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Lineage priming, cell fate specification and tissue patterning 
during early mammalian development are complex processes 
involving signals from surrounding tissues, mechanical con-

straints, and transcriptional and epigenetic changes, which together 
prompt the adoption of unique cell fates1–7. All these factors play 
key roles in gastrulation, the process by which the three germ lay-
ers emerge and the body axis is established. Subsequently, the germ 
layer progenitors, formed during gastrulation, will give rise to all 
major organs in a process known as organogenesis.

Recently, scRNA-seq and other single-cell genomic approaches 
have been used to investigate how the molecular landscape of cells 
within the mouse embryo changes during early development. These 
methods have provided insights into how symmetry breaking 
of the epiblast population leads to commitment to different fates 
as the embryo passes through gastrulation and on to organogen-
esis1–3,6–14. By computationally ordering cells through their differen-
tiation (‘pseudotime’), an understanding of the molecular changes 
that underpin cell-type development has been obtained, provid-
ing insight into the underlying regulatory mechanisms, includ-
ing the role of the epigenome. Recently, technological advances  
have enabled scRNA-seq to be performed alongside CRISPR–Cas9 

scarring, thus simultaneously documenting a cell’s molecular state 
and lineage. Such approaches have been applied to track zebraf-
ish development15–17 and more recently mouse embryogenesis9,18. 
Together, these experimental strategies have enhanced our under-
standing of developmental lineage relationships and the associated 
molecular changes.

However, to date, single-cell genomics studies of early mam-
malian development have focused on profiling dissociated popula-
tions of cells, where spatial information is lost. Although regions of 
the embryo have been microdissected and profiled using small cell 
number RNA-sequencing protocols, these approaches neither scale 
to later stages of development nor do they provide single-cell reso-
lution, which may be critical given the role of local environmen-
tal cues in conditioning cell fate and patterning8,13,19. By contrast, 
in situ hybridization, single-molecule RNA FISH (smFISH) and 
other related approaches allow gene expression levels to be mea-
sured within a defined spatial context. However, these approaches 
are typically limited to either quantifying expression patterns in 
broad domains20,21 or to studying a limited number of genes, thus 
precluding the generation of comprehensive cell resolution maps of 
expression across an entire embryo. Recent technological advances 
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Molecular profiling of single cells has advanced our knowledge of the molecular basis of development. However, current 
approaches mostly rely on dissociating cells from tissues, thereby losing the crucial spatial context of regulatory processes. 
Here, we apply an image-based single-cell transcriptomics method, sequential fluorescence in situ hybridization (seqFISH), to 
detect mRNAs for 387 target genes in tissue sections of mouse embryos at the 8–12 somite stage. By integrating spatial context 
and multiplexed transcriptional measurements with two single-cell transcriptome atlases, we characterize cell types across 
the embryo and demonstrate that spatially resolved expression of genes not profiled by seqFISH can be imputed. We use this 
high-resolution spatial map to characterize fundamental steps in the patterning of the midbrain–hindbrain boundary (MHB) 
and the developing gut tube. We uncover axes of cell differentiation that are not apparent from single-cell RNA-sequencing 
(scRNA-seq) data, such as early dorsal–ventral separation of esophageal and tracheal progenitor populations in the gut tube. 
Our method provides an approach for studying cell fate decisions in complex tissues and development.
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promise to overcome these limitations; approaches that exploit 
highly multiplexed RNA FISH22–27, that perform sequencing on 
intact tissues28–30, or that hybridize tissue sections to spatially bar-
coded microarrays31,32 promise to simultaneously profile the expres-
sion of hundreds or thousands of genes within single cells whose 
spatial location is preserved.

Here, using an existing scRNA-seq atlas covering stages of 
mouse development from gastrulation to early organogenesis6 
(‘Gastrulation atlas’), we designed probes against a panel of 387 
genes and spatially localized their expression in multiple embryo 
sections at the 8–12 somite stage (ss) using a version of the seq-
FISH method modified to allow highly effective cell segmentation. 
Assigning each cell in the seqFISH-profiled embryos a distinct 
cell-type identity revealed different patterns of colocalization of 
cells within and between cell types. Integrating scRNA-seq and 
seqFISH data enabled the genome-wide imputation of expression, 
thus generating a complete quantitative and spatially resolved map 
of gene expression at single-cell resolution across the entire embryo. 
To illustrate the power of this resource, we used these imputed 
data to perform a virtual dissection of the midbrain and hindbrain 
region of the embryo, uncovering spatially resolved patterns of 
expression associated with both the dorsal–ventral and rostral–cau-
dal axes. Finally, by integrating a second independent scRNA-seq 
dataset that characterized cell types within the developing gut tube2, 
we resolved the position of two clusters of cells that were both previ-
ously assigned a lung precursor identity using the scRNA-seq data2. 
Our spatial data revealed that these two clusters were exclusively 
located on either the dorsal or ventral side of the gut tube, with cor-
responding transcriptional differences indicating that the dorsal 
cells give rise to the esophagus, while the ventral cells give rise to 
the lung and trachea.

Results
Single-cell spatial expression of mouse organogenesis. We per-
formed seqFISH10,11 on sagittal sections from three mouse embryos 
at the 8–12 ss, corresponding to embryonic day (E)8.5–8.75  
(Fig. 1a–c). The sections analyzed were chosen to correspond as 
closely as possible to the midline of the embryo, albeit some varia-
tion along the left–right axis could be observed due to embryo 
tilt (Fig. 1b). Notably, we observed in embryo 2 considerable 
tilt of the tail region, suggesting depletion of mesodermal and 
tail-specific populations. In each section, we probed the expres-
sion of 351 barcoded genes specifically chosen to distinguish 
distinct cell types at these developmental stages (Extended Data  
Fig. 1 and Supplementary Tables 1 and 2). To do this, we exploited 
a recently published single-cell molecular map of mouse gastrula-
tion and early organogenesis6 and determined computationally a 
set of lowly expressed to moderately expressed genes that were best 

able to recover the cell-type identities (Methods and Extended Data  
Fig. 1). Lowly expressed to moderately expressed genes were selected 
because low overall expression of the library is needed to reduce the 
optical density of detected transcripts in a cell so that crowding does 
not prevent single mRNA spots from being resolved reliably.

To obtain a good signal-to-noise ratio for the mRNA spots, we 
performed tissue clearing to reduce the tissue background signal, 
as introduced before25,33. Briefly, the tissue sections were embedded 
into a hydrogel scaffold, RNA molecules were crosslinked into the 
hydrogel and lipid and protein were removed to achieve optimal 
tissue transparency for seqFISH (Methods). One consequence of 
depleting proteins is that delineating the cell membrane, and hence 
cell segmentation, becomes challenging. To address this, before tis-
sue embedding, we performed immunodetection for selected sur-
face antigens, pan-cadherin, N-cadherin, β-catenin and E-cadherin, 
which could in turn be recognized by a secondary antibody con-
jugated to a unique DNA sequence. We then hybridized a tertiary 
probe to the DNA sequence of the secondary antibody, which had 
a unique smFISH readout sequence and an acrydite group. The 
acrydite group becomes crosslinked into the hydrogel scaffold and 
remains in position, even after protein degradation34. The unique 
smFISH readout sequence can subsequently be hybridized with a 
readout probe conjugated to a fluorophore, allowing the cell mem-
brane to be visualized (Fig. 1d) and enabling segmentation using the 
interactive learning and cell segmentation tool Ilastik35. To validate 
this strategy, we applied it to a 10-µm thick transverse section of 
an E8.5 mouse embryo, which confirmed labeling of the cell mem-
brane (Fig. 1e and Extended Data Fig. 2). Before imaging samples 
for seqFISH, overall RNA integrity was examined by ensuring colo-
calization of two Eef2 probe sets, each detected by a unique readout 
probe conjugated to a different fluorophore (Extended Data Fig. 2 
and Supplementary Tables 1 and 3).

Following imaging, the resulting data were segmented as detailed 
above, and individual mRNA molecules were detected by decoding 
barcodes over the multiple rounds of imaging. To guarantee high 
sample quality, the first round of hybridization was repeated follow-
ing all intervening hybridization rounds, allowing for consistency 
of mRNA signal intensity to be assessed (Supplementary Fig. 1). In 
total, following cell-level quality control, we identified 57,536 cells 
across three embryos with a combined total of 11,004,298 individ-
ual mRNA molecules detected. In the embryo tissue sections, each 
cell contained an average of 196 ± 19.3 (mean ± s.e.) mRNA tran-
scripts from 93.2 ± 6.6 (mean ± s.e.) genes (Supplementary Fig. 2),  
corresponding to an average of 26.6% of all genes profiled. The 
set of genes expressed was not biased toward a specific germ layer, 
and an average of 21.0% ± 1.1% (mean ± s.e.) of genes most associ-
ated with a mesoderm identity in the E8.5 Gastrulation atlas was 
expressed per seqFISH cell, 25.9% ± 2.1% of genes were associated 

Fig. 1 | Single-cell spatial transcriptomics map of mouse organogenesis using seqFISH. a, Illustration of 8–12 ss mouse embryo. Dotted lines indicate the 
estimated position of the sagittal tissue section shown in b; D, dorsal; V, ventral; R, right; L, left; A, anterior; P, posterior. b, Tile scan of a 20-µm sagittal 
section of three independently sampled 8–12 ss embryos stained with nuclear dye DAPI (white). Red boxes indicate the selected field of view (FOV) 
imaged using seqFISH. c, Illustration of the experimental overview for spatial transcriptomics using seqFISH for 351 selected genes in 16 sequential 
rounds of hybridization and 12 non-barcoded sequential smFISH hybridization rounds for 36 genes. For each targeted gene, 17–48 unique probes were 
used to capture the mRNA; UMAP, uniform manifold approximation and projection. d, Cell segmentation strategy using a combination of E-cadherin 
(E-cad), N-cadherin (N-cad), pan-cadherin (Pan-cad) and β-catenin antibody (AB; green) staining detected by an oligo-conjugated anti-mouse 
IgG secondary antibody (orange) that gets recognized by a tertiary probe sequence. The acrydite group (blue star) of the tertiary probe (blue) gets 
crosslinked into a hydrogel scaffold and stays in place even after protein removal during tissue clearing. The cell segmentation labeling can be read by a 
fluorophore-conjugated readout probe (red); AB1, antibody 1; AB2, antibody 2. e, Cell segmentation staining of a 10-µm thick transverse section of an E8.5 
mouse embryo using the strategy introduced in d. Cell segmentation signal was used to generate a cell segmentation mask using Ilastik (right). This was 
repeated independently for all N = 3 embryos with similar results. f, Representative visualization of normalized log expression counts of 12 selected genes 
measured by seqFISH to validate performance. This experiment was repeated independently for all N = 3 embryos with similar results. g, Highly resolved 
‘digital in situ’ of the cardiomyocyte marker titin (Ttn), Tbx5, Cdh5 and Dlk1, colored in red, cyan, green and orange, respectively. Dots represent individually 
detected mRNA spots, and the box represents an area that was magnified for better visualization. This experiment was repeated independently for all 
N = 3 embryos with similar results.
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with the endoderm, 28.6% ± 1.3% of genes were identified as extra-
embryonic and 31.6% ± 3.3% (mean ± s.e.) of genes were associated 
with the ectoderm.

Next, to confirm the quality of our data, we examined the expres-
sion of 12 genes (Fig. 1f) with well-characterized expression pat-
terns. As expected, the cardiomyocyte markers Ttn36 and Popdc2 
(ref. 37) showed the highest expression in the region of the develop-
ing heart tube, while Hand1 (refs. 38,39) and Gata5 (ref. 40) showed 
expression in the heart as well as the more posterior lateral plate 
mesoderm. Similarly, the expression of four known brain mark-
ers, Six3 (ref. 41), Lhx2 (ref. 42), Otx2 (refs. 43–45) and Pou3f1 (ref. 46) 
was strongest in the developing brain. Turning to genes that mark 
broader territories, the neural tube marker Sox2 showed strong 
expression in the brain and along the dorsal side of the embryo47,48. 
Additionally, expression of the mesoderm marker Foxf1 was local-
ized to mesodermal cells outlining the developing gut tube, the 
lateral plate mesoderm and the extraembryonic mesoderm of the 
allantois49. Lastly, two gut endoderm markers Foxa1 (ref. 50) and 
Cldn4 (refs. 51,52) marked the developing gut tube along the ante-
rior–posterior axis of the embryo. The tissue-specific expression 
profile of these genes was consistent with both the Gastrulation 
atlas6 (Supplementary Fig. 2) as well as the broad expression terri-
tories defined in the EMAGE database20. As a further confirmation 
of the quality of our data, we confirmed the positional expression 
profiles of the measured Hox gene family members, which fol-
lowed the described ‘Hox code’ along the anterior–posterior axis53,54 
(Supplementary Fig. 3). Finally, the high-resolution of seqFISH 
allows for visualization of mRNA molecules at subcellular resolu-
tion, enabling the generation of high-quality digital in situ images 
(Fig. 1g). Taken together, these analyses demonstrate that we can 
reliably record the expression profiles of hundreds of genes across 
an entire embryo cross-section at single-cell resolution.

