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The infinite sites model of molecular evolution posits that 
every position in the genome is mutated at most once1. By 
restricting the number of possible mutation histories, hap-
lotypes and alleles, it forms a cornerstone of tumor phylo-
genetic analysis2 and is often implied when calling, phasing 
and interpreting variants3,4 or studying the mutational land-
scape as a whole5. Here we identify 18,295 biallelic muta-
tions, where the same base is mutated independently on both 
parental copies, in 559 (21%) bulk sequencing samples from 
the Pan-Cancer Analysis of Whole Genomes study. Biallelic 
mutations reveal ultraviolet light damage hotspots at E26 
transformation-specific (ETS) and nuclear factor of activated 
T cells (NFAT) binding sites, and hypermutable motifs in 
POLE-mutant and other cancers. We formulate recommenda-
tions for variant calling and provide frameworks to model and 
detect biallelic mutations. These results highlight the need 
for accurate models of mutation rates and tumor evolution, as 
well as their inference from sequencing data.

Recent studies have shown systematic variation in mutation rates 
across the genome, resulting in specific hotspots5–7. In addition, 
breakdown of the infinite sites assumption at the scale of individ-
ual single-nucleotide variants (SNVs) was inferred from single-cell 
tumor sequencing data and flagged as a confounder during phylo-
genetic reconstruction8. In bulk tumor data, population averaging 
and limited long-range information make it difficult to assess muta-
tional recurrence and its impact on analyses.

In a single diploid lineage, four classes of infinite sites viola-
tions may be considered (Fig. 1): (1) biallelic parallel and (2) bial-
lelic divergent, where two alleles independently mutate to the same 
or different alternate bases, respectively; (3) monoallelic forward 
and (4) monoallelic back, where one variant is mutated to another 
or back to wild type (WT), respectively. We focused on biallelic 
mutations, which become problematic when artificially treating 
genomes as haploid, hypothesizing these may be observed directly 
in bulk tumor genome sequencing data. Loss of variants owing to 
large-scale genomic deletion does not strictly contradict the infinite 
sites assumption, yet should be accounted for in cancer genomes2,8,9.

To assess the landscape of infinite sites violations, we started with 
a simulation approach using the Pan-Cancer Analysis of Whole 
Genomes (PCAWG) dataset of 2,658 whole-genome sequenced 
cancers. We resampled a tumor’s observed mutations, preserving 
mutational signature exposures10,11 but otherwise assuming uni-
form mutability across the callable diploid genome (uniform per-
mutation model; Extended Data Fig. 1 and Supplementary Table 1). 
Since mutation rates are certainly not uniform and any deviation 
increases the number of violations5, this derives a lower bound of 
at least 1, typically parallel, violation in 147 tumors (5.5%; Fig. 2a).  

A second simulation approach, resampling (without replacement, 
nondriver) mutations from tumors of the same cancer type with 
similar mutational signature activities, confirms these observa-
tions (neighbor resampling model; Fig. 2b, Extended Data Fig. 1 
and Supplementary Table 2). In addition, this approach indicated 
that four microsatellite unstable tumors harbored hundreds of par-
allel biallelic indels (Extended Data Fig. 2). Consistent differences 
between the simulators, in the number of violations per tumor type, 
inform on the nonuniformity of the mutational processes, that is, 
a reduced ‘effective genome size’ (akin to the population genetics 
concept of effective population size; Fig. 2c).

Distinct preferences for parallel, divergent, forward and back 
mutations may be understood from the active mutational processes 
(Fig. 2d). For instance, the dominant mutagenic activity of ultra-
violet (UV) light in cutaneous melanoma (single base substitution 
signature 7a/b, SBS7a/b) yields almost uniquely C>T substitutions 
in CC and CT contexts10,11, which can only result in the accumu-
lation of biallelic parallel mutations. In contrast, in esophageal  
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Fig. 1 | Possible violations of the infinite sites assumption in a single 
clonal lineage. Two subsequent mutations at a diploid locus can affect the 
same or alternate alleles. Depending on the base changes, there are four 
scenarios: biallelic parallel or divergent mutations affect separate alleles, 
whereas monoallelic forward and back mutations hit the same allele twice.
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adenocarcinoma DO50406, interplay between SBS17a and SBS17b10,11 
results in various substitutions of T in a CTT context, generating both 
parallel and divergent variants. Back and forward mutations occur 
when the variant allele retains considerable mutability.

