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A B S T R A C T   

High-throughput technologies produce gene expression time-series data that need fast and specialized algorithms 
to be processed. While current methods already deal with different aspects, such as the non-stationarity of the 
process and the temporal correlation, they often fail to take into account the pairing among replicates. 

We propose PairGP, a non-stationary Gaussian process method to compare gene expression time-series across 
several conditions that can account for paired longitudinal study designs and can identify groups of conditions 
that have different gene expression dynamics. We demonstrate the method on both simulated data and previ
ously unpublished RNA sequencing (RNA-seq) time-series with five conditions. The results show the advantage of 
modeling the pairing effect to better identify groups of conditions with different dynamics. The pairing effect 
model displays good capabilities of selecting the most probable grouping of conditions even in the presence of a 
high number of conditions. 

The developed method is of general application and can be applied to any gene expression time series dataset. 
The model can identify common replicate effects among the samples coming from the same biological replicates 
and model those as separate components. Learning the pairing effect as a separate component, not only allows us 
to exclude it from the model to get better estimates of the condition effects, but also to improve the precision of 
the model selection process. The pairing effect that was accounted before as noise, is now identified as a separate 
component, resulting in more accurate and explanatory models of the data.   

1. Background 

Gene expression time-series studies have become popular as they can 
reveal dynamics of transcriptional processes. These studies typically use 
longitudinal experimental designs where repeated measurements (over 
time) of each cell sample are collected. A common study design involves 
comparisons between treatments, or conditions, and the goal is to 
identify groups of conditions that have different gene expression dy
namics. Further, to reduce variability between conditions and to in
crease statistical power, biological samples in different conditions are 
typically matched, resulting in paired longitudinal designs. Thus, it is 
important to take the paired design into account in the data analysis in 
order to reveal the true differences between different treatments. 

Gene expression microarray and RNA-seq techniques allow quanti
tative, genome-wide analysis of gene expression levels. A number of 

software tools are available for statistical analysis of gene expression 
data measured by microarrays (e.g. LIMMA [18]) and RNA-seq (e.g. 
DEseq [3] and edgeR [20]). These tools rely on linear and generalized 
linear models, use empirical Bayes to share information between genes, 
allow modeling complex experimental designs, and support testing a 
variety of hypothesis, but are not designed for longitudinal studies that 
involve repeated measurements of individuals over time. Standard 
methods for longitudinal data analysis include linear and generalized 
linear mixed effect (LME) models, as implemented in e.g. lme4 package 
[6]. Bayesian alternatives for modeling gene expression time-series data 
have been proposed e.g. in Refs. [4,5] that also support non-Gaussian 
likelihood models. Methods of gene expression time-series data anal
ysis include also lmms [23] and ImpulseDE2 [11]. The former is based on 
linear mixed models and ANOVA log likelihood ratio tests, while the 
latter is based on an impulse model as a continuous representation of 
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temporal responses. 
A number of non-linear, non-stationary and non-parametric methods 

for gene expression time series have been proposed using Gaussian 
processes (GP). Yuan was among the first who used GPs to model gene 
expression time course data [26]. A number of improved methods have 
been proposed, such as methods that can account for outliers [22], a 
method for analyzing multiple conditions [2], methods that identify 
time intervals of differential expression [13,22], and methods for ac
counting time delays between replicates and non-Gaussian likelihood 
models [1]. However, none of these tools can account for paired 
experimental designs that are commonly used in biological studies. 
Similar ideas have been proposed in the context of GP-based clustering 
of time-series data [15], where authors propose a hierarchical GP 
regression model. Nonetheless, the effects in Ref. [15] are not across 
replicate pairs but, instead, a different replicate effect is learned for each 
individual condition. To that end, Spies et al. [21] provide an extensive 
review of a large selection of methods proposed in the literature for time 
course data. 

Recently, we have developed GP based methods to implement 
Bayesian non-parametrics for longitudinal studies [8,24] that can also 
be applied to data from paired longitudinal designs. However, posterior 
sampling for such models has high computational cost and can become 
prohibitive when analyzing tens of thousands of genes. Here, we propose 
a non-stationary GP method for paired, multi-condition longitudinal 
designs that provides efficient analysis for genome-wide studies. 