Cell-type identity and spatial transcriptional heterogeneity. 
Thus far, we have focused on the expression of individual genes. 
However, the real power of the data derives from the ability to study 
coexpression of hundreds of genes within their spatial context. To 
develop this potential, as a first step, we assigned each cell within 
the seqFISH-profiled embryos a distinct cell-type identity using 
cell-type mapping. To make this assignment, we integrated each 
cell’s expression profile from seqFISH with the E8.5 cells from the 
Gastrulation atlas6 using batch-aware dimension reduction and 
mutual nearest neighbors (MNN) batch correction55 (Extended 
Data Fig. 3) before annotating seqFISH cells based on their near-
est neighbors in the Gastrulation atlas (Fig. 2a and Extended Data 
Fig. 3). We further manually refined this automated cell-type clas-
sification using a cell type’s anatomical location and by perform-
ing joint clustering of both datasets and comparing their relative 
cell-type contribution and gene expression profiles (Extended Data 
Fig. 3 and Methods). The assigned cell-type identities were consis-
tent with known anatomy as well as with the expression of distinct 
marker genes (Figs. 1f and 2b,c and Supplementary Figs. 4–6).

As an alternative, we performed direct clustering of the seqFISH 
data, which revealed similar groupings of cells (Extended Data Fig. 4),  
indicating that a small number of carefully chosen genes can pro-
vide enough information to accurately group cells. However, we 
note that assigning cell-type identity using only a small number 
of marker genes is likely to be less reliable than inferring identity 
through reference to the Gastrulation atlas. Indeed, upon per-
forming a further simulation on randomly selected subsets of the 
seqFISH gene panel, we observed decreasing cell-type recovery 
accuracy, more so for the imaging data than for the Gastrulation 
atlas or even for independent wild-type (WT) chimera control 
scRNA-seq cells (Methods and Supplementary Fig. 7), suggesting 
that it may be prudent to select more cell-type marker genes than 
would be suggested by computational analysis of scRNA-seq data.

Next, to study when boundaries between emerging tissue 
compartments are established in the developing embryo, we 
statistically quantified whether cells assigned to the same type 
were spatially coherent within the embryo and determined the 
extent to which pairs of cell types were colocated (Fig. 2d,e and 
Methods). We used a permutation strategy to evaluate the relative 
enrichment or depletion of direct cell–cell contact events between 
each cell type resulting in a cell–cell contact map (Fig. 2d and 
Extended Data Fig. 5). Certain cell types, such as cardiomyocytes 
and the gut tube, were spatially and morphologically distinct, 
while others, like the endothelium, were interspersed and spread 
across the entire embryo space.

More generally, while most cell types are characterized using 
prior knowledge of expression markers and lineage inference, other 
populations, such as the mixed mesenchymal mesoderm, represent 
a cell state rather than a defined cell type. Mesenchyme represents 
a state in which cells express markers characteristic of migratory 
cells loosely dispersed within an extracellular matrix56. This strong 
overriding transcriptional signature of mesenchyme, irrespective of 
location, makes it challenging to distinguish which cell types this 
mixed mesenchymal mesoderm population represents using clas-
sical scRNA-seq data. By contrast, our integrated spatial expression 
map allowed us to resolve five transcriptionally distinct subpopula-
tions (clusters 1–5) that were spatially defined (Extended Data Fig. 6  
and Methods).

Based on its anatomical position overlaying the developing 
heart, we infer that cluster 1 reflects cells with a cardiac mesoderm 
and pericardium identity. Clusters 2 and 3 are located in the septum 
transversum, in the region of the forming hepatic plate and proepi-
cardium. At this developmental stage, bone morphogenetic protein 
(BMP) signaling from the developing heart and fibroblast growth 
factor (FGF) signaling from the septum transversum mesenchyme 
are critical for the induction of hepatic fate specification in the fore-
gut57,58. Consistent with this, we observed enrichment for BMP sig-
naling in cluster 1 (Extended Data Fig. 6). Additionally, in cluster 
3, we observed the coexpression of proepicardial markers Tbx18 
and Wt1 (refs. 59,60) whose deletion results in heart61 and liver62 
defects (Extended Data Fig. 6). Our ability to spatially map clus-
ter 3 revealed its position caudal to the forming heart, correspond-
ing with the known location of the proepicardium. Together, their 
location and expression profiles indicate that the cells from clus-
ters 2 and 3 will contribute to the hepatic mesenchyme (important 
for hepatoblast specification) and the proepicardium, respectively. 
Lastly, clusters 4 and 5 are located toward the body wall, suggesting 
a somatic mesoderm identity that will contribute to the dermis63.

To characterize additional spatially driven transcriptional het-
erogeneity, we used a linear model to identify genes that show 
a strong spatial expression pattern within each cell type (Fig. 2e, 
Supplementary Table 4 and Methods). This indicated that residual 
transcriptional heterogeneity in the forebrain/midbrain/hindbrain 
cluster can be explained by localized patterns of expression, most 
likely resulting from the presence of regionally specific develop-
ing brain subtypes (Supplementary Table 5). To investigate this, we 
performed a focused reclustering of forebrain/midbrain/hindbrain 
cells, recovering four major brain subregions and seven subclusters 
(Fig. 2f,g). Cross-referencing spatial location and underlying gene 
expression signatures allowed us to identify subclusters associated 
with the prosencephalon, mesencephalon, rhombencephalon and 
the tegmentum (Fig. 2g,h and Extended Data Fig. 5).

A 10,000-plex spatial map of inferred gene expression. By design, 
our seqFISH library allowed us to probe the expression of specific 
genes associated with cell-type identity. Additionally, we directly 
measured the expression of a number of genes associated with key 
signaling cascades, for example, Notch64 and Wnt65. Nevertheless, 
a full, unbiased view of the interplay between a cell’s spatial  

Nature Biotechnology | VOL 40 | January 2022 | 74–85 | www.nature.com/naturebiotechnology 77

http://www.nature.com/naturebiotechnology


Articles NAtuRE BIOtEcHnOlOgy

a
Gastrulation atlas

U
M

A
P

2
seqFISH

b

UMAP1

250 µm

c

d

Neu
ra

l c
re

st

Neu
ra

l c
re

st

Der
m

om
yo

to
m

e

Cra
nia

l m
es

od
er

m

Ant
er

ior
 so

m
itic

 tis
su

es

Scle
ro

to
m

e

End
ot

he
liu

m

Ery
th

ro
id

Hem
at

oe
nd

ot
he

lia
l p

ro
ge

nit
or

s

In
te

rm
ed

iat
e 

m
es

od
er

m

Alla
nt

ois

La
te

ra
l p

lat
e 

m
es

od
er

m

Sur
fa

ce
 e

cto
de

rm

M
ixe

d 
m

es
en

ch
ym

al 
m

es
od

er
m

Spla
nc

hn
ic 

m
es

od
er

m

Spla
nc

hn
ic 

m
es

od
er

mPre
so

m
itic

 m
es

od
er

m

Def
ini

tiv
e 

en
do

de
rm

NM
P

Spin
al 

co
rd

Spin
al 

co
rd

Car
dio

m
yo

cy
te

s

For
eb

ra
in/

m
idb

ra
in/

hin
db

ra
in

For
eb

ra
in/

m
idb

ra
in/

hin
db

ra
in

Gut
 tu

be

Bloo
d 

pr
og

en
ito

rs

Der
m

om
yo

to
m

e

Cra
nia

l m
es

od
er

m

Ant
er

ior
 so

m
itic

 tis
su

es

Scle
ro

to
m

e

End
ot

he
liu

m

M
es

en
ch

ym
e

Ery
th

ro
id

Hem
at

oe
nd

ot
he

lia
l p

ro
ge

nit
or

s

In
te

rm
ed

iat
e 

m
es

od
er

m

Alla
nt

ois

La
te

ra
l p

lat
e 

m
es

od
er

m

Sur
fa

ce
 e

cto
de

rm

Pre
so

m
itic

 m
es

od
er

m

Def
ini

tiv
e 

en
do

de
rm

NM
P

Car
dio

m
yo

cy
te

s

Gut
 tu

be

e

f g

250 µm

h
50 µm

Integrated Segregated

Rhombencephalon 1

Rho
m

be
nc

ep
ha

lon
 1

Rhombencephalon 1

Mesencephalon

Mesencephalon

Rhombencephalon 2

Rho
m

be
nc

ep
ha

lon
 2

Rhombencephalon 2

Rhombencephalon 3

Rho
m

be
nc

ep
ha

lon
 3

Rhombencephalon 3

Prosencephalon 1

Prosencephalon 1

Prosencephalon 2 M
es

en
ce

ph
alo

n

Pro
se

nc
ep

ha
lon

 1

Pro
se

nc
ep

ha
lon

 2

Prosencephalon 2

Tegmentum

Teg
m

en
tu

m

Tegmentum

120

90

60

30

0

t–
st

at
is

tic

Integrated Segregated

Neural crest

Splanchnic mesoderm

Spinal cord

Forebrain/midbrain/hindbrain

Blood progenitors

Dermomyotome

Cranial mesoderm

Definitive endoderm

Caudal mesoderm

Anterior somitic tissues

Sclerotome

Endothelium

Mixed mesenchymal mesoderm

ExE endoderm

Erythroid

Hematoendothelial progenitors

Intermediate mesoderm

Allantois

Lateral plate mesoderm

Surface ectoderm

Presomitic mesoderm

NMP

Cardiomyocytes

Gut tube

Ectoderm Mesoderm Endoderm

A

P

D V
250 µm

Fig. 2 | Cell-type annotation and neighborhood characterization. a, Projection of seqFISH spatial and Gastrulation atlas cells in joint reduced dimensional 
space to annotate seqFISH cells based on their nearest neighbors in the mouse Gastrulation atlas. b, Real position of annotated seqFISH cells in an embryo 
tissue section. Colors represent refined cell-type classification; ExE endoderm, extraembryonic endoderm; NMP, neuromesodermal progenitor. c, Cell-type 
maps separated by the three germ layers (ectoderm, mesoderm and endoderm). d, Cell–cell contact map displaying the relative enrichment toward 
integration and segregation of pairs of cell types in space. Cell types are clustered by their relative integration with others. e, Violin plots showing the 
t-statistic for each gene and cell type corresponding to a measure of the degree of residual transcriptional heterogeneity explained by space. f, Reclustering 
of forebrain/midbrain/hindbrain cell types into seven spatially distinct clusters. g, Zoom in of the brain region to visualize four major brain regions and 
seven subclusters identified in f. h, Cell–cell contact map of brain subclusters in space, ordered roughly anatomically from hindbrain to forebrain.
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location and its molecular profile and how this influences devel-
opment would benefit from measuring expression of the entire 
transcriptome, which is not straightforward with existing highly 
multiplexed RNA FISH protocols.

To overcome these limitations, we built upon the MNN map-
ping approach (Fig. 2 and Extended Data Fig. 3) and inferred the 
full transcriptome of each seqFISH cell by considering the weighted 
expression profile of the cells to which it is most transcriptionally 
similar to in the Gastrulation atlas (Fig. 3a, Extended Data Fig. 7 and 
Methods). To test the integrity of this strategy, for each gene probed 
in our seqFISH experiment (excluding Xist, as it is sex specific), 
we used the remaining 349 measured genes to map all cells to the 
Gastrulation atlas and imputed the expression of the withheld gene. 
To evaluate performance, we calculated for each gene and across 
all cells the Pearson correlation (‘performance score’) between the 
imputed expression counts and the measured seqFISH expression 
levels. To estimate an upper bound on the performance score (that is, 
the maximum correlation we might expect to observe), we exploited 
the four independent batches of E8.5 cells that were processed in the 
scRNA-seq Gastrulation atlas. We treated one of the four batches 
as the query set and used the leave-one-out approach described 
above to impute the expression of the 350 genes of interest by map-
ping cells onto a reference composed of the remaining three batches 
before computing the Pearson correlation between the imputed and 
true expression counts (‘prediction score’; Methods). Computing 
the ratio of the performance (seqFISH–scRNA-seq) and prediction 
(scRNA-seq–scRNA-seq) scores yields a normalized performance 
score. Across genes, we observed a median normalized performance 
score of 0.73 (lower quartile, 0.32; upper quartile, 1.09) (Extended 
Data Fig. 7), suggesting that our ability to infer gene expression is 
comparable to what might be expected when combining independent 
scRNA-seq datasets. While we observed a high level of consistency 
among the independently captured genes, we identified a subset of 
genes that did not perform as well (Methods). These nine genes were 
either lowly or rarely expressed in the independent smFISH data or 
were variably expressed between replicates (Extended Data Fig. 7 and 
Supplementary Table 6). Consequently, care must be taken in inter-
preting imputed expression patterns for such genes.