We next set out to directly detect biallelic mutations in PCAWG 
genomes. Parallel mutation increases the variant allele frequency 
(VAF) and may be distinguished from local copy number gains by 
comparing the VAF to the allele frequencies of neighboring hetero-
zygous SNPs, taking tumor purity and copy number into account. 
Additionally, when proximal to a heterozygous germline vari-
ant, read phasing can evidence mutation of both alleles (Fig. 3a,b, 
Extended Data Fig. 3 and Supplementary Table 3). Without phas-
ing information, we can only detect parallel mutations on more 
copies than the major allele tumor copy number. Hence, no paral-
lel mutations are called in regions with loss of heterozygosity and 
late or subclonal events are likely to be underrepresented. Insights 
into the latter can be glimpsed from multi-sample studies. In a 
cohort of patients with metastatic prostate cancer with sequencing 
of matched primary and metastases12,13, we discerned early clonal 
(preceding the most recent common ancestor) as well as candidate 
late and subclonal events (Extended Data Fig. 4).

Divergent mutations can be picked up by variant callers but are 
traditionally filtered out3. Since neither the PCAWG consensus 
nor the four contributing pipelines reported divergent mutations, 
we recalled mutations with Mutect2 for 195 relevant cases, allow-
ing 2 alternative alleles (Fig. 3c and Supplementary Tables 4 and 
5). Overall, recalling identified a median 96.3% of consensus vari-
ants and added 9.5% new variants, with 0.04% of the latter contrib-
uted by divergent mutations (Supplementary Fig. 1). For 90% of 
divergent mutations, 1 of the alternate alleles was reported in the 
PCAWG consensus.

In total, we identified 5,330 divergent mutations, 12,937 parallel 
SNVs and 14 dinucleotide variants in 559 (21%) PCAWG samples 
(Supplementary Tables 3–5). Parallel mutations confirmed by phas-
ing were found in tumors with as few as 8,892 SNVs while divergent 
mutations were repeatedly identified in esophageal adenocarcino-
mas with 20,000–30,000 SNVs (Extended Data Fig. 5). At the other 
end of the spectrum, phasing indicated that 2 ultra-hypermutated 
colorectal adenocarcinomas each boasted around 8,000 parallel and 
1,700 divergent mutations.

Biallelic mutations carry a footprint determined by, but distinct 
from, the overall mutational profile. For example, since parallel  
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Fig. 2 | Simulated landscape of infinite sites violations in the PCAWG cohort. a, Number and type of infinite sites violations in 147 PCAWG samples with 
≥1 expected violation under a uniform mutation distribution. The bar height indicates the expected number of violations and the colored subdivisions 
represent the fractions contributed by each violation type. Tumor type of the samples is color-coded below the bars. The four samples highlighted in d are 
indicated. b, Comparison of the expected biallelic violations from the uniform permutation and neighbor resampling models. Every dot represents a tumor 
simulated 1,000 times with each model. Color and size reflect, respectively, tumor type and the cosine similarity of the predicted biallelic mutation spectra. 
c, Box and scatterplot showing the effective genome size perceived by the mutational processes per cancer type, as estimated from the per-sample 
differences between simulation approaches. The dashed line indicates the callable genome size. The effective genome size is smallest in Lymph-BNHL 
(approximately 37 Mb), likely driven by recurrent focal hypermutation13. Center line, median; box limits, upper and lower quartiles; whiskers, 1.5× 
interquartile range. Only tumors with ≥10 biallelic mutations across 1,000 simulations are included and their numbers are indicated between parentheses 
next to the tumor type. Only tumor types with ≥10 such tumors are shown. CNS, central nervous system. d, Mutation spectra of four tumors with distinct 
violation contributions indicated in a. The 16 distinct trinucleotide contexts are provided on the x axis for C>A type substitutions and are the same for 
each colored block. The proportion of parallel, divergent, back and forward mutations is indicated in the stacked bar on the right. Frequent combinations of 
mutations leading to specific infinite site violations are highlighted as well as the signatures generating them.