2. Methods 

Each measured gene expression time-series is modeled as a combi
nation of three components; 1) the response model, 2) the pairing 
model, and 3) uncorrelated random noise fluctuations. The response 
model is inferred from the data, so that all treatments that produce 
similar responses share a common response model. The pairing model is 
shared by all measurements coming from the same biological replicate 
or batch, and models the deviation from the response model. To enforce 
that the pairing model does not confound the response model, the sum of 
all the pairing model components is constrained to zero, as explained 
below. The model considers each gene separately. The measured gene 
expression x is transformed as y = log(x + 1) so that it can be more 
accurately modeled by a normal distribution. Most gene expression ex
periments are “hit-and-run”, where the changes are rapid in the begin
ning and then slow down, thus, making it a non-stationary process. To 
model the non-stationarity, a user is given the choice to transform the 
wall-clock time ̃t as t = ω(̃t) = log(1 +̃t) and the transformed time is used 
as an input the kernel function as explained below. This transformation 
was used in all analyses reported below. 

The standardized measurements of treatment (condition) c ∈ {1, …, 
C} and pairing p ∈ {1, …, P} is modeled as 

ycp(t) = fr(t) + fp(t) + ε, (1)  

where ε ∼ N
(
0, σ2

ε
)
. Each response effect fr is a GP with the standard 

exponentiated quadratic (EQ) kernel 

kr(t, t
′

) = σ2
r exp

[

−
1
2
ℓ− 2

r (t − t
′

)
2
]

, (2)  

where σ2
r is the variance and ℓr the length scale of response effect r. For 

each pairing p, the pairing effect fp is modeled with a centered EQ kernel 

kρ((p, t), (p, t
′

)) = σ2
ρexp
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2
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′
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2
]

, (3)  

where σ2
ρ is the common variance and ℓρ the common length scale of the 

pairing effect. The centered EQ kernel has negative covariance between 
the pairing effects fp and fp′(p ∕= p′) to force their sum to zero, i.e, 

kρ((p, t), (p
′

, t′ )) = −
1

P − 1
σ2

ρexp
[
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′

)
2
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, (4)  

when p ∕= p′ [24]. The centered EQ kernel quarantees that 
∑P

p=1fp(t) = 0 
for all values of t. Note that the response and pairing GPs are 
non-stationary as the logarithmic time transformation corresponds to 

input-warped GPs with kernel k(̃t, t̃
′

) = σ2exp
[

− 1
2ℓ− 2

(ω(̃t) − ω(̃t
′

))
2
]

(similarly for the centered EQ kernel). Prior distributions of hyper
parameters used to analyze real data are described below. 

2.1. Model selection 

For each gene, all the partitionings of the treatments are modeled, 
and the one with the largest marginal likelihood (type-II) is selected as 
the correct response model. For example, an experiment with three 
treatments c1, c2 and c3 evaluates five different partitionings (models) 
for each gene: 1) all the three treatments have a similar temporal 
response, and there is only one response model: r1 = {c1, c2, c3}; 2) 
treatment c1 has a different response compared to c2 and c3, and the two 
response models are r1 = {c1} and r2 = {c2, c3}; 3) same as (2) but with 
treatment c2 singled out, r1 = {c2} and r2 = {c1, c3}; 4) same as (2) but 
with treatment c3 singled out, r1 = {c3} and r2 = {c1, c2}; and 5) all three 
treatments produce different responses, r1 = {c1}, r2 = {c2}, and r3 =

{c3}. 
More generally, given that an experiment contains C treatments, they 

can be partitioned into BC different partitionings (or models), where 

BC =
∑C− 1

k=0

(
C − 1

k

)

Bk (5)  

is the Bell number. For example, Bell number for 2, 3, 4 and 5 treatments 
are B2 = 2, B3 = 5, B4 = 15, and B5 = 52, respectively. For each parti
tioning, we evaluate the marginal likelihood 

log p(y|X, θ) = −
1
2

yT ( KX,X + σ2
ε I
)− 1y −

1
2

log |
(
KX,X + σ2

ε I
)⃒
⃒ −

n
2

log 2π,

(6)  

where y ∈ RC⋅P⋅T contains the standardized gene expression data for a 
gene from all C treatments, P replicates and T time points, X = (x1, …, 
xC⋅P⋅T) contains the explanatory covariates (treatment c, replicate p and 
time point t) for each measurement, θ is a vector containing all the 
kernel hyperparameters, KX,X is the sum of the response covariance 
matrix and the pairing covariance matrix defined by the centered EQ 
kernels, σ2

ε is the Gaussian random noise variance, and n = CPT. An 
example of the covariance matrix KX,X and its components Kr and Kp are 
shown in Fig. 1. 