To further validate our imputation strategy, we used 
non-barcoded sequential smFISH to measure the expression of 
36 additional genes in the embryo sections probed by seqFISH 
and contrasted the true expression profile with the imputed values 
(Fig. 3b). This independent validation (these smFISH genes were 
not used in the MNN mapping) confirmed that imputation reli-
ably recovered gene expression profiles (Fig. 3b and Supplementary 
Figs. 8–12). For example, we observed a strong overlap between 
measured and imputed expression for Dlx5 (ref. 66), an essential 
and spatially restricted regulator of craniofacial structures, in the 

anterior surface ectoderm and first branchial arch. Additionally, we 
noted that Tmem54 was inferred to be specifically expressed in the 
anterior surface ectoderm and along the gut tube, Nkx2-5 (refs. 67,68) 
was inferred to be expressed in the developing heart, and Mesp1 was 
inferred to be expressed in the posterior presomitic mesoderm69,70. 
Finally, the ubiquitous expression profile of Basp1 and the absence 
of expression of the germ line marker Utf1 (ref. 71) was also recapitu-
lated in the imputed expression maps.

Reconstruction of MHB formation. To illustrate the utility of the 
imputed data, we focused on a well-described developmental pro-
cess that takes place at this embryonic stage, the formation of the 
MHB, also known as the isthmus organizer. The MHB acts as a sig-
naling hub that is essential for patterning of the adjacent midbrain 
and hindbrain regions by inducing two distinct transcriptional 
programs via defined signaling cascades (reviewed in72–74). Thus, 
the MHB presents an important dividing point in the develop-
ing brain, functioning both as a signaling center and as a physical 
barrier of the developing brain ventricles75. We observed expres-
sion of the mesencephalon and prosencephalon marker Otx2 
(refs. 43,76) and the rhombencephalon marker Gbx2 (refs. 76,77) in 
the brain region of all three embryos, albeit the sagittal section for 
embryo 2 appeared to capture this region most comprehensively 
(Supplementary Fig. 13). Focusing on this region of embryo 2, 
we used the expression of Gbx2 and Otx2 to identify the precise 
boundary between the two subclusters (Fig. 3c,d). Subsequently, 
we virtually dissected the Otx2-positive midbrain region and the 
Gbx2-positive hindbrain region (Supplementary Fig. 13) and 
performed a differential expression analysis (using the imputed 
expression profiles) to identify additional genes that distinguish 
the two regions (Fig. 3e). This identified 66 genes (false discov-
ery rate (FDR)-adjusted P value of <0.05; absolute log fold change 
(LFC) > 0.2) with spatially distinct expression profiles between the 
two regions (Supplementary Table 7).

To further understand the spatial distribution of gene expres-
sion at the MHB, we investigated whether further local differences 
in spatial expression patterns were present. Using a diffusion-based 
transcriptional embedding78, we observed smoothness of the esti-
mated diffusion components in physical space, with an extreme cor-
responding to the MHB itself (Fig. 3f,g and Methods). Using a spatial 
vector field to capture local magnitude and direction of changes in 
DC1 in space, we observed an outward radiation of signaling gra-
dients from the MHB region, corresponding to the rostral–caudal 
axis (Fig. 3g), with strong enrichment for Lmo1 (ref. 79) in the mid-
brain and Pax8 (ref. 80) in the hindbrain (Fig. 3i). Additionally, we 
observed that DC2 corresponds to an emerging dorsal–ventral axis 
(Fig. 3h), demonstrating that the coordinate space of the brain is 
established at this stage of development.

Fig. 3 | Creating and using a 10,000-plex spatial map. a, Schematic representation of the imputation strategy. b, Independent validation of imputation 
performance by comparing normalized gene expression profiles of selected genes measured by smFISH with the corresponding imputed gene expression 
profiles. c, Visualization of brain subclusters in embryo 2 and virtual dissection of the MHB, highlighted by the red rectangle and inset zoom; C, caudal; 
R, rostral; D, dorsal; V, ventral. d, ‘Digital in situ’ showing detected mRNA molecules of a mesencephalon and prosencephalon marker Otx2 (orange dots) 
and a rhombencephalon marker Gbx2 (purple dots) to identify the MHB; scale bar, 50 µm. e, MA (log ratio and mean average) plot showing differential 
gene expression analysis using a two-sample t-test between the virtually dissected hindbrain region (orange; 48 genes significantly upregulated; absolute 
LFC > 0.2, FDR-adjusted P value of <0.05) and virtually dissected midbrain region (purple; 18 genes significantly upregulated; absolute LFC > 0.2, 
FDR-adjusted P value of <0.05) using the imputed transcriptome. f, Diffusion pseudotime analysis of the virtually dissected region to understand the 
dynamics of gene expression at the MHB. The scatter plot of diffusion-based embedding of virtually dissected cells displays diffusion components (DC) 1 
and 2. Cell colors correspond to inferred diffusion pseudotime. g, Spatial graph showing virtually dissected cells colored by inferred diffusion pseudotime 
dominated by DC1. Arrow sizes correspond to the magnitude of change of the pseudotime value within the region in the direction from large to small 
pseudotime values. The highest pseudotime values are observed along the MHB region, smoothly diffusing outward to the midbrain and hindbrain regions. 
h, Spatial graph showing virtually dissected cells colored by DC2. Arrow sizes correspond to the magnitude of change of the DC2 value within the region. 
The most extreme DC2 values are observed perpendicular to the MHB region, smoothly diffusing outward to the floor plate and roof plate regions.  
i, Visualization of normalized log expression counts of important regulators of midbrain/hindbrain formation. Gene names shown in red font indicate 
imputed expression, while gene names shown in black font indicate measured expression.
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To identify genes contributing toward the emergence of this 
coordinate space, we performed unbiased detection of spatially 
variable genes (Methods81, Extended Data Fig. 8 and Supplementary 
Table 8), uncovering distinct spatial expression patterns, espe-
cially along the dorsal–ventral axis within the hindbrain. Among 
spatially variable genes, several are known regulators of cell fate 
commitment, including Fgf8, Fgf17, Wnt1 and En1, all of which  
displayed their highest level of expression at the MHB (Fig. 3i).  
Fgf8 is a known MHB organizer whose posterior expression relative 
to the boundary is necessary for repressing the expression of Otx2 
in the rhombencephalon82. Consistent with this, we inferred that the 
imputed expression of Fgf8 was negatively correlated with Otx2. By 
contrast, Wnt1, whose imputed expression is restricted rostral of the 
MHB, is known to upregulate Otx2 expression in the midbrain83,84. 
En1 (engrailed 1) expression was observed across the MHB with no 
rostral or caudal bias85–87 (Fig. 3i). In Wnt1–/– embryos, the expres-
sion of En1 is absent, consistent with the importance of WNT-1 sig-
naling for En1 expression88,89. This is supported by the observation 
that the deletion of En1 results in a midbrain–hindbrain deletion, 
with a phenotype that closely resembles the Wnt1–/–-mutant mice85. 
We also observed spatially distinct expression of Foxa2 and Shh in 
the floor plate, another important midbrain organizer (Fig. 3i), con-
sistent with the observation that both genes are critical for specifi-
cation of the floor plate90. Additionally, we noted a cluster of cells, 
characterized by the highly restricted inferred expression of Msx3, 
in the dorsal developing neural tube91. Finally, we observed that Ezr 
(ezrin), Efna2 (ephrin A2) and Efnb1 (ephrin B1) were among the 
genes with the most spatially variable patterns of expression. The 
ephrin signaling pathway is a known regulator of cell sorting and 
plays an important role in the formation of a sharp MHB that com-
partmentalizes the brain92. Consistent with this, Efna2 and Efnb1 
are inferred to occupy distinct territories of gene expression on each 
side of the MHB. Taken together, this analysis demonstrates how 
the imputed data can be used to reliably recapitulate and enhance 
our understanding of important developmental processes, such as 
MHB formation.

Spatial patterning of cells within the gut tube. Finally, we exam-
ined the emergence of organ precursor cells along the anterior–pos-
terior axis in the developing gut tube. Recently, Nowotschin et al. 
inferred the pseudo-spatial ordering of E8.75 (13 ss) gut tube cells 
along the anterior–posterior axis2. However, despite validation of 
the anterior–posterior patterning using targeted in situ hybridiza-
tion, the ability to finely determine the boundary between cell types 
and to precisely demarcate the locations of cell types along com-
plex tissues like the gut tube is challenging when using single-gene 
in situ stainings. To explore whether our data could shed light 
on this problem, we performed a joint mapping of the seqFISH 
data with cells from dissected E8.75 (13 ss) gut tubes that were 

profiled using scRNA-seq2 (Fig. 4a and Supplementary Fig. 14).  
Incorporating this additional scRNA-seq dataset allowed us to 
refine the cellular annotations for the developing gut tube and 
nearby relevant cell types; in particular, it allowed us to associate 
cells with the organs that they would likely contribute to in the 
adult animal, including thyroid, thymus, lung, liver, pancreas, small 
intestine and large intestine/colon. Notably, the seqFISH-profiled 
embryos, in comparison to the Nowotschin dataset, lack cells asso-
ciated with the large intestine, likely due to the area of the large 
intestine not being represented in the tissue sections profiled using 
seqFISH (Supplementary Fig. 14).

As expected, plotting the physical position of the subclus-
ters showed distinct patterning along the anterior–posterior axis  
(Fig. 4b). This patterning was mirrored by the presence of spatially 
distinct populations of cells within the surrounding splanchnic 
mesoderm (Methods and Extended Data Fig. 9), consistent with 
recent reports3 and supporting the observation that signaling inter-
actions between the gut endoderm and the surrounding mesoderm 
play key roles in determining cell-type identity92.

More unexpectedly, topological cell–cell contact analysis of the 
gut tube subclusters revealed a spatial separation of two lung sub-
types (lung 1 and lung 2) defined by Nowotschin et al. (Fig. 4c,d). 
Specifically, cells assigned a lung 1 identity were located exclusively 
on the ventral side of the gut tube, while lung 2 cells were located on 
the dorsal side (Fig. 4b and Extended Data Fig. 10). It has previously 
been observed at E9.5 that esophagus progenitors are located on the 
dorsal side of the gut tube, while lung and trachea progenitors are 
located on the ventral side93–96. Given this, we hypothesized that the 
dorsal–ventral segregated lung 1 and lung 2 populations observed 
in our data at the 8–12 ss correspond to lung/trachea and esophagus 
progenitors, respectively.

To investigate whether this was the case, we explored the set of 
genes that were differentially expressed between the lung 1 and lung 
2 populations. As expected, we noted differences in genes associated 
with dorsal–ventral patterning (Fig. 4e and Supplementary Table 9), 
including differential expression of Chrd, a known dorsal–ventral 
regulator97, and Osr1, which is necessary for lung specification and 
whose loss results in notably fewer respiratory progenitors at E9.5 
and reduced lung size98 (Fig. 4f). Additionally, the T-box gene Tbx1, 
which is known to be expressed in the embryonic mesoderm and 
later in the pharyngeal region and otic vesicle99, was more strongly 
expressed on the dorsal side of the gut tube99,100. It has been demon-
strated that mutants that show esophageal atresia/trachea–esopha-
geal atresia display abnormal expression of Tbx1 (ref. 101) and Tbx2 
(ref. 100). To independently validate these asymmetric dorsal–ven-
tral expression patterns, we used whole-mount hybridization chain 
reaction (HCR) combined with three-dimensional (3D) imaging to 
study the coexpression of Tbx1 (dorsal) and Shh (ventral) as well 
as Smoc2 (dorsal) and Tbx3 (ventral) (Fig. 4g–j and Extended Data 

Fig. 4 | Spatial characterization of gut tube organogenesis. a, Joint embedding of seqFISH data and Nowotschin et al. cells corresponding to the 
developing gut tube2 with seqFISH cells annotated by their predicted gut tube subtype. Colors represent gut tube subtypes. The zoomed-in region shows 
anterior–posterior patterning of the gut endoderm cluster in the UMAP space, indicated by an arrow; NA, not annotated cell. b, Position of gut tube cell 
types in the embryo tissue section. Colors represent cell-type classification. A zoom-in image into the region of the gut tube is shown on the right for 
better visualization. c, Anterior–posterior (A–P) ranking of cells corresponding to each gut tube subtype split into dorsal and ventral regions. The bar color 
corresponds to the mapping score associated with classification into the subtype. d, Cell–cell contact map that displays the relative enrichment toward 
integration and segregation of pairs of gut tube subtypes in space, ordered along the inferred A–P ordering in Nowotschin et al.2. e, Volcano plot showing a 
comparison of gene expression between the (ventral) lung 1 and (dorsal) lung 2 subtypes using seqFISH data. Significantly differentially expressed genes 
(two-sample t-test with an absolute LFC > 0.5 and an FDR-adjusted P value of <0.05) are highlighted, and corresponding gene names are indicated. 
f, Visualization of Tbx1 expression (enriched in the dorsal lung 2 cluster) and Osr1 expression (enriched in the ventral lung 1 cluster). g, ‘Digital in situ’ 
showing detected mRNA molecules for Tbx1 (red) and Shh (cyan) across the entire embryo tissue section. h, Multiplexed mRNA imaging of whole-mount 
E8.75 mouse embryo using HCR of Tbx1 (red) and Shh (cyan). The zoom in shows region-specific expression in the developing lung region; PA, pharyngeal 
arch. i, ‘Digital in situ’ showing detected mRNA molecules for Smoc2 (red) and Tbx3 (cyan) across the entire embryo tissue section. j, Multiplexed mRNA 
imaging of whole-mount E8.75 mouse embryo using HCR of Smoc2 (red) and Tbx3 (cyan). The zoom in shows region-specific expression in the developing 
lung region. Images are representative and were repeated independently on N = 2 embryos with similar results.
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Fig. 10). This confirmed the observations from our seqFISH data, 
with clear dorsal–ventral localization of these genes observed in  
the foregut region of the gut tube corresponding to the lung 1 and 
lung 2 populations.