Nature Genetics | VOL 54 | February 2022 | 128–133 | www.nature.com/naturegenetics 129

http://www.nature.com/naturegenetics


Letters NATurE GEnETICS

mutations require two independent identical hits, they show a 
mutation spectrum similar to the square of that of SNVs (Fig. 4a,b). 
Indeed, the observed biallelic mutations were better explained by 
the simulated violation spectra than the overall mutation spectra 
(P = 2.83 × 10−4 and 1.35 × 10−8 for parallel and divergent, respec-
tively; median simulated–observed cosine similarities 0.968 and 
0.944; Mann–Whitney U-test, samples with ≥10 violations). This 
further supports the accuracy of our biallelic mutation calls, exclud-
ing major contributions from sequencing and alignment artifacts, 
germline variants, focal tandem duplicator phenotypes, precursor 
lesions or somatic gene conversion.

While the uniform permutation model underestimates, neighbor 
resampling accurately predicts the number of biallelic mutations 
(Fig. 4c and Extended Data Fig. 6). Resampling mutation burdens 
and tumor types with the confirmed model demonstrates how bial-
lelic mutations are proportional to the square of the mutation bur-
den (n2; Fig. 4d). The coefficient per tumor type (Ctype) scales the 
callable genome size (N) and provides straightforward estimation of 
the number of violations as Ctypen2/N  (Fig. 4d,e).

Biallelic mutations are not associated with somatic rear-
rangements (Padj ≥ 0.31; Mann–Whitney U-test, Benjamini–
Hochberg-corrected) but occur at loci with a higher mutation rate 
(Extended Data Fig. 7), some of which harbor recurrent biallelic 
events (Fig. 5a). The promoter of RPL18A shows 3 parallel, 1 diver-
gent and 9 single mutations at chr19:17,970,682, all in melanoma 
(12% total; Extended Data Fig. 8) (ref. 14). Motif enrichment at loci 
with biallelic versus trinucleotide-matched monoallelic hits in mel-
anoma reveals enrichment of YCTTCCGG and WTTTCC motifs 
(Fig. 5a,b) (ref. 14). YCTTCCGG motifs are recognized by E26 

transformation-specific (ETS) transcription factor family members. 
Binding increases their sensitivity to UV damage due to perturbation 
of the TpC C5–C6 interbond distance d and torsion angle η, favor-
ing cyclobutane pyrimidine dimer formation (Fig. 5c,d) (refs. 15,16).  
The WTTTCC motif matches the recognition sequence for nuclear 
factor of activated T cells (NFAT) transcription factors17,18. Analysis 
of crystal structures of NFATc1–4 bound to DNA indicates that 
binding induces similar, less outspoken TpC conformational 
changes that may explain its increased mutability (Fig. 5d and 
Supplementary Table 6). While we cannot formally exclude selec-
tion as a contributor to these recurrent mutations, no effects on total 
or allele-specific expression of genes with biallelic promoter muta-
tions could be observed (Extended Data Fig. 9).