We call the model presented above the pairing effect model. To 
assess the performance of this model, we compare it against the base 
model. The base model is obtained by optimizing one GP regression 
model for each possible subset of the condition set, and then combining 
the score of these models to have a score for each partitioning of the 
condition set. In other words, the log marginal likelihood log p(y|X, θ) of 
the models of different subsets is summed up to obtain the score for the 
partitioning that corresponds to the set of considered subsets. In the base 
model, we use EQ kernels which model the response functions, but not 
the pairing effect. The base model corresponds to the standard GP 
modeling approach used in several previous works [2,16]. In the pairing 
effect model we standardize the data of all the conditions together, 
which has the effect of preserving the pairing effect across conditions. 
On the other hand, in the base model we standardize separately the data 
of the sets of conditions that corresponds to the different response 
functions, since in this case we are not attempting to learn the pairing 
effect. 
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2.2. Prior distribution for kernel hyperparameters 

Typically, the hyperparameter optimization is done by maximizing 
the log marginal likelihood of the model. This can be extended in a hi
erarchical structure by imposing prior distributions on the hyper
parameters, also called hyperpriors. This allows us to include any prior 
information about the hyperparameters in the optimization problem. 
The kernel choice for the GP regression models is the exponentiated 
quadratic (EQ) kernel. This means that we can define hyperpriors for the 
variance σ2 and the lengthscale ℓ. The information that we want to 
include are:  

● the learned functions have to be smooth. As a result, the lengthscale 
parameters for the response effect kernels should be relatively high;  

● the magnitude of the pairing effect should be small compared to the 
response effect, with the only exception of silent genes where the 
variation of the gene expression over time is approximately 0, thus 
the pairing effect can have higher variation. Thus, we need to 
constrain the variance parameter for the pairing effect kernel to be 
small. 

We use the log-Gaussian distribution log-Normal(μ, σ2) with μ = 0.5, 
σ2 = 0.5 as hyperprior distribution for the lengthscale of the response 
effect, exponential distribution Exp(λ) with λ = 2 for the pairing effect 
variance and log-Gaussian distribution log-Normal(μ, σ2) with μ = 0, σ2 

= 0.5 for the pairing effect lengthscale. We do not use here any 
hyperprior distribution on the noise variance σ2

ε . The log-Normal 
hyperprior distribution applied on the lengthscale parameters of the 
kernel has a regularization effect for the model, as it prevents the model 
to learn too small values for this parameter, which are usually linked to 
more complex functions. We also note that, should the pairing effect be 
merely an offset term, such as those implemented in the classical linear 
mixed models, then the length scale prior can be changed to favour 
much larger values that will result in nearly constant-valued GPs. 

The optimization is done w.r.t. to the following objective function 

arg max
θ

log p(y|X, θ) + log p(θ), (7)  

where p(θ) corresponds to the hyperpriors. We use the above prior dis
tributions for kernel hyperparameters when analyzing real microarray 
or RNA-seq data and optimize the above objective function. For simu
lated data we ignore the hyperpriors and optimize the standard marginal 
likelihood, i.e., log p(y|X, θ). We use the gradient-based method L-BFGS- 
B [7] for the optimization. The optimizer is run for a maximum of 1000 
iterations with tolerance for deciding convergence equals to 1e− 5. 

2.3. Software 

The above method is implemented using the GPy package [12]. The 
main contribution consists in the implementation of the proposed kernel 
for the pairing effect model. Also, the implemented software facilitate 
the use of it for gene expression time series data. Detailed instructions 
for the installation and the usage are available on the github page htt 

ps://github.com/michelevantini/PairGP. 

3. Data 

The methods have been developed to be applied to data set with the 
following structure: the data contains N genes, C conditions (or treat
ments), P replicates and T irregularly sampled time points for each gene. 
That results in C × P time-series of length T for each gene. We used 
simulated data and two gene expression time-series data sets. 