Taken together, the spatially resolved expression pattern of genes 
involved in esophagus, lung and trachea development and the 

anatomical position of the lung 1 and lung 2 populations indeed 
indicate that the dorsal lung 2 population corresponds to esopha-
geal progenitors, while the ventral lung 1 population represents 
lung and trachea progenitors. Although little is known about the 
transcriptional identity of the early dorsal and ventral endodermal 
population that ultimately gives rise to the trachea and esophagus, 
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Kuwahara et al. recently used scRNA-seq at E10.5 and E11.5 to bet-
ter define the transcriptional identity of the developing esophagus, 
trachea and lung93. Several of the identified markers already show 
dorsal–ventral asymmetries in our data, including the lung and 
trachea markers Isl1, Isx2 and Isx3 and the esophagus marker Sox2 
(refs. 93,94,102). More broadly, previous studies have shown that the 
commitment of progenitor cells to either the lung/trachea or the 
esophagus is coordinated by the interplay of several transcription 
factors and signaling pathways that also regulate the dorsal–ventral  
specification of the gut tube93. Specifically, it was shown in E9.5 
embryos that the expression of Wnt2/Wnt2b, Bmp4 and Nkx2-1 is 
enriched in the ventral foregut and respiratory mesenchyme, while 
the BMP signaling inhibitor genes Nog and Sox2 are enriched in 
the dorsal foregut3,95,103–105. Consistent with this, we observe strong 
expression of Wnt2/Wnt2b and Bmp4 in the splanchnic mesoderm 
surrounding the ventral lung 1 population, indicating an early 
role of WNT and BMP signaling in lung and trachea instruction 
(Extended Data Fig. 9). Taken together our data suggest that cells 
committed to the lung and trachea (lung 1) or the esophagus (lung 2)  
are physically separated at the 8–12 ss, approximately 12–24 h  
earlier than previously reported.

Discussion
We have combined cutting-edge experimental approaches with 
advanced computational analyses to generate a comprehensive map 
of how gene expression varies in space across sagittal sections of 
an entire mouse embryo at the 8–12 ss of development. Previous 
studies using scRNA-seq have computationally reconstructed devel-
opmental trajectories based on gene expression, but, in the absence 
of cell-specific spatial information, it has been impossible to define 
how cell states are correlated with the position of cells within the 
embryo or to understand how the local signaling environment to 
which they are exposed might impact their molecular signature 
and their ultimate fate. Conversely, although pioneering studies 
have mapped the expression of individual developmental genes at 
single-cell resolution, the ability to stitch together multiple indepen-
dent in situ maps into a complete, single-cell resolution map has not 
been possible due to inevitable fine-scale variations in local cellular 
organization between embryos.

By combining our high-resolution seqFISH map with scRNA-seq, 
we have delineated the precise location of distinct cell types within a 
single reference scaffold. To illustrate the potential of this resource, 
we have shown how it can provide insight into the formation of 
the MHB and, in particular, the etiology of cell types along the 
nascent gut tube. In the latter case, we have added an additional 
axis of resolution to previous studies by uncovering dorsal–ventral 
patterning associated with the commitment of cells toward either 
the esophagus or the lung and trachea. To enable this analysis, we 
developed computational tools for probe design and for integrat-
ing and imputing data, and we developed strategies for downstream 
analysis, including modeling spatial heterogeneity and performing 
virtual dissections. This provides a robust experimental and com-
putational framework for future studies both in the mouse and in 
other biological systems.

In the future, generation of comprehensive cell resolution spatial 
maps at additional stages of mouse development will allow for spa-
tiotemporal analysis and provide insight into the complex processes 
associated with cell fate specification during gastrulation and organ-
ogenesis. Three-dimensional whole-mount maps would further 
resolve the processes associated with embryo patterning, in particu-
lar processes that are associated with the left–right axis. Moreover, 
the recent development of image-based cell lineage-tracing meth-
ods, such as Zombie106 or intMEMOIR107, allow a cell’s lineage to 
be recorded while preserving spatial information. These methods 
are compatible with seqFISH and therefore afford the possibility 
to record spatial gene expression profiles and cell history from the 

same cell in intact tissue. Combining these lineage-tracing methods 
with spatial transcriptomics will improve our ability to decipher the 
mechanisms underpinning cell fate choice and tissue patterning.
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Methods
Library design. We selected genes whose expression patterns discriminated cells 
from different labeled cell types described in the scRNA-seq data of Pijuan-Sala 
et al.6. To do this, we used the scran function findMarkers108, with the option ‘pval.
type = ’any’‘, testing against an absolute fold change of 0.5. This was performed 
separately at each developmental stage of the Gastrulation atlas (E6.5–E8.5, in 
0.25-d steps), and only cell types with more than 10 cells at any given stage were 
included in the stage analysis. Genes were excluded if the upper quartile of the 
normalized count across cells in any individual cell type was greater than 20. 
This was performed to prevent the inclusion of highly expressed genes that may 
compromise imaging. The ‘top’ five genes per cell type were saved from each stage, 
and the union of these genes was taken across stages. Top genes were defined by the 
findMarkers ‘Top’ column, which identifies a minimal number of genes required to 
separate any cell type from any other. The gene panel was evaluated on a per gene 
basis to exclude any genes that were too short or repetitive to produce reliable FISH 
probes. Additionally, for each cell type, the panel of genes was manually curated to 
ensure that the total normalized RNA count across cells for each cell type was less 
than 300 (Extended Data Fig. 1). For each cell, we calculated the estimated number 
of detectable transcripts by exponentiating the size factor-standardized log counts 
for each cell and gene in the Gastrulation atlas dataset. This implicitly assumes a 
similar sensitivity/detection rate of transcripts between scRNA-seq and seqFISH 
technology. Based on guidance from previous seqFISH studies, we considered a 
total of 200 detected transcripts as an ideal maximum for any given cell to avoid 
the risk of optical crowding. Finally, after determining a suitable set of cell-type 
marker genes, we manually added genes of interest (especially transcription 
factors) to the panel and iteratively performed the ‘fluorescent load’ testing and 
gene removal as described in the previous two sentences. In total, we selected 387 
genes, of which 351 genes were detected using seqFISH and 36 were detected using 
non-barcoded sequential smFISH imaging.

Primary probe design. Gene-specific primary probes were designed for the 
selected 351 seqFISH and 36 smFISH genes, as previously introduced by Eng 
et al.109 (Supplementary Table 1). To design 30-nucleotide primary probe sequences 
for the 351 selected seqFISH and 36 smFISH genes, we extracted 30-nucleotide 
sequences of each of the selected genes using the coding region of each gene. The 
mask genome and annotation from the University of Santa Cruz (UCSC) were 
used to look up the gene sequences. All probe sequences were selected to have a 
GC content in the range from 45 to 65% and to not have five or more consecutive 
bases. Genes with more than 48 primary probes were used as a secondary filter 
to remove off targets. Any gene that did not achieve a minimum of 28 probes for 
seqFISH and 17 probes for smFISH was dropped. To validate the specificity of the 
generated primary probes and to minimize off targets, we performed a BLAST 
search against the mouse transcriptome, and all BLAST hits other than the target 
gene with a 15-nucleotide match were considered off targets. To avoid off-target 
hits between the primary probes, a second round of optimization was performed. 
We constructed a local BLAST database from the primary probe sequences, and 
probes that were predicted to hit more than seven times by all of the combined 
primary probes in the BLAST database were iteratively dropped from the probe set 
until no more than seven off-target hits existed for each primary probe sequence.

Readout probe design. Readout probes of 15-nucleotide length were designed as 
previously introduced by Shah et al.26. In brief, the probe sequences were randomly 
generated with combinations of A, T, G or C nucleotides, with a GC content in the 
range of 40–60%. To validate the specificity of the generated readout sequences, 
we performed a BLAST search against the mouse transcriptome. To minimize 
cross-hybridization of the readout probes, all probes with 10 contiguously 
matching sequences between the readout probes were removed. The reverse 
complements of these readout probe sequences were included in the primary 
probe, as described below (Supplementary Table 1).

Primary probe library construction. The primary probe library, consisting of 
15,989 probes for 387 genes (17–48 per gene/average of 41.32 per gene), was 
ordered as an oligoarray pool from Twist Bioscience. Each probe for barcoded 
mRNA seqFISH was assembled out of 30-nucleotide mRNA complementary 
sequence for in situ hybridization, four 15-nucleotide gene-specific readout 
sequences separated by a 2-nucleotide spacer and two flanking primer sequences 
to allow for PCR amplification of the probe library (primary barcoded mRNA 
seqFISH probes, 5′-(primer 1)-(readout 1)-(readout 2)-(probe)-(readout 
3)-(readout 4)-(primer 2)-3′). Each of the probes for non-barcoded sequential 
smFISH were assembled in the same way, with the exception that the sequence for 
the four readout sequences was the same for all four readout sequences (primary 
non-barcoded sequential smFISH probes, 5′-(primer 1)-(readout 1)-(readout 
1)-(probe)-(readout 1)-(readout 1)-(primer 2)-3′). We used validated primer and 
84 readout sequences previously used in seqFISH+25. Next, the probe library was 
amplified as previously described24,25,109–111. In brief, limited-cycle PCR was used 
to generate in vitro transcription template using primer 1 and primer 2. Next, the 
PCR product was purified using a QIAquick PCR Purification kit (Qiagen, 28104) 
following the manufacturer’s instructions. Subsequently, the purified PCR product 
was used for in vitro transcription (NEB, E2040S) followed by reverse transcription 

(Thermo Fisher, EP7051) with the forward primer containing a uracil nucleotide112. 
Next, the forward primer sequence was removed by cleaving off the uracil 
nucleotide. The probes were subjected to a 1:30 dilution of uracil-specific excision 
reagent enzyme (NEB, N5505S) for about 24 h at 37 °C. The single-stranded 
DNA was alkaline hydrolyzed with 1 M NaOH at 65 °C for 15 min, followed by 
neutralization with 1 M acetic acid to remove the remaining RNA templates. 
Next, the probe library was purified by ethanol precipitation to remove residual 
nucleotides and by phenol–chloroform extraction to remove the proteins. Finally, 
the amplified primary probe library was dried by speedvac and resuspended at a 
concentration of 40 nM per probe in primary probe hybridization buffer composed 
of 40% formamide (Sigma, F9027), 2× SSC and 10% (wt/vol) dextran sulfate 
(Sigma, D8906). The probes were stored at −20 °C.

Readout probe synthesis. Fifteen-nucleotide readout probes were ordered from 
Integrated DNA Technologies (IDT), conjugated to Alexa Fluor 488, Cy3B and 
Alexa Fluor 647 as indicated in Supplementary Tables 2 and 3. All readout probes 
were stored at −20 °C.

Encoding strategy. In this experiment we used a 12-pseudocolor encoding scheme, 
as described previously26,109. In brief, 12 pseudocolors were equally separated across 
three fluorescent channels (Alexa Fluor 488, Cy3B and Alexa Fluor 647). The 
12-pseudocolor imaging was repeated four times, resulting in 124 (20,736) unique 
barcodes. Additionally, an extra round of pseudocolor imaging was performed to 
obtain error-correctable barcodes, as previously introduced24. In this experiment, 
351 genes were encoded across all channels (Supplementary Table 2).