Similar analysis in colorectal adenocarcinoma revealed special 
cases of the SBS10a/b and SBS28 sequence contexts, which are asso-
ciated with POLE exonuclease domain mutations (Fig. 5a,e)10,11,19. 
AWTTCT and TTCGAA for SBS10 and AAATTT for SBS28 all carry 
extra adenosine and thymine bases surrounding the regular trinucle-
otide context of the mutated C and T, respectively. Likewise, AT-rich 
sequences surrounding the canonical SBS17 CTT context render 
some loci hypermutable in esophageal and stomach adenocarcino-
mas (AAACTTA motif; Fig. 5a,e). These preferences have also been 
observed in the recent extension from tri- to pentanucleotide signa-
tures11. However, it is unclear how these additional bases increase 
local mutability. Lastly, it is worth highlighting recurrent (biallelic) 
mutation at chr6:142,706,206, in an intron of ADGRG6 (Fig. 5a). The 
CTCTTTGTAT-GTTC-ATACAAAGAG palindrome may adopt a 
hairpin structure, exposing the hypermutable C in a 4-base pair (bp) 
loop and rendering it susceptible to APOBEC3A deamination7.
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Biallelic hits provide insights beyond mutational processes. The 
rate of biallelic mutation is proportional to that of parallel mutation 
between clones and increases with both the number of lineages con-
sidered and total mutation burden (Supplementary Fig. 2). When 
constructing phylogenies from ever more exhaustive multi-sample 
or single-cell data20,21, biallelic mutations provide an estimate for the 
number of parallel events.

Using single-sample bulk sequencing to establish evolutionary 
relationships between subclones is challenging4,22. Under the infinite 
sites assumption, one can examine rare pairs of phaseable SNVs in 

regions without copy number gains4,23. Specifically, a pattern where 
one SNV is only found on a subset of the reads reporting the other 
evidences a linear relationship (Extended Data Fig. 10a). In PCAWG 
melanomas, however, a median 67% of these pairs in diploid regions 
reflect phylogenetically uninformative biallelic parallel mutations 
(Extended Data Fig. 10b). To avoid biasing phylogenies, biallelic 
SNVs should be filtered by restricting analyses to haploid regions or 
scrutinizing the VAF and the likelihood of biallelic mutation in the 
sample4. SNV clustering approaches, which rely on the infinite sites 
assumption for subclonal reconstruction and assignment of each 
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variant to a specific lineage, may pick up ‘superclonal clusters’ of bial-
lelic parallel mutations but are otherwise expected to remain robust 
at the levels identified in this study (Extended Data Fig. 10c) (ref. 22).

Phasing is also used to boost the accuracy of variant callers for 
single-molecule sequencing data24. As with multi-allelic variants, 
relaxation of the set of allowed haplotypes will need to be considered  

