v.5.0. Genes were considered to have a pre-metazoan origin (and

therefore conserved in evolution) if they had orthologs in prokaryotes, eukaryotes, or

opisthokonts [53].

Gene expression for 19,231 genes in 49 healthy tissues was derived from the

union of Protein Atlas [91] v.19.3 and GTEx [92] v.8. Genes were considered to be

expressed in a tissue if their expression value was ≥ 1 transcript per million

(TPM). Protein expression for 13,229 proteins in 45 healthy tissues was derived

from Protein Atlas [91] v.19.3 retaining the highest value when multiple expression

values were available.

A total of 542,397 non-redundant binary interactions between 17,883 proteins were

gathered from the integration of five sources (BioGRID [93] v.3.5.185, IntAct [94]

v.4.2.14, DIP [95] (February 2018), HPRD [96] v.9 and Bioplex [97] v.3.0). Data on 9476

protein complexes involving 8504 proteins were derived from CORUM [98] v.3.0,

HPRD [96] v.9 and Reactome [99] v.72. Experimentally supported interactions between

14,747 genes and 1758 miRNAs were acquired from miRTarBase [100] v.8.0 and miRe-

cords [101] v.4.0. Degree, betweenness, and clustering coefficient were calculated for

protein and miRNA networks using the igraph R package [102] v.1.2.6.

The loss-of-function observed/expected upper bound fraction (LOEUF) score for

18,392 genes was obtained from gnomAD [54] v.2.1.1. Germline mutations (SNVs

and indels) were obtained from the union of 2504 samples from the 1000 Genomes

Project Phase 3 [103] v.5a and 125,748 samples from gnomAD [54] v.2.1.1. Muta-

tions were annotated with ANNOVAR [74] (October 2019), and 18,812 genes were

considered as damaged using the same definitions as for TCGA samples. A total of

32,558 germline SVs for 14,158 genes were derived using 15,708 samples from gno-

mAD [54] v.2.1.1. The numbers of damaging mutations and SVs per base pairs

(bp) were calculated for each gene.
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Essentiality data for 19,013 genes in 1122 cell lines were obtained integrating three

RNAi knockdown and six CRISPR Cas9 knockout screens [55–63]. Genes with CERES

[57] or DEMETER [63] scores < − 1 or Bayes score [104] > 5 were considered as

essential.

Proportions of duplicated, pre-metazoan, essential genes, and proteins engaging in

complexes were compared between the gene groups using two-sided Fisher’s exact test.

Distributions of tissues where genes or proteins were expressed, protein and miRNA

network properties, LOEUF scores, damaging mutations, and SVs per bp were com-

pared between the gene groups using a two-sided Wilcoxon test. Multiple comparisons

within each property were corrected using Benjamini-Hochberg. For each systems-level

property in each driver group (d), a normalized property score was calculated as:

Normalised property score ¼ sgn Δdð Þ �
Δdj j− min

t
Δtj j

max
t

Δtj j− min
t

Δtj j

where t represents 11 gene groups (canonical drivers, candidate drivers, tumor sup-

pressors, oncogenes, drivers with coding alterations, drivers with non-coding alter-

ations, canonical healthy drivers, candidate healthy drivers, remaining healthy drivers,

and the rest of human genes); sgn(Δd) is the sign of the difference; and Δd indicates the

difference of medians (continuous properties) or proportions (categorical properties)

between each driver group and the rest of human genes. Minima and maxima were

taken over all 11 gene groups for each property.

Pancancer cell line data

Mutation, CNV and gene expression data for 1291 cell lines were obtained from Dep-

Map [56, 105] v. 20Q3. Mutations were functionally annotated using ANNOVAR [74]

and LoF mutations were identified as described for TCGA samples. Hotspot mutations

were detected using hotspot positions derived from TCGA. Homozygous gene deletions

were defined as CN < 0.25 times cell line ploidy and expression < 1 TPM; heterozygous

gene deletions were defined as 0.25 < CN < 0.75 times cell line ploidy; gene gains were

defined as CN > 2 times cell line ploidy and significantly higher expression relative to

cell lines with no gene gains. Genes with LoF or GoF alterations were defined as for

TCGA samples. To map cell lines to organ systems, they were first associated with the

TCGA cancer types and then the same classification as for TCGA was used [72].

Driver functional annotation

Gene functions were collected for 11,778 proteins from Reactome [99] v.72 and KEGG

[106] v.94.1 (levels 1 and 2). Driver enrichment in Reactome pathways (levels 2–8)

compared to the rest of human genes was assessed using a one-sided Fisher’s exact test

and corrected for multiple testing with Benjamini-Hochberg. Enriched pathways were

then mapped to the corresponding Reactome level 1.

Drug interactions

A total of 247 FDA-approved, antineoplastic, and immunomodulating drugs targeting

212 human genes were downloaded from DrugBank [107] v.5.1.8. Genetic biomarkers

of response and resistance to drugs in cancer cell lines were obtained from Genomics
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of Drug Sensitivity in Cancer (GDSC) [108] v.8.2. Of those, only 467 associations with

FDR ≤ 0.25 involving 129 drugs and 106 genes were retained. Genetic biomarkers of re-

sponse and resistance in clinical studies were obtained from the Variant Interpretation

for Cancer Consortium Meta-Knowledgebase [109] v.1. A total of 868 associations be-

tween drugs and genomic features involving 64 anti-cancer drugs and drug combina-

tions and 24 human genes were retained [109].

Database and website implementation

All annotations of driver genes were entered into a relational database based on

MySQL [110] v.8.0.21 connected to a web interface enabling interactive retrieval of in-

formation through gene identifiers. The frontend was developed with PHP [111]

v.7.4.15. The interactive displays of miRNA-gene and protein-protein interactions were

implemented with the R packages Shiny [112] v.1.6.0 and igraph [102] v.1.2.6 and ran

on Shiny Server v1.5.16.958.
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