Coverslip functionalization. Coverslips were functionalized as previously 
described25. In brief, coverslips (Thermo Scientific, 3421) were washed in 
nuclease-free water, followed by an immersion in 100% ethanol (Koptec). 
Subsequently, coverslips were air dried and cleaned using a plasma cleaner on 
the high setting (PDC-001, Harrick Plasma) for 5 min. Then, the coverslips were 
immersed in 1% bind-silane solution (GE, 17-1330-13) made in pH 3.5 10% (vol/
vol) acidic ethanol solution for 1 h at room temperature. Next, coverslips were 
rinsed three times in 100% ethanol and heat dried in an oven at >90 °C for 30 min. 
Then, the coverslips were treated with 100 µg ml–1 of poly-d-lysine (Sigma, P6407) 
in water for a minimum of 1 h at room temperature. Afterwards, coverslips were 
washed three times in nuclease-free water and air dried. Functionalized coverslips 
can be stored for up to 1 week at 4 °C.

Mice. Experiments, with the exception of the HCR experiment (see below), were 
performed in accordance with EU guidelines for the care and use of laboratory 
animals, and under the authority of appropriate UK governmental legislation. 
Eight- to 12-week-old WT C57BL/6J mice (Charles Rivers) were used, with the 
exception of the HCR experiment. For the HCR experiment, WT CD-1 mice 
(Charles Rivers) were used. Natural mating was set up between males and 4- to 
6-week-old virgin females, with 12:00 of the day of vaginal plug considered to be 
E0.5. Mice were maintained in accordance with guidelines from Memorial Sloan 
Kettering Cancer Center (MSKCC) Institutional Animal Care and Use Committee 
(IACUC) under protocol number 03-12-017 (principal investigator A.-K.H.).  
All mice used in this project were housed under a 12-h light/12-h dark cycle,  
with constant access to food and water. No sex selection of the used embryos  
was performed.

Tissue preparation. Embryos were dissected from the uteri, washed in M2 
medium (Sigma Aldrich, 7167) and immediately placed in 4% paraformaldehyde 
(PFA) (Thermo Scientific, 28908) in 1× PBS (Invitrogen, AM9624) for 30 min 
at room temperature. The embryos were then washed and immersed in 30% 
RNase-free sucrose (Sigma Aldrich, 84097) in 1× PBS at 4 °C until the embryo sank 
to the bottom of the tube. Afterwards, each embryo was positioned in a sagittal 
orientation in a tissue base mold (Sakura, 4162) in optimal cutting temperature 
(OCT) compound solution (Sakura, 4583), frozen in dry ice isopropanol (VWR, 
20842) and stored at −80 °C. Tissue sections (20 µm) were cut using a cryotome, 
collected on the functionalized coverslips and stored at −80 °C.

seqFISH using tissue sections. Tissue sections were postfixed with 4% PFA in 
1× PBS for 15 min at room temperature to stabilize the DNA, RNA and overall 
sample structure. The fixed samples were permeabilized with 70% ethanol for 
1 h at room temperature. Then, the tissue slices were cleared with 8% SDS in 1× 
PBS for 20 min at room temperature. The cleared sample was washed with 70% 
ethanol and then air dried. Samples were blocked for a minimum of 2 h in blocking 
solution (1× PBS supplemented with 0.25% Triton X-100, 10 mg ml–1 bovine 
serum albumin (BSA; Thermo Fisher, AM2616) and 0.5 mg ml–1 salmon sperm 
DNA (Thermo Fisher, AM9680)) at room temperature in a humidified chamber. 
Anti-pan-cadherin (Abcam, ab22744), anti-N-cadherin (13A9; Cell Signaling 
Technology, 14215), anti-β-catenin (15B8; Abcam, ab6301) and anti-E-cadherin 
(clone 36; BD Biosciences, 610181) were diluted 1:200 in blocking solution and 
incubated for 2 h at room temperature. Samples were washed three times in 
1× PBS supplemented with 0.1% Triton X-100 (PBS-T) before incubating with 
anti-mouse IgG secondary antibody conjugated to CCTTACACCAACCCT oligo 
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diluted 1:500 in blocking solution for at least 2 h at room temperature. Next, the 
samples were washed three times in 1× PBS-T. The samples were postfixed with 
4% PFA in 1× PBS for 15 min followed by three 10-min washes in 2× SSC (Thermo 
Fisher, 15557036). The samples were dried and hybridized for 24–36 h with the 
probe library (~2.5 nM per probe), 1 nM Eef2 probe set A and B (Supplementary 
Table 1) and 1 µM locked nucleic acid (LNA) oligo-d(T)30 (Qiagen) in primary 
probe hybridization buffer composed of 40% formamide (Sigma, F9027), 2× SSC 
and 10% (wt/vol) dextran sulfate (Sigma, D8906) in a humid chamber at 37 °C. 
The hybridization samples were washed with 40% formamide wash buffer (40% 
formamide, 0.1% Triton X-100 in 2× SSC) for 30 min at 37 °C, followed by three 
rinses with 2× SSC. Then, the samples were hybridized for at least 2 h with 200 nM 
tertiary probe (/5Acryd/AG GGT TGG TGT AAG GTT TAC CTG GCG TTG 
CGA CGA CTA A) in EC buffer made of 10% ethylene carbonate (Sigma, E26258), 
10% dextran sulfate (Sigma, D4911) and 4× SSC. The samples were washed for 
5 min in a 10% formamide washing buffer (10% formamide, 0.1% Triton X-100 
in 2× SSC), followed by two 5-min washes in 2× SSC. The samples were treated 
with 0.1 mg ml–1 Acryoloyl-X succinimidyl ester (Thermo Fisher, A20770) in 1× 
PBS for 30 min at room temperature. Then, the samples were rinsed three times 
with 2× SSC and postfixed with 4% PFA in 1× PBS for 15 min, followed by three 
washes in 2× SSC. Next, the samples were incubated with 4% acrylamide/bis 
(1:19 crosslinking) hydrogel solution in 2× SSC for 30 min. The hydrogel solution 
was aspirated, and the sample was covered with 20 µl of degassed 4% hydrogel 
solution containing 0.05% ammonium persulfate (APS) (Sigma, A3078) and 0.05% 
N,N,N′,N′-tetramethylenediamine (TEMED) (Sigma, T7024) in 2× SSC. The 
sample was sandwiched by a GelSlick functionalized slide (Lonza, 50640). The 
samples were transferred to a home-made nitrogen gas chamber and incubated 
for 30 min at room temperature before transferring to 37 °C for at least 3 h. After 
polymerization, the slides were gently separated from the coverslip, and the 
hydrogel-embedded tissue was rinsed with 2× SSC three times. Then, the samples 
were cleared for 3 h at 37 °C using digestion buffer, as previously described33. The 
digestion buffer consisted of 1:100 proteinase K (NEB, P8107S), 50 mM pH 8 
Tris-HCl (Invitrogen, AM9856), 1 mM EDTA (Invitrogen, 15575020), 0.5% Triton 
X-100, 1% SDS and 500 mM NaCl (Sigma, S5150). After digestion, the tissue slices 
were rinsed with 2× SSC multiple times and then subjected to 0.1 mg ml–1 label-X 
modification for 45 min at 37 °C (ref. 33). For further stabilization, the sample was 
re-embedded in a 4% hydrogel solution, as described above, with a shortened 
gelation time of 2.5 h. Excess gel was removed with a razor, and the sample was 
covered with an in-house-made flow cell. The sample was immediately imaged.

seqFISH imaging. Two tissue sections from two experimental blocks, containing 
three embryos, were imaged as previously described25,26. In brief, the flow cell was 
connected to an automated fluidics system. First, the sample was stained with 10 µg 
ml–1 DAPI (Sigma, D8417) in 4× SSC, and the FOVs were selected. All rounds 
of imaging were performed in antibleaching buffer made of 50 mM Tris-HCl pH 
8.0 (Thermo Fisher, 15568025), 300 mM NaCl (Sigma, S5150), 2× SSC (Thermo 
Fisher, 15557036), 3 mM Trolox (Sigma, 238813), 0.8% d-glucose (Sigma, G7528), 
1:100 diluted catalase (Sigma, C3155) and 0.5 mg ml–1 glucose oxidase (Sigma, 
G2133). The RNA integrity of the sample was validated by colocalization of the 
dots of two interspersed Eef2 probes, each read out by secondary readout probes 
with distinct fluorophores (Extended Data Fig. 2 and Supplementary Table 3). 
Sixteen hybridization rounds were imaged for the decoding of the barcoded mRNA 
seqFISH probes followed by a repeat of the first hybridization. Then, 12 serial 
hybridization rounds were imaged for 36 non-barcoded sequential smFISH probes, 
followed by 1 hybridization to visualize the cell segmentation staining using  
Cy3B conjugated to /5AmMC6/TTAGTCGTCGCAACG. The hybridization  
buffer for each of the hybridization rounds, excluding the last, contained  
three unique readout probes, each consisting of a unique 15-nucleotide probe  
sequence conjugated to either Alexa Fluor 647 (50 nM), Cy3B (50 nM) or Alexa 
Fluor 488 (50 nM) in EC buffer, as described above (Supplementary Tables 2  
and 3). The hybridization buffer for the cell segmentation staining contained 
one unique 15-nucleotide probe sequence conjugated to Alexa Fluor 647. The 
hybridization buffer mixes for the 30 rounds of hybridization were stored in a 
deep-bottom 96-well plate and were added to the hybridization chamber by an 
automated sampler system, as described previously25. The tissue section was 
incubated in the hybridization solution for 25 min at room temperature in the 
dark. Next, the sample was washed with 300 µl of 10% formamide wash buffer to 
remove excess and non-specific readout probes. The sample was rinsed with 4× 
SSC and subsequently stained with 10 µg ml–1 DAPI in 4× SSC for 1.5 min. Then, 
the flow chamber was filled with antibleaching buffer, and all selected FOVs of 
the sample were imaged. The microscope used was a Leica DMi8 stand equipped 
with a Yokogawa CSU-W1 spinning disk confocal scanner, an Andor Zyla 4.2 
Plus sCMOS camera, a Leica ×63, 1.40-NA oil objective, a motorized stage (ASI 
MS2000), lasers from CNI and filter sets from Semrock. For each FOV, snapshots 
were acquired with 4-µm z steps for six z slices. After imaging, the readout probes 
were stripped off using 55% wash buffer (55% formamide, 0.1% Triton X-100 
in 2× SSC) by incubating the sample for 4 min, followed by a 4× SSC rinse. 
Serial hybridization and imaging were repeated for 29 rounds. Integration of the 
automated fluidics delivery system and imaging was controlled by a custom script 
written in µManager113.

Image processing. To remove the effects of chromatic aberration, 0.1-mm 
TetraSpeck bead (Thermo Scientific, T7279) images were first used to create 
geometric transforms to align all fluorescence channels. Tissue background and 
autofluorescence were then removed by dividing the initial background with 
the fluorescence images. To correct for the non-uniform background, a flat field 
correction was applied by dividing the normalized background illumination 
with each of the fluorescence images while preserving the intensity profile of the 
fluorescent points. The background signal was then subtracted using the ImageJ 
rolling ball background subtraction algorithm with a radius of 3 pixels and filtered 
with a despeckle algorithm to remove any hot pixels.

Image registration. Each round of imaging contained the 405 channel, which 
included the DAPI stain of the cell. For each FOV (for example tile), all of the 
DAPI images from every round of hybridization were aligned to the first image 
using a two-dimensional (2D) phase correlation algorithm.

Cell segmentation. For semiautomatic cell segmentation, the membrane stains 
β-catenin, E-cadherin, N-cadherin and pan-cadherin were aligned to the first 
hybridization round using DAPI and subsequently trained with Ilastik35, an 
interactive supervised machine learning toolkit, to output probability maps, which 
were used in the Multicut114 tool to produce 2D-labeled cells for each z slice. For 
image analysis, potential mRNA transcript signals were located by finding the local 
maxima in the processed image above a predetermined pixel threshold, manually 
calculated for one FOV and adjusted for the remainder according to the number 
of expected potential spots per cell. The transcript spots were assigned to the 
corresponding labeled cells according to location, thereby generating a gene–cell 
count table.