3.1. Simulated data 

To generate simulated data, we simulated one GP for each response 
and one GP for each replicate pair using a fixed set of hyperparameters. 
To simulate the data for a condition c and for a replicate pair p we use the 
following formulation: 

ycp(t) = fr(t) + fp(t) + ε, (8)  

where fr and fp are realizations of GPs fr ∼ GP (0, kr(x, x’) ) and fp ∼

GP
(
0, kp(x, x’)

)
and ε ∼ N

(
0, σ2

ε
)

is a random noise term. Recall that 
the C treatments (or conditions) result in R different responses, 
depending on the partitioning (or model; see below), and each treatment 
c belong to one of the R responses. We used the same T = 9 time points 
0.5h, 1h, 2h, 4h, 6h, 12h, 24h, 48h, 72h, as with the real data (see 
below). After fixing the kernel hyperparameters, to simulate the data for 
a gene with C conditions and P replicates we simulate one realization 
from fr for each response effect, and one realization from fp for each 
replicate pair and we combine them together with additive noise as 
shown above. This results in C × R × T time points for each simulated 
gene. 

We use the EQ kernels with lengthscale lr = 1.0 and variance σ2
r = 1.0 

for the response kernel kr, and lp = 1.0 for the pairing effect kernel kp. We 
decided to simulate data with different levels of pairing effect variance, 
aiming to replicate different experimental conditions with different 
levels of pairing effect variance. The set of values used for the pairing 
effect variance is σ2

p ∈ {0.001,0.01,0.05,0.1,0.3,0.5}. The random noise 
variance σ2

ε can also change depending on the experiments, thus we used 
the set of values {0.1, 0.2, 0.4}. For the simulated data we decided to use 
3 replicates, 3 or 4 conditions and a total of 1000 genes. 

The generated datasets use all the combinations of parameters values 
mentioned above. However, when simulating data some partitions of the 
conditions are de facto the same, for example, simulating data as {{c1}, 
{c2, c3}} or as {{c1, c2}, {c3}} is equivalent. In the simulation we only 
generate data only for one partitioning in each set of equivalent parti
tions, even though the model during the inference process can select 
among all the possible partitions of the condition set. 

3.2. Human T-helper cell differentiation microarray data 

The first data set contains gene expression time-series data from 
human CD4+ T cells measured using microarrays originally published in 

Fig. 1. An example of the covariance matrices. (left) 
the combination of covariance matrices KX,X = Kr +

Kp. (middle) the response covariance matrix Kr. 
(right) the pairing covariance matrix Kp without 
centering. In this example, there are data from 5 
different conditions and 6 replicates. The first 3 rep
licates are paired across the conditions c1 and c2, and 
the last 3 replicates are paired across the conditions 
c3, c4 and c5. Data are ordered by condition, then 
replicate and finally by time point. In this example, 
conditions are assumed to be partitioned into 2 
response models r1 = {c1} (upper left block in Kr) and 
r2 = {c2, c3, c4, c5} (bottom right block in Kr).   
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Ref. [9]. The data set is available in the Gene Expression Omnibus (GEO) 
repository (GEO:GSE18017). We use data from two treatments 
measured at time points 0.5h, 1h, 2h, 4h, 6h, 12h, 24h, 48h, 72h. Th0 
condition (or treatment) corresponds to activation of naive CD4+ T cells, 
and Th2 corresponds to activation and differentiation of naive CD4+

cells towards T helper 2 (Th2) lineage. Both conditions (across all 
timepoints) are measured from three cell cultures that correspond to 
three biological replicates that are paired across the conditions. Micro
array data is RMA preprocessed as in Ref. [9] and further standardized. 

3.3. Mouse T-helper cell differentiation RNA-seq data 

The second data set is previously unpublished and has been collected 
from laboratory mice, and it has a total of five treatments and six cell 
cultures (i.e., biological replicates). The experimental details are as in 
Ref. [25]. Th0 treatment corresponds to activation of naive T cells. The 
other four treatments are Th17, Th17+IL1b, Th17+IL21, Th17+IL1b +
IL21. Th17 corresponds to activation and differentiation of naive CD4+

cells towards T helper 17 (Th17) lineage. Th17+IL1b, Th17+IL21, 
Th17+IL1b + IL21 treatments corresponds to simultaneous activation 
and differentiation of naive CD4+ cells towards Th17 lineage and 
treatment with interleukin 1 beta (IL-1β), interleukin 21 (IL-21) and 
combination of IL-1β and IL-21 (with concentration 20 ng/ml) (R&D 
Systems), respectively. Experimental data for the treatments Th0 and 
Th17 have been measured from the first three replicates (cell cultures), 

using a paired design. Experimental data for the other three treatments 
have been measured from the other three replicates (cell cultures), again 
using a paired design. Cells are sampled for gene expression analysis at 
nine time points: 0.5h, 1h, 2h, 4h, 6h, 12h, 24h, 48h, 72h. Sequence 
reads were mapped with TopHat to mouse mm9 genome as well as to 
Ensembl transcriptome. After the alignment, the number of reads that 
mapped to each gene were summarized using HTSEQ-count tool. The 
raw RNA-seq data used in this manuscript is available in the Gene 
Expression Omnibus (GEO) repository (GEO:GSE154467). 