to capture the full extent of somatic variation. Indeed, while only 
2.8% of biallelic hits fall within or near exons, we identified 8 can-
didate biallelic driver events. Parallel nonsense mutations in the 
tumor suppressors ASXL2 and CDKN2A and divergent events in 
ERBB4 suggest that, in rare cases, biallelic mutations are selected for 
(Extended Data Fig. 10d and Supplementary Table 7).
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Fig. 5 | Biallelic mutations reveal hotspot motifs. a, Heatmap of the 50 most frequently mutated loci in PCAWG with at least 1 biallelic mutation. The 
number of parallel/divergent mutations at each site is indicated, as are gene annotations, the underlying mutational processes and the local sequence 
context with emerging motifs. For chr6:142,706,206, part of the stem and loop of a local sequence palindrome are indicated. MSI, microsatellite instability. 
b, Sequence logos of motifs enriched at loci with biallelic mutations in melanoma (top) and corresponding transcription factor recognition sequences 
(bottom). The error bars indicate the confidence of a motif based on the number of sites used in its creation. A Fisher exact test was used to assess motif 
enrichment (top) while P values for motif comparison (bottom) were computed and corrected for multiple testing according to Gupta et al.17.  
c, Superposition of TpC dinucleotides in crystal structures of ETS-bound (GABP), NFAT-bound (NFAT1c) and free B-form DNA (PDB ID: 1AWC, 1OWR and 
1BNA, respectively). The distance d between the midpoints of the two adjacent C5–C6 bonds as well as their torsion angle η is indicated. d, Scatter plot 
showing the distance d and angle η indicated in c for TpC dinucleotides in structures of ETS-bound (dark blue), NFAT-bound (blue) or free B-form DNA 
(green) obtained from the RCSB PDB (Supplementary Table 7). The ellipses represent the normal probability contours of each group. Lower values of d and 
η increase the yield of UV-based pyrimidine dimer formation, as indicated by the arrow. e, Sequence logos of motifs enriched at loci with biallelic mutations 
in colorectal adenocarcinoma (SBS10, 28) and esophageal/stomach adenocarcinoma (SBS17). A Fisher exact test was used to assess motif enrichment.
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Taken together, we identified 18,295 biallelic mutations in 21% 
of PCAWG cases, demonstrating how the infinite sites assumption 
breaks down at the bulk level for a considerable fraction of tumors. 
By extension, the model is untenable in most, if not all, tumors 
at the multi-sample or single-cell level. If not correctly identified, 
biallelic mutations confound variant interpretation, ranging from 
driver inference to subclonal clustering and timing analyses, as well 
as phylogenetic inference. Nevertheless, at-scale detection of bial-
lelic mutations affords an intimate look at the mutational processes 
operative in cells, such as hotspots, hypermutable motifs and the 
molecular mechanisms of DNA damage and repair.
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Methods
SNV calling. PCAWG consensus single- and multi-nucleotide variant calls were 
obtained from the International Cancer Genome Consortium (ICGC) (http://
dcc.icgc.org/releases/PCAWG/consensus_snv_indel/). Briefly, these calls were 
constructed according to a ‘2+ out of 4’ strategy, where calls made by at least 
two callers (the three Broad, EMBL/DKFZ and Sanger core PCAWG pipelines 
plus MuSE v.1.0) were selected as consensus calls13. Postmerging, these calls were 
subject to further quality control including filtering against oxidative artifacts 
(OxoG), alignment (Burrows–Wheeler Aligner versus BLAST-Like Alignment 
Tool), or strand biases resulting from different artifact-causing processes, as well as 
checks for tumor-in-normal and sample cross-contamination. Crucially, care was 
taken to avoid ‘bleed-through’ of germline variants into the somatic mutation calls. 
Specifically, absence from the Broad panel of normals based on 2,450 PCAWG 
samples and a higher read coverage (≥19 reads with at most 1 read reporting the 
alternate allele) in the matched normal sample were required to call a somatic 
mutation at 1 of the >14 M common (>1%) polymorphic loci of the 1000 Genomes 
Project. SNVs that overlapped a germline SNV or indel call in the matched normal 
were also removed. The sensitivity and precision of the final consensus somatic 
SNV calls were 95% (90% confidence interval (CI) = 88–98) and 95% (90% 
CI = 71–99), respectively, as evaluated by targeted deep-sequencing validation13. 
Of note, 18 biallelic parallel mutations identified in this study were covered by the 
PCAWG validation effort with 17 passing and 1 not being observed.

To identify biallelic divergent variants, which are filtered out in PCAWG, 
we recalled variants on 195 non-graylisted13 PCAWG tumor-normal pairs (not 
showing any tumor-in-normal contamination) where we might reasonably expect 
to find such mutations according to our uniform permutation simulations. 
Included also, as an internal control, were all other samples from the MELA-AU 
cohort (skin cancer-Australia), which met these criteria but where we did not 
expect biallelic divergent mutations. SNVs and indels were called using Mutect2 
(Genome Analysis Toolkit (GATK) v.4.0.8.1) on the base quality score-recalibrated 
PCAWG BAM files and filtered according to best practices25. The Genome 
Aggregation Database (gnomAD) was provided as a germline resource and an 
additional panel of normals was derived from all matched normal cases. To prevent 
filtering of biallelic variants, FilterMutectCalls was run with --max-alt-allele-count 
2. Additional filtering against germline SNPs was done by requiring a posterior 
probability for the alternative allele to be germline (P_GERMLINE) < −1 for both 
of the alternate alleles and requiring a minimal depth of 19 high-quality reads 
(mapping quality ≥ 35 and base quality ≥ 20) in the matched normal sample.