Barcode calling. Once all potential points in all channels of all hybridizations were 
obtained, dots were matched to potential barcode partners in all other channels of 
all other hybridizations using a 2.45-pixel search radius to find symmetric nearest 
neighbors. Point combinations that yielded only a single barcode were immediately 
matched to the on-target barcode set. For points that matched to multiple 
barcodes, first the point sets were filtered by calculating the residual spatial 
distance of each potential barcode point set, and only the point sets giving the 
minimum residuals were used to match to a barcode. If multiple barcodes were still 
possible, the point was matched to its closest on-target barcode with a hamming 
distance of 1. If multiple on-target barcodes were still possible, then the point was 
dropped from the analysis as an ambiguous barcode. This procedure was repeated 
using each hybridization as a seed for barcode finding, and only barcodes that were 
called similarly in at least three of four rounds were validated as genes. For more 
details regarding the seqFISH method, please refer to Shah et al.24.

smFISH processing. For the 36 genes that were probed using smFISH, 12 
sequential rounds of imaging across three fluorescent channels (corresponding 
to Alexa Fluor 647, Cy3B and Alexa Fluor 488, respectively) were used 
(Supplementary Table 3). Assignment of an optimal light intensity threshold to 
separate background noise from hybridized mRNA molecules poses an additional 
challenge for these data because, unlike the seqFISH probed transcripts, each gene’s 
expression is measured only over a single round of hybridization.

To address this problem, we manually assigned a threshold for three randomly 
selected FOVs in the first experimental block (corresponding to embryos 1 and 2) 
and three FOVs in the second experimental block (embryo 3) for all fluorescent 
channels and all hybridization rounds. The choice of threshold was motivated 
by considering the minimum value at which we acquire nearly complete loss of 
dots in cell-free areas, which we expect should only contain background signal. 
We then assessed the relationship between the channel and hybridization round 
and the manually selected thresholds, observing that intensity thresholds are 
highly channel specific but do not vary as a function of hybridization round 
(Supplementary Fig. 15). Accordingly, for each channel, hybridization round and 
experimental block, we assigned the intensity threshold as the average across all 
manually selected thresholds.

We then visually assessed the spatial distribution of selected spots for each 
gene, embryo and z slice. While most of the estimated intensity thresholds resulted 
in spatially coherent expression patterns across all embryos, we noticed a strong 
channel, FOV-specific effect for some genes. Specifically, in the first experimental 
block, genes probed with Alexa Fluor 647 exhibited substantial background signal 
in FOVs 39, 40 and 44. Given that the effect is highly specific to this channel, it is 
likely an artifact of the imaging experiment. For these genes and FOVs, manual 
examination of a wide range of appropriate intensity thresholds failed to identify a 
threshold at which the background noise was eliminated (Supplementary Fig. 15). 
Consequently, we discarded these fields when evaluating the performance of our 
imputation strategy (see below).

Whole-mount HCR on E8.75 mouse embryos. HCR fluorescent in situs where 
carried out as described in115,116, with the modification of using 60 pmol of each 
hairpin per 0.5 ml of amplification buffer. Hairpins were left for 12–14 h at room 
temperature for saturation of amplification to achieve the highest levels of signal to 
noise117. Split initiator probes (V3.0) were designed by Molecular Instruments.
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HCR imaging. All images were obtained on a Zeiss 880 laser-scanning confocal 
microscope with a ×10 objective and 6.74-µm z-step sizes. Tile-scanned z stacks 
were stitched in Zen software and rendered in 3D in Imaris (v9.6, Bitplane).

Downstream computational analysis. Quality control and filtering. To lower the 
chance of counting cells multiple times in contiguous z slices, we selected two z 
slices (denoted 1 and 2 hereafter) for further analysis corresponding to two parallel 
tissue layers 12 µm apart. We then removed segmented regions most likely to 
correspond to empty space rather than cell-containing regions by testing whether a 
putative cell’s square root-transformed segmented area was larger than expected (Z 
test; FDR threshold of 0.01). Of the remaining segmented regions, we considered 
segments containing at least 10 detected mRNA molecules corresponding to at 
least five unique genes as true cells.

Cell neighborhood network construction. To construct a cell neighborhood 
network, for each cell within a given embryo and z slice, we extracted the 
polygon representation of the cell’s segmentation corresponding to a set of vertex 
coordinates. We then calculated an expanded segmentation by constructing a new 
polygon where each expanded vertex was lengthened along the line containing 
the original vertex and the center of the polygon. We performed a multiplicative 
expansion of 1.3 for each vertex. To construct the cell neighborhood network, 
we then identified the other cells in which segmentation vertices were found to 
be within the expanded polygon. Cell neighborhood networks were considered 
separately for each embryo and z slice combination.

Gene expression quantification per cell. We calculated normalized expression log 
counts for each cell using scran’s logNormCounts function108, with size factors 
corresponding to the total number of mRNAs (excluding the sex-specific gene Xist) 
identified for each cell. Size factors were scaled to unity, and a pseudocount of 1 
was added before the log counts were extracted. For the majority of downstream 
analyses, such as differential gene expression, we specifically included biological 
and technical variables (that is, z slice and FOV) as covariates. However, for 
the task of harmoniously visualizing gene expression in spatial coordinates, we 
extracted ‘batch-corrected expression’ values for each gene. This was done by first 
performing batch correction using the MNN method, implemented with fastMNN 
in the scran package108, with batch variables corresponding to z slice and FOV. 
For interpretable visualization, for each gene, we extracted the reconstructed 
expression values following batch correction and rescaled these to correspond to 
the distribution of expression values before batch correction.

Clustering gene expression. To identify unsupervised clusters, we first performed 
multibatch-aware principal component analysis (PCA) on the normalized log 
counts using the multiBatchPCA function in scran108, with z slice and FOV as batch 
variables using all genes except Xist as input to extract 50 PCs. We then performed 
batch correction using the MNN approach, resulting in a corrected reduced 
dimension embedding of cells. To identify clusters, we estimated a shared nearest 
neighbor network, followed by Louvain network clustering. To further extract 
unsupervised subclusters, for each set of cells belonging to a given cluster, we 
performed highly variable gene selection to select genes with a non-zero estimated 
biological variance, excluding the sex-specific gene Xist. Using these selected genes, 
we performed batch-aware PCA to extract 50 PCs, followed by batch correction, 
shared nearest neighbor network construction and Louvain clustering similar to 
what was performed for all cells.

Joint analysis with Gastrulation atlas. We downloaded the E8.5 Pijuan-Sala 
et al.6 10x Genomics scRNA-seq dataset from the Bioconductor package 
MouseGastrulationData and performed batch-aware normalization using the 
multiBatchNorm function in the scran package108 before extracting cells that 
correspond to a known cell type with at least 25 cells. Cell types associated with 
the somitic and paraxial mesoderm were further refined using labels assigned 
by Guibentif et al.118 (personal communication); blood subtypes (erythroid 1, 
erythroid 2 and erythroid 3 and blood progenitors 1 and 2) were collapsed to 
the two major groups, ExE mesoderm was renamed to lateral plate mesoderm 
and pharyngeal mesoderm was renamed to splanchnic mesoderm. Subsequently, 
only genes probed by both the scRNA-seq and seqFISH assays were kept for this 
analysis. We then jointly embedded the normalized log counts of each of the 
two datasets by performing batch-aware PCA with 50 components (excluding 
the sex-specific gene Xist) via the multiBatchPCA function in scran, with batch 
variables corresponding to sequencing runs in the Gastrulation atlas and FOV and 
z slice for the seqFISH data. We corrected for platform- and batch-specific effects 
using the MNN method (fastMNN55), ensuring that merge ordering is such that 
Gastrulation atlas batches are merged first (ordered by decreasing number of cells). 
This joint embedding of the Gastrulation atlas and seqFISH dataset was further 
reduced in dimension using UMAP, implemented by calculate UMAP in scran108, 
to allow the data to be visualized in two dimensions.

Cell type identification. To assign a cell-type label to each seqFISH cell, we 
considered the Gastrulation atlas cells that it was closest to in the batch-corrected 
space. We considered the k-nearest cells, with the distance from the seqFISH cell to 

its Gastrulation atlas neighbors being computed as the Euclidean distance among 
all of the batch-corrected PC coordinates. We set the number of nearest neighbors, 
k, to 25. Ties were broken by favoring the cell type of those closest in distance to 
the query cell. We calculated a ‘mapping score’ for each query cell as the proportion 
of the majority cell type present among the 25 closest cells.

To further refine the predicted cell types, we performed joint clustering of the 
Gastrulation atlas and seqFISH cells by building a shared nearest neighbor network 
on the joint PCs followed by Louvain network clustering. Additionally, we further 
subclustered the output by building a shared nearest neighbor network on the 
cells corresponding to each cluster followed by Louvain network clustering. We 
then inspected the relative contribution of cells to each subcluster as well as the 
expression of marker genes to identify subclusters that potentially required manual 
reannotation, either due to small differences in composition in the reference 
atlas or in the gene expression profile (Extended Data Fig. 3). We also identified 
a set of subclusters that were likely associated with low-quality cells, defined by 
lower total mRNA counts. Furthermore, we performed virtual dissection on 
regions corresponding anatomically to the developing gut tube and for these cells 
reclassified those that were ‘Surface ectoderm’ as ‘Gut tube’.

Simulation selecting fewer genes for data integration. For the specific task of 
recovering cell-type identity, we investigated whether fewer genes would be 
sufficient. To do this, we randomly selected subsets of genes from the 351 gene 
set, corresponding to approximately 10, 20, 30, …, 90% of the genes, repeated five 
times for each subset. Because there is a lack of ground truth of the cell-type labels 
for the seqFISH data, we assessed the cell-type classification accuracy relative to 
the full probe set, that is, we made the assumption that the classified cell type using 
the 351 genes is the true label, thus measuring the degree of loss of accuracy from 
this labeling. While ground truth labels are available for the Gastrulation atlas 
dataset, for consistency we calculated the relative accuracy following resubstitution 
classification for these cells by also treating the classified cell type using the 351 
genes as the true label.

Any difference in cell-type recovery accuracy between the seqFISH and 
Gastrulation atlas data could be attributed to the experimental strategy (scRNA-seq 
versus seqFISH) or to the fact that the Gastrulation atlas data was initially mined 
for these informative genes, and, as a result, the resubstitution classification 
accuracy may be inflated for these cells. Thus, we extracted the host WT cells 
of the E8.5 WT/WT control chimera from Pijuan-Sala et al.6, which served as 
an independent validation set, representing a dataset that was not mined for 
informative genes but also corresponds to the same experimental strategy as the 
Gastrulation atlas (scRNA-seq).

We performed joint integration of these three datasets using the randomly 
selected gene subsets and calculated the relative cell-type classification accuracy 
compared to the full gene set for each dataset.

Subclustering of mixed mesenchymal mesoderm cells. To analyze the mixed 
mesenchymal mesoderm population, we performed highly variable gene selection 
for these cells only using the ‘modelGeneVar’ function in scran108 and performed 
PCA (excluding the sex-specific gene Xist) on the normalized log counts followed 
by batch correction using MNN, with embryo and z slice as batch variables. We 
then further reduced these corrected PCs into two dimensions using UMAP for 
visualization purposes. To identify mixed mesenchymal mesoderm subclusters, 
we estimated a shared nearest neighbor network, followed by Louvain network 
clustering. We then performed differential expression analysis on the seqFISH 
genes and on the imputed gene expression values (described further below) using 
the ‘findMarkers’ function in scran108 and Gene Ontology enrichment analysis as 
described below. To further identify the spatial context for the mixed mesenchymal 
mesoderm, for each cluster, we extracted the cells that appear as direct contact 
neighbors with any cell belonging to the cluster and recorded their corresponding 
cell type. To assess the relative association of each mixed mesenchymal 
mesoderm subcluster to the Gastrulation atlas6, we calculated a weighted score 
per Gastrulation atlas cell and mixed mesenchymal mesoderm subcluster, 
corresponding to the average ranking of the Gastrulation atlas cell among the top 
25 nearest neighbors for each mixed mesenchymal mesoderm subcluster cell.

Spatial heterogeneity testing per cell type. We identified genes with a spatially 
heterogeneous pattern of expression using a linear model with observations 
corresponding to each cell for a given cell type and with outcome corresponding 
to the gene of interest’s expression value. For each gene, we fit a linear model 
including the embryo and z slice information as covariates as well as an additional 
covariate corresponding to the weighted mean of all other cells’ gene expression 
values. The weight was computed as the inverse of the cell–cell distance in the  
cell–cell neighborhood network.

More formally, let xij be the expression of gene i for cell j. Calculate x∗ij as 
the weighted average of other K cells’ expression weighted by distance in the 
neighborhood network

x∗ij =
∑

k∈K

xik
Djk
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where

Djk = d
(
vj, vk

)

is the path length in the neighborhood network between vertices corresponding to 
cells j and k. We then fit the linear model for each gene

xi = β0 + β1x
∗

i + β2e + β3z + β4e × z + ϵ.

Here, e and z correspond to the embryo and z slice identity of the cells, respectively, 
and ε represents random normally distributed noise. The t-statistic corresponding 
to β1 is reported here as a measure of spatial heterogeneity for the given gene, a 
large value corresponding to a strong spatial expression pattern of the gene in 
space, especially among its neighbors.