4. Results 

We first tested our method on simulated time-series data with 
different number of treatments and a varying amount of pairing effect 
size. Given simulated data from three or four conditions (or treatments) 
with three biological replicates and the paired experimental design, our 
goal was to identify the correct model, i.e., the correct partitioning of the 
conditions. To get a comprehensive view of the model performance, we 
varied the correct grouping as well as the pairing effect size and the 
additive noise variance. Comparing our model to an otherwise equal GP 
model but without the pairing effect, referred here as base model, shows 
that modeling the pairing component improves the identification of 
correct partitioning for nearly all scenarios (Fig. 2). For selected parti
tionings with no or small pairing effect variance, the base model per
forms better than pairing model. This is expected for the cases of no or 

Fig. 2. Inference accuracy of the pairing effect model compared to the base model on simulated data. We consider two scenarios: (top) 3 conditions {c1, c2, c3}, and 
(bottom) 4 conditions {c1, c2, c3, c4}. For both scenarios we simulate data from all effectively different pairings (i.e., models). We evaluate the inference accuracy for 
varying amounts of additive noise variance (rows) as well as for varying amounts of pairing effect variance. 
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small pairing effect variance as the data generation model reduces to the 
standard model that does not include the pairing effect. However, for all 
other considered cases, the pairing effect model performs at least equally 
well as the base model. The performance of the pairing effect model is 
notably better when the variance of the pairing effect is larger. 

Next, we applied our method to microarray-based longitudinal gene 
expression data measured from activated CD4+ human T cells (Th0) and 
cells differentiated towards T helper 2 (Th2) cell type with three paired 
replicates [9]. We identified genes that respond differentially between 
Th0 and Th2 during the first 72 h of differentiation (Table 1). When 
taking into account the paired design of the experiment, 30.4% of the 
genes were found to be differentially expressed between Th2 and Th0 
cells, compared to 24.9% when only the response effect was modeled. 
These results indicate that the pairing effect model is better able to 
identify differences between conditions and also better able to partition 
them when the pairing effect is appropriately modeled. 

We also applied our method to previously unpublished, longitudinal 
RNA-seq data measured from CD4+ mouse T cells that were either 
activated or differentiating towards Th17 lineage. Experiments include 
six cell cultures and five different treatments: two treatments (Th0, 
Th17) were applied for the first three cultures and three treatments 
(Th17+IL1b, Th17+IL21, Th17+IL1b + IL21) for the last three cultures, 
resulting in two groups of three paired replicates. Our model identifies 
genes that have different dynamics in different subsets of the five 
treatments. 

Table 2 summarizes how the pairing effect affects the proportion of 
genes detected for each partition. As reported in Table 2, modeling the 
pairing effect produces significantly different results compared to the 
base model. For both the pairing effect model and the base model, the 
most frequent partition is {{Th0}, {Th17, Th17+IL1b, Th17+IL21, 
Th17+IL1b + IL21}}. However, the frequency decreases from 47.9% for 
the base model to 22.8% for the pairing effect model. Another relevant 
partition to observe is {{Th0, Th17, Th17+IL1b, Th17+IL21, 
Th17+IL1b + IL21}}, which refers to the case where there is no relevant 
difference between conditions. For this partition the frequency increases 
from 9.6% for the base model to 19.4% for the pairing effect model. This 
indicates that the pairing effect model is not inherently biased to finding 
more differences between the conditions, but the pairing effect model 
can also report “no difference” if data supports such a conclusion. We 
also find significant variation for the frequency of the two partitions 
{{Th0}, {Th17}, {Th17+IL1b, Th17+IL21, Th17+IL1b + IL21}} and 
{{Th0, Th17}, {Th17+IL1b, Th17+IL21, Th17+IL1b + IL21}}. In gen
eral, the most probable partitioning of conditions for these genes is 
clearly affected by whether or not we model the variance of each 
replicate and the pairing information. An analogous situation is reported 
in Table 1, where the number of differentially expressed genes between 
the two conditions Th0 and Th2 is 24.9% for the base model compared 
to 30.4% for the pairing effect model. 