Subclustering of developing brain cells. To further subcluster the developing brain 
cells, we extracted the Gastrulation atlas cells corresponding to E8.5 that were 
classified as forebrain/midbrain/hindbrain. For these cells, we identified genes 
to further cluster by using the scran function modelGeneVar108 to identify highly 
variable genes with non-zero biological variability, excluding the sex-specific 
gene Xist. For these genes, we extracted the cosine-standardized log counts, 
which were standardized against the entire transcriptome. We then performed 
batch correction using the MNN method on batch-aware PC coordinates, where 
batches corresponded to the sequencing samples. Using this batch-corrected 
embedding, we estimated a shared nearest neighborhood network and performed 
Louvain network clustering. To relate these brain subcluster labels to the seqFISH 
data, we extracted the nearest neighbor information (as described in Cell type 
identification) for seqFISH cells corresponding to forebrain/midbrain/hindbrain 
and classified their brain subcluster label using k-nearest neighbors with k = 25 and 
closest cells breaking ties. We then named these subclusters based on marker gene 
expression, including a class that may be technically driven (NA class).

Cell–cell contact map inference. We constructed cell–cell contact maps for multiple 
cell annotation labelings, including mapped cell types, subclusters within each 
cell type and mapped gut tube subtypes. To do this, for each embryo and z 
slice combination, we extracted the cell neighborhood network and cell-level 
annotation. We then generated cell–cell contact maps by first calculating the 
number of edges for which a particular pair of annotated groups was observed. 
We then randomly reassigned (500 times) the annotation by sampling without 
replacement and calculated the number of edges for all pairs of annotated groups. 
To construct the cell–cell contact map, we reported the proportion of times the 
randomly reassigned number of edges was larger than or equal to the observed 
number of edges. Small values correspond to the pair of annotation groups being 
more segregated, and large values correspond to them being more integrated in 
physical space than a random allocation. To combine these cell–cell contact maps 
for each embryo and z slice combination, we further calculated the element-wise 
mean for each pair of cell labels. We visualized this in a heat map, ordering the 
annotation groups using hierarchical clustering with Euclidean distance and 
complete linkage. In the case of the gut tube subtypes, we ordered these classes by 
the anterior–posterior ordering given by Nowotschin et al.2. In the brain subtypes, 
we ordered these classes by their approximate anatomical location, from the 
forebrain to the hindbrain region.

Gene Ontology enrichment analysis. To functionally annotate sets of gene clusters, 
we performed gene set enrichment analysis using mouse Gene Ontology 
terms with between 10 and 500 genes appearing in each dataset and at least 1 
gene appearing from the testing scaffold119 using Fisher’s exact test to test for 
overrepresentation of genes and using all scHOT-tested genes as the gene universe. 
An FDR-adjusted P < 0.05 was considered to be statistically significant.

Imputation. Below we outline the different elements of our strategy for imputing 
the spatially resolved expression of genes not profiled using seqFISH.

Intermediate mapping. First, for each gene in the seqFISH library (excluding  
the sex-specific gene Xist), we performed an intermediate mapping to align  
each seqFISH cell with the most similar set of cells in the scRNA-seq dataset.  
To perform the mapping we excluded the gene of interest and used the remaining 
349 genes (351 seqFISH genes – Xist – gene of interest), resulting in 350 
intermediate mappings overall. The leave-one-gene-out mapping approach was 
used to assess whether the intermediate mapping strategy outlined below could  
be used to estimate the expression counts of the omitted gene.

Similar to the integration strategy described earlier for assigning cell-type 
labels, for each embryo and z slice, we concatenated the cosine-normalized 
seqFISH counts with the cosine-normalized expression values from the 
Gastrulation atlas scRNA-seq data6. We performed dimensionality reduction 
using ‘multibatchPCA’ (using 50 PCs) and performed batch correction using the 
‘reducedMNN’ function implemented in scran108. Next, for each cell in the seqFISH 
dataset that was assigned a cell-type identity in the earlier integration, we used the 
‘queryKNN’ function in BiocNeighbors to identify its 25 nearest neighbors in the 
scRNA-seq data. Finally, for each seqFISH cell, the expression count of the gene of 

interest is estimated as the average expression of the corresponding gene across the 
cell’s 25 nearest neighbors.

Performance evaluation. For each mapped gene, its performance score is 
calculated as the Pearson correlation (across cells) between its imputed values 
and its measured seqFISH expression level. To estimate an upper bound on 
the performance score (that is, the maximum correlation we might expect to 
observe), we took advantage of the four independent batches of E8.5 cells that were 
processed in the scRNA-seq Gastrulation atlas. In particular, we treated one of the 
four batches as the query set and used the leave-one-out approach described above 
to impute the expression of genes of interest by mapping cells onto a reference 
composed of the remaining three batches. Additionally, to mimic the seqFISH 
imputation, we considered a subset of the Gastrulation atlas data consisting of 
only those genes that were probed in the seqFISH experiment. Moreover, due to 
the experimental procedure, some cell types present in the Gastrulation atlas (for 
example, extraembryonic cell types) were not probed in the seqFISH experiment. 
Accordingly, we considered only the subset of scRNA-seq profiled cells that were 
among the nearest neighbors of a seqFISH-mapped cells so that this subset most 
faithfully resembled the seqFISH data.

Subsequently, for each mapped gene, we computed its prediction score as the 
weighted Pearson correlation between its imputed expression level and its true 
expression level. The weights were proportional to the number of times each 
Gastrulation atlas cell was present among the neighbors of a seqFISH cell across  
all profiled genes.

Finally, for each gene probed in the seqFISH experiment, we define its 
normalized imputation performance score as the ratio of its performance score 
over its prediction score.

Final imputation. To perform imputation for all genes, we aggregated across the 
350 intermediate mappings generated from each gene probed using seqFISH. 
Specifically, for each seqFISH cell, we considered the set of all Gastrulation atlas 
cells that were associated with it in any intermediate mapping. Subsequently, for 
every cell, we calculated each gene’s imputed expression level as the weighted 
average of the gene’s expression across the associated set of Gastrulation atlas cells, 
where weights were proportional to the number of times each Gastrulation atlas 
cell was present. Thus, the imputed expression profiles for all genes, including 
those in the overlapping gene set, are on the same scale as the scRNA-seq log  
count data.

MHB detection and virtual dissection. To identify the MHB, we visually assessed the 
expression of the well-described mesencephalon and prosencephalon marker Otx2 
and the rhombencephalon marker Gbx2 (Supplementary Fig. 13). We manually 
selected the physical region where both genes are expressed and defined this as the 
FOV (black rectangle, Supplementary Fig. 13). Subsequently, within the selected 
region, we performed a virtual dissection by manually choosing the boundary that 
best discriminates the expression of Otx2 and Gbx2 (Supplementary Fig. 13), and, 
based on the boundary, we assigned cells either a midbrain or hindbrain identity.

Downstream analysis of the MHB region. Differential expression analysis was 
performed between midbrain- and hindbrain-assigned cells using the scran 
function ‘findMarkers’ (with an LFC threshold of 0.2 and an FDR-adjusted P value 
threshold of 0.05; Supplementary Table 7).

To perform diffusion analysis of the MHB region, we performed batch 
correction of the FOVs and z slice using the MNN approach, with log counts of 
all genes excluding the sex-specific gene Xist as input. We then used the diffusion 
pseudotime (DPT) method implemented in the R package destiny78 to build a 
diffusion map with 20 DCs using the cell with maximum value in DC1 as the root 
cell for DPT estimation. To visualize the DCs in space, we added an estimated 
vector field to the segmented spatial graphs, with arrow sizes corresponding to 
the magnitude of change among nearby cells and directions corresponding to the 
direction with the largest change in the diffusion component. We then identified 
imputed genes strongly correlated with DPT (absolute Spearman correlation of 
>0.5) among either midbrain or hindbrain region cells. For smooth expression 
estimation along the DPT, we split cells into either midbrain or hindbrain regions 
and extracted fitted values from local regression (loess) for each gene with DPT 
ranking as the explanatory variable. To further identify genes associated with 
spatial variation in expression, we performed scHOT81 analysis using weighted 
mean as the underlying higher-order function, with a weighting span of 0.1 
on spatial coordinates and using the imputed gene expression values. We then 
identified the 500 top-ranked significantly spatially variable genes (ensuring also 
that the FDR-adjusted P value was <0.05), clustered their smoothed expression 
using hierarchical clustering (Supplementary Table 8) and selected the number 
of clusters using dynamicTreeCut120. To visualize spatial expression profiles of 
clusters, we calculated the mean inferred gene expression value for the genes 
associated with each cluster.

Joint analysis with the Nowotschin et al. dataset. We downloaded the Nowotschin 
et al. 10x Genomics scRNA-seq counts and associated annotations from the 
corresponding Shiny web application (https://endoderm-explorer.com/)2. We then 
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subset down to E8.75 cells, considering each 10x Genomics sequencing library 
as a batch variable. We performed highly variable gene (HVG) selection using 
‘modelGeneVar’ from the scran package108 using the library sample as the blocking 
variable. We then selected the intersection of these HVGs and the genes appearing 
in the seqFISH dataset for further analysis. We concatenated the normalized 
log counts for the Nowotschin et al. and seqFISH datasets and performed 
dimensionality reduction to 50 PCs using ‘multiBatchNorm’ as implemented in 
scran108. We then performed batch correction using the MNN approach, where the 
merge order was fixed to first integrate batches from the Nowotschin et al. dataset 
(ordered by decreasing cell number). We then identified the 10 nearest neighbors 
of the seqFISH cells to the Nowotschin et al. cells in the corrected reduced 
dimensional space. Using these nearest neighbors, we classified seqFISH gut tube 
cells to a cell type defined by Nowotschin et al. A ‘mapping score’ was computed 
for each cell as the proportion of the nearest neighbors in the Nowotschin et al. 
data corresponding to the selected class. We performed differential gene expression 
analysis between the lung 1 and lung 2 groups using ‘findMarkers’ in scran108 
and also performed differential gene expression analysis between the associated 
mesodermal cells at most three steps away from the lung 1 or lung 2 cells in the 
cell–cell neighborhood network.

Anterior–posterior axis cell ranking. To calculate the relative position of 
developing gut tube cells along the anterior–posterior axis, for each embryo, 
we performed a virtual dissection to visually identify the dorsal and ventral 
regions of the gut tube. Then, for each embryo and each dorsal or ventral tissue 
region, we fit a single principal curve model using the R package princurve121, 
with explanatory variables corresponding to the physical coordinates. We then 
extracted anterior–posterior cell rankings by taking the rank of the fitted arc 
length from the beginning of the curve, ensuring that the curve always began at 
the anterior-most position.

Joint analysis with Nowotschin et al. and Han et al. datasets. To further understand 
the relationship between the endodermal and mesodermal layers in the gut tube, 
we performed a joint analysis between the Nowotschin et al. data (described 
above) as well as the E8.5 splanchnic mesoderm cells from Han et al.3. For the Han 
et al. data, we performed HVG selection using ‘modelGeneVar’ from the scran 
package108 using the library sample as the blocking variable and then selected the 
genes that appeared in either the HVG list for Nowotschin et al. or Han et al. and 
genes that were also present in the seqFISH gene library. We then concatenated 
the normalized log counts of all three datasets and performed integration 
(dimensionality reduction, batch correction, further dimensionality reduction for 
visualization) and cell classification as described above. Thus, for each seqFISH 
cell, we obtained a classified cell class according to the labels provided by Han 
et al., including mesodermal subtypes in the splanchnic mesoderm. To further 
investigate the surrounding mesodermal cells of the gut tube, we used the cell–cell 
neighborhood network to identify mesodermal cells at most three steps away 
from a gut tube cell and, for each of these cells, we identified their position as 
either dorsal or ventral to the gut tube and calculated the mean position along the 
anterior–posterior axis.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The spatial transcriptomic map can be explored interactively at https://marionilab.
cruk.cam.ac.uk/SpatialMouseAtlas/, and raw image data are available on request. 
Processed gene expression data with segmentation information and associated 
metadata are also available to download and explore online at https://marionilab.
cruk.cam.ac.uk/SpatialMouseAtlas/. Processed gene expression data are also 
available within the R/Bioconductor data package MouseGastrulationData (version 
3.13, https://doi.org/10.18129/B9.bioc.MouseGastrulationData).