We report in Fig. 3 the visualization of the pairing effect model and 
base model fit on the gene Fasl from the CD4+ mouse T cells dataset. The 
base model identifies two partitions (Fig. 3a), whereas the pairing effect 
model identifies three partitions (Fig. 3b). Furthermore, the estimated 
replicates effects are not equal (Fig. 3c) and explain variance that is non- 
negligible when compared to the variance of the response model in 
Fig. 3b. The two groups of conditions {Th17} and {Th17+IL1b, 
Th17+IL21, Th17+IL1b + IL21} are merged together in the pairing effect model and the variation between the two groups is now explained 

by the pairing effect component. Also, for condition Th0 the variance 
introduced by replicate 1 is now part of the pairing effect component 
and can be separated from the response effect, providing a more clean 
representation of the Th0 condition. 

Overall, the results reported here support the introduction of a model 
component to model the pairing effect, as we do in our pairing effect 
model. Even though one does not typically have the true classification 
labels for this type of dataset, it is clear from the results how this model 
component can affect significantly the outcome of the analysis. At first, 

Table 1 
T-helper cell gene expression dataset [9] modeling results. Results obtained by 
fitting the base model and the pairing effect model on the human T-helper cell 
gene expression dataset [9]. The percentage of the total amount of genes is re
ported for each partition.  

Partition Base Pairing 

{Th0, Th2} 75.1 69.6 
{Th0}, {Th2} 24.9 30.4  

Table 2 
Mouse T-helper cell RNA-seq dataset modeling results. Results obtained by 
fitting the base model and the pairing effect model on the mouse T-helper cell 
RNA-seq dataset. The percentage of the total amount of genes is reported. The 
values are reported in descending order according to the pairing effect model 
results.  

Partition Base Pairing 

{Th0}, {Th17, Th17+IL1b, Th17+IL21, Th17+IL1b + IL21} 47.9 22.8 
{Th0, Th17, Th17+IL1b, Th17+IL21, Th17+IL1b + IL21} 9.6 19.4 
{Th17}, {Th0, Th17+IL1b, Th17+IL21, Th17+IL1b + IL21} 0.5 6.6 
{Th0}, {Th17}, {Th17+IL1b, Th17+IL21, Th17+IL1b + IL21} 19.7 5.6 
{Th0, Th17}, {Th17+IL1b, Th17+IL21, Th17+IL1b + IL21} 17.4 3.9 
{Th0}, {Th17, Th17+IL21}, {Th17+IL1b, Th17+IL1b + IL21} 2.3 3.8 
others 2.6 37.9  

Fig. 3. The result of the pairing effect model on the gene Fasl. (a) the base 
model fit, (b) the response effects from the pairing effect model for the selected 
groups of conditions and (c) the relative pairing effect. 

M. Vantini et al.                                                                                                                                                                                                                                 



Computers in Biology and Medicine 143 (2022) 105268

6

we showed how the pairing effect model outperform the base model on 
simulated data. The results show that the higher is the complexity of the 
data, the higher is the advantage in using the pairing effect model. Then, 
we showed that we can obtain more relevant and interpretable results 
also on two real-world gene expression time series datasets. For data sets 
generated by paired experimental design, the pairing effect model pro
vides a more realistic model of the data through the use of two com
ponents, the response effect and the pairing effect, and produce a better 
explanation of the data. 

5. Discussion 

As explained in Ref. [16], existing methods proposed in literature to 
model time-series data often miss to consider the strong temporal cor
relation or the non-stationarity of the process. They are also typically not 
suited for modeling short time series [10], resulting in overfitting. On 
the other hand, GP regression models naturally include time de
pendencies, can model non-linear effects through kernels, and explicitly 
model noise [19]. In addition, GP regression models can deal well with 
short time series and can be extended to consider the non-stationarity of 
the process [14]. Overall, GP based approaches have been proven to be 
solid alternatives to more traditional statistical analysis. 