Code availability
Scripts for downstream analysis are available at https://github.com/MarioniLab/
SpatialMouseAtlas2020.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | seqFISH probe library design. (a) Predicting Gastrulation atlas cell types using the seqFISH probe library for embryonic timepoints 
E7.5, E8.0, and E8.5. The x-axis is the true cell type of each cell, and the y-axis the mapped cell type. Shading indicates the fraction of cells of each true 
cell type mapped to each possible cell type. Numbers for each column correspond to the number of cells in each true cell type. (b) Histogram, showing 
the seqFISH library feasibility. Histograms of expression units of the seqFISH probe library genes for each cell type in the E8.5 Gastrulation atlas. Green, 
orange, and red lines correspond to 200, 250, and 300 normalized expression units respectively, reflecting the guided expression to avoid oversaturation. 
(c) Heatmap showing the mean expression of all selected seqFISH library genes (rows) for each cell type (columns) in the E8.5 Gastrulation atlas.
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Extended Data Fig. 2 | Validation of RNA quality and cell segmentation. Images are representative and were repeated independently for all N = 3 
embryos with similar results. (a) Schematic overview of the hybridization of two interspersed Eef2 probe sets to test for RNA integrity. (b) Image showing 
the expression of Eef2 probe set A (Alexa Fluor 647 - red) and Eef2 probe set B (Cy3B - blue) for experimental block 1. Color merge of these two images 
indicates a high degree of overlap between red and blue probes. Merge and DAPI (grey) show overlap of Eef2 signal surrounding regions where cell nuclei 
are present. (c) Expression profile of Eef2 probe set A and B, as described in (B) for experimental block 2. (d) Image of cell membrane labeling (purple) 
using a combination of E-cadherin, N-cadherin, Pan-cadherin and β-catenin primary antibody staining, following an optimized cell segmentation protocol 
(Methods) and nuclear staining using DAPI (grey) for the first tissue section, containing embryo 1 and 2. Signal membrane labeling was used for cell 
segmentation using Ilastik35. (e) Cell membrane labeling (purple) and cell segmentation, as described in (D) for experimental block 2.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Optimizing cell type annotation. (a) Joint UMAP of Gastrulation atlas and seqFISH expression data, with cells colored by data 
modality. (b) Joint UMAP of Gastrulation atlas and seqFISH expression data, with panels corresponding to each embryo and the Gastrulation atlas 
dataset. (c) Joint UMAP of Gastrulation atlas and seqFISH expression data, colored by joint subclustering with labels corresponding to centroid in 
UMAP coordinates. (d) Barplots of the proportion of cell types from the Gastrulation atlas cells present in each subcluster (left), and automated cell 
type classification for seqFISH data (right). Numbers beside each bar correspond to the number of cells, and labels beside the left barplot correspond to 
the majority cell type of the Gastrulation atlas cells for each joint subcluster. (e) Spatial map of virtual dissection of cells to be classed as developing gut 
tube, for each embryo (columns) and z-slice (rows). Scale bar 250 µm. (f) Heatmap of contingency table of automated cell type label for seqFISH cells 
(rows) and refined cell type classification (columns). (g) Barplot of relative enrichment in abundance of seqFISH cells compared to Gastrulation atlas 
cells, each bar corresponds to embryo 1, 2, and 3, from left to right. (h) Violin plots of automated cell type mapping score for each seqFISH cell, with bar 
corresponding to median. Numbers above correspond to the number of cells classed into each cell type. (i) Heatmap of contingency table of cell type label 
for seqFISH cells (rows) and independent unsupervised cell subclusters (columns).
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Unsupervised clustering of seqFISH data. (a) UMAP of seqFISH expression data, with cells colored by unsupervised subclusters, 
with labels corresponding to centroid in UMAP coordinates. (b) Multiple panels displaying UMAP of seqFISH expression data, with cells for each separate 
cluster colored by the associated subcluster, with labels corresponding to centroid in UMAP coordinates. (c) Spatial map of embryo 1 cells colored by 
unsupervised subclusters (colors matching panel A) for each z-slice. Scale bar 250 µm. (d) as in C with embryo 2. (e) as in C with embryo 3. (f) Heatmap 
of relative mean expression of seqFISH cells grouped by embryo and unsupervised subcluster (columns) for genes selected as appearing in the top three 
significant marker genes (rows) for any of the subclusters. Colors along the top correspond to unsupervised subclusters with legend matching panel A.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Cell annotation and constructing the cell-contact map. (a) Spatial map of embryos 2 and 3, colored by refined cell type. Scale 
bar 250 µm. (b) Schematic of construction of cell neighborhood network, where cell segmentation polygons are expanded and a network edge drawn 
if another cell is within the expanded polygon region. Below is the resulting network for a selected field of view (Position 0, Embryo 1). (c) Visualization 
of cell neighborhood network using spatial map of embryo 1 with zoom in to reveal cell neighborhood network edges among cells. Scale bar 250 µm. 
(d) Spatial maps of embryos 2 and 3, with cells colored by brain subtypes, and other cells in grey. Scale bar 250 µm. (e) Violin plot showing t-statistic 
corresponding to spatial heterogeneity test for each gene within brain subtype. The top three genes are labeled for each violin, and the bar corresponds 
to the median. (f) Heatmap of relative mean expression of each embryo and brain subcluster for significant (one-sided two-sample t-test FDR-adjusted 
P-value < 0.05, absolute LFC > 0.2) marker genes.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Characterization of mixed mesenchymal mesoderm cluster. (a) UMAP embedding of mixed mesenchymal mesoderm seqFISH 
cells, colored by unsupervised clusters. (b) Spatial plots with cells colored by mixed mesenchymal mesoderm unsupervised clusters. (c) Heatmap of mean 
expression of each embryo and mixed mesenchymal mesoderm cluster for significant (FDR-adjusted P-value < 0.05, absolute LFC > 0.2) marker genes. 
(d) Dotplot of significantly enriched gene ontology terms for each mixed mesenchymal mesoderm cluster (Fisher’s Exact Test, FDR-adjusted P-value < 
0.05). (e) Proportional bar plot showing the corresponding cell types for spatial neighbors of each embryo and mixed mesenchymal mesoderm cluster, 
with cell types with a small percentage grouped into Other cell types. Abbreviation used: HEP = hematoendothelial progenitors. (f) Spatial plots of inferred 
Wt1 expression among mixed mesenchymal mesoderm clusters, UMAP embedding of cells colored by Wt1 expression, and violin plot of Wt1 expression 
for each embryo and mixed mesenchymal mesoderm cluster. (g) As for (f) for inferred expression of Tbx18. (h) Scatterplot of UMAP embedding of E8.5 
Gastrulation atlas cells, colored by proportion of selection within nearest neighbor set for each mixed mesenchymal mesoderm cluster.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Imputation strategy. (a) Normalized performance as a validation of imputation. Violin plots show distributions (across measured 
genes) of normalized performance for each embryo and z-slice. Median and standard error appear above each violin. (b) Scatterplots of prediction scores 
(x-axis) and normalized performance scores (y-axis). Genes with prediction score lower than 0.1 show stochastic deviations in normalized performance 
and were filtered. (c) Scatterplots of performance and prediction scores for genes probed by smFISH, with each panel corresponding to one embryo 
and z-slice, and points corresponding to genes. Genes exhibiting strong field of view effect (FOV: 39, 40, 44) were discarded from quantification of 
performance and prediction scores. (d) Assessment of quality of imputation for smFISH genes. Genes are ordered according to the median Performance/
Prediction ratio across all embryos and z-slices. Left panel: Boxplots representing Performance/prediction (x-axis) for genes profiled in smFISH across 
all embryos and z-slices. Middle panel: Boxplots representing fraction of cells with non-zero smFISH counts for the corresponding genes. Right panel: 
Boxplots representing correlation (across cell types) between fraction of cells (out of all cells for the corresponding cell type) with non-zero smFISH 
counts for the corresponding genes and fraction of cells with non-zero logcounts in the Gastrulation Atlas. Individual data points are overlaid on each 
boxplot. N = 6 technical samples across 3 biologically independent embryos. Boxes display 25th, 50th, and 75th percentiles, and whiskers extend to closest 
observation within outlier range, defined as not more than 1.5 times the interquartile range.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Statistical interrogation of the Midbrain-Hindbrain Region. (a) Scatterplot of all imputed genes, showing mean expression 
(x-axis) and scHOT weighted mean test statistic (y-axis). Significant (scHOT permutation test, FDR-adjusted P-value < 0.05) and top 500-ranked genes 
are colored red, and the top 20 genes are labeled. (b) Heatmap of expression of clustered MHB genes and cells, split along columns by clustered cell 
regions, and along rows by mean expression profiles. Top barplots display the number of cells within each group, right barplots display the number of 
genes withing each group, bottom spatial graphs display cells belonging to each split cluster, and left spatial graphs show the mean spatial expression for 
genes that characterize each split cluster. (c) Spatial graph of the MHB with cells colored by mean expression of the genes belonging to each cluster, and 
barplots displaying the top 20 enriched gene ontology terms with bar length corresponding to -log10(unadjusted P-value), dark grey bars correspond to 
FDR-adjusted P-value < 0.05. Fisher’s Exact Test was used for gene ontology testing. (d) Spatial graphs of the MHB for the top 20 ranked scHOT weighted 
mean genes, with red titles corresponding to inferred gene expression. (e) Smoothed heatmap of cells (columns), ordered along DPT split by anatomical 
midbrain and hindbrain regions, for genes strongly correlated with DPT (rows). Cells are ordered from low to high DPT from left to right for the hindbrain 
region, and ordered from high to low DPT from left to right for the midbrain region. Gene names in red correspond to inferred gene expression.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Surrounding mesoderm of the developing gut tube. (a) Joint UMAP of Nowotschin et al., Han et al. and seqFISH expression data, 
with cells colored by dataset. (b) as in (A) with cells colored by corresponding Gastrulation atlas cell type (automatically inferred for cells not coming  
from the seqFISH dataset). (c) as in (A) with cells colored by mesodermal and endodermal subtype for the Han et al. dataset, and all other cells colored  
in grey. (d) Spatial graphs of gut tube and surrounding mesodermal cells, colored by inferred gut tube subtype and mesodermal subtypes respectively.  
(e) Density graphs of seqFISH mesodermal cells ordered along physical anterior to posterior axis, split by embryo (rows), and mesoderm cluster and 
position along dorsal-ventral axis (columns). (f) Spatial graph of cells corresponding to gut tube subtypes Lung 1 and Lung 2, as well as surrounding 
mesodermal cells. (g) Scatterplot of log-fold changes corresponding to tests for differential expression between ventral (Lung 1) and dorsal (Lung 2) 
endodermal cells (x-axis), and ventral and dorsal mesodermal cells (y-axis) for all seqFISH genes. Significant (two-sample t-test, FDR-adjusted  
P-value < 0.05 and absolute LFC > 0.2) genes are labeled, and colored according to the comparison in which they are selected. (h) Spatial graphs  
of expression of selected genes among those differentially expressed between dorsal and ventral subgroups.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Comparison between dorsal and ventral side of developing gut tube. (a) Spatial map of cells corresponding to the developing 
gut tube for embryo 2. Scale bar 250 µm. (b) as in A, for embryo 3. (c) Spatial map of anatomical foregut cells for embryos 1, 2, and 3, virtually dissected 
to correspond to the dorsal (orange) and ventral (purple) regions of the developing gut tube. Black lines correspond to the fitted principal curve model 
for each embryo and developing gut tube region, where cells are ordered from anterior to posterior using these models. Scale bars 250 µm. (d) Barplot 
showing relative proportion of cells in ventral or dorsal anatomical region of the developing hindgut, split by classification of developing gut tube subtype. 
Black points correspond to relative proportions for each individual embryo. (e) Anterior-posterior ranking of embryo 2 cells, corresponding to each  
gut tube subtype, split into dorsal and ventral regions. Bar color corresponds to the mapping score associated with classification into the subtype.  
(f) as in E for embryo 3. (g) Scatterplot of anterior-posterior logistic regression prediction error rate (y-axis) for each contiguous pair of developing gut 
tube subtypes (x-axis), split into dorsal and ventral anatomical regions, for each embryo. A higher prediction error rate corresponds to a higher level of 
relative mixing of subtypes along the anterior-posterior axis, while a lower prediction error rate corresponds to more distinct and separate arrangement 
of subtypes along the anterior-posterior axis. (h) Spatial expression of Tbx1 only in the developing gut tube for embryos 2 (top) and 3 (bottom). Scale bar 
250 µm. (i) as in H for gene Osr1. (j) ‘Digital in situ’ showing detected mRNA molecules for Tbx1 (red) and Shh (cyan) for embryos 2 (top) and 3 (bottom). 
Scale bar 250 µm. (k) as in J for genes Smoc2 (red) and Tbx3 (cyan). (l) as in J for genes Smoc2 (red) and Gata3 (cyan). (m) ‘Digital in situ’ showing 
detected mRNA molecules for Smoc2 (red) and Gata3 (cyan) for embryo 1. Scale bar 250 µm. (n) Multiplexed mRNA imaging of whole-mount E8.75 
mouse embryo using hybridization chain reaction (HCR) of Smoc2 (red) and Gata3 (cyan). Image is representative and were repeated independently  
on N = 2 embryos with similar results.
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