We compared here our new method to the baseline method that fits 
standard GP regression models but do not consider the pairing effect [2, 
16]. The results on both simulated and real-world T-helper cell datasets 
show the benefit of introducing a pairing effect component for both 
accuracy and explainability of the model. Several different extensions 
have been proposed to GP modeling for longitudinal data [8,17,24] that 
also account for the pairing effect considered here. However, all these 
longitudinal GP extensions are implemented with MCMC sampling 
techniques that make them less computationally efficient and, in prac
tice, impractical for genome-wide analysis. Whereas, our proposed 
method implements an efficient analysis that also scales better to 
genome-wide analysis as well. In Table 3, we report a more complete 
comparison between this work and several other GP based methods for 
gene expression time series analysis. 

6. Conclusions 

We have implemented a GP-based model for analysis of longitudinal 
gene expression data that accounts for paired multi-condition study 
designs. Results demonstrate that our model improves the detection of 
correct partitioning of different conditions. Utilizing Gaussian process 
regression along with time-warping techniques, to take into account the 
non-stationarity of the process, and a specific kernel combination, to 
model the pairing effect as an additional component, has proven to be a 

successful approach of modeling gene expression time series data. We 
showed how the pairing effect model produces more accurate results on 
both simulated data and real T-helper cell datasets with different 
number of conditions. Even though ground truth labels are not available 
for the analysed real datasets, the pairing effect model is capable of 
selecting biologically relevant partitions of the condition set. Compared 
to the base model that represents that standard applications GP models 
to gene expression datasets, the pairing effect model takes advantage of 
the additional model component and produces a better and more 
interpretable fit of the data. The additional interpretability that the 
pairing effect model provides benefits the overall data analysis and the 
understanding of the underlying biological process. 
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Table 3 
Summary of relevant previous GP methods for gene expression time series analysis.  

Authors Year Method name Features of the method 

Kalaitzis at al. [16] 2011 GP regression One of first GP methods for differential expression analysis of gene expression time series data. 
Stegle at al. [22] 2010 Robust GP 

regression 
A robust GP regression method to compare gene expression time-series from two samples and to identify time interval of 

differential expression. 
Äijö at al. [2] 2012 LIGAP This method generalizes GP regression framework to any number of conditions and offers genome-wide grouping and 

ranking functionalities. 
Hensman at al. [15] 2013 GP clustering A hierarchical bayesian clustering of gene expression time series data. 

Äijö at al. [1] 2014 DyNB A GP regression method for gene expression time series data that accounts for time delays between biological replicates 
and non-Gaussian likelihood models. 

Quintana at al. [17] 2016 Bayesian GP 
regression 

A generalization of the standard mixed models for longitudinal data using GPs. 

Cheng at al. [8] 2019 LonGP An additive GP regression model for longitudinal data analysis supporting non-stationary signals as well as Markov chain 
Monte Carlo (MCMC) sampling and approximate inference using central composite design (CCD). 

Timonen at al. [24] 2021 lgpr An additive GP regression model for longitudinal data analysis that additionally accounts for uncertainty in the disease 
effect time, the disease heterogeneity and arbitrary likelihood models, as well as uses the dynamic Hamiltonian Monte 

Carlo sampler. 
This work 2022 PairGP A GP model for longitudinal data with paired multi-condition designs that accounts for non-stationarity and pairing of 

replicas across conditions, and generalizes to any number of conditions and replicas.  
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integrative computational systems biology approach identifies differentially 
regulated dynamic transcriptome signatures which drive the initiation of human t 
helper cell differentiation, BMC Genom. 13 (1) (2012) 572. 

[3] Simon Anders and Wolfgang Huber, Differential expression analysis for sequence 
count data, Genome Biol. 11 (10) (2010) R106. 

[4] Claudia Angelini, Luisa Cutillo, Daniela De Canditiis, Margherita Mutarelli, 
Marianna Pensky, Bats: a bayesian user-friendly software for analyzing time series 
microarray experiments, BMC Bioinf. 9 (1) (2008) 415. 

[5] Claudia Angelini, Daniela De Canditiis, Margherita Mutarelli, Marianna Pensky, 
A bayesian approach to estimation and testing in time-course microarray 
experiments, Stat. Appl. Genet. Mol. Biol. 6 (1) (2007). 
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d’Alché Buc, Detecting time periods of differential gene expression using Gaussian 
processes: an application to endothelial cells exposed to radiotherapy dose fraction, 
Bioinformatics 31 (5) (2014) 728–735. 

[14] Markus Heinonen, Henrik Mannerström, Juho Rousu, Samuel Kaski, 
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