Consensus copy number, purity and ploidy. PCAWG consensus copy number, 
tumor purity and ploidy were obtained from the ICGC4,13 (http://dcc.icgc.org/
releases/PCAWG/consensus_cnv/). Briefly, each cancer’s genome was first 
segmented into regions of constant copy number using six individual copy number 
callers: ABSOLUTE; ACEseq; Battenberg; cloneHD; JaBbA; and Sclust, run as 
detailed in Dentro et al.4. Consensus segment breakpoints were determined from 
the PCAWG consensus structural variants (http://dcc.icgc.org/releases/PCAWG/
consensus_sv/) complemented with high-confidence breakpoints identified by 
several of the copy number callers. The six callers were then rerun, enforcing this 
consensus segmentation and separately established consensus tumor ploidy, which 
was typically obtained by resolving disagreement on whether a whole-genome 
duplication had occurred by an expert panel4. The allele-specific copy number 
calls were combined by looking, for each segment, at the agreement in major and 
minor allele copy number states between callers. Lastly, consensus on tumor purity 
was obtained by combining the calls from the six copy number callers with those 
from subclonal architecture reconstruction methods that leverage SNV data: CliP; 
CTPsingle; PhyloWGS; cloneHD; and Ccube, as detailed in Dentro et al.4. This 
multitiered approach yielded a purity for every tumor and a quality-tiered copy 
number for every consensus segment.

Simulating infinite sites violations. To estimate the number of infinite sites 
violations in tumors, we developed two distinct simulation approaches leveraging 
the PCAWG consensus SNV calls.

Our uniform permutation model resamples the observed SNVs in a 
tumor uniformly across the callable regions of the chromosomes, according 
to the observed trinucleotide-based mutational spectrum. A single simulation 
proceeds as follows. First, the total mutational load nt,simulated is resampled from 
a gamma-Poisson mixture where the Poisson rate parameter λ ∼ Gamma 
with mode equal to the observed mutational load nt,obs and an s.d. of 
σ = 0.05 × nt,observed, that is, nt,simulated ∼ Poisson (λ ∼ Gamma (r, β)) where 

the rate of the Gamma distribution was r = nt,observed +

√

n2t,observed + 2σ2/2σ2 

and the shape was β = 1 + nt,observed × r. Mimicking the observed distribution, 
these mutations are then divided across the chromosomes according to a 
Dirichlet-multinomial model with nt,simulated trials and parameter vector α 
where αi is equal to 1 + the total mutational burden on chromosome i. That is, 
nsimulated ~ Mult(nt,simulated, π ~ Dir(α)) with α = (n1,observed, n2,observed,…,nX,observed) + 1. 
Next, mutation spectra per chromosome (πi) were sampled from a Dirichlet 
distribution with parameter vector μi where μi,j is equal to a pseudocount 

ψ j derived from the overall mutational spectrum plus the observed 
number of mutations of type j on chromosome i, that is, πi ~ Dir(μi) with 
μi =

(

μi,A[C>A]A,observed, μi,A[C>G]A,observed, …, μi,T[T>G]T,observed

)

+ ψ  with 

ψ =

(

μt,A[C>A]A,observed + 1, μt,A[C>G]A,observed + 1, …, μt,T[T>G]T,observed + 1
)

×23/nt,observed. These spectra were then normalized to mutation type probabilities 
using the trinucleotide content on the corresponding chromosomes. In turn, 
the probabilities were used for rejection sampling of ni,simulated mutations at 
trinucleotides taken uniformly along the two (diploid) copies of the callable parts 
of chromosome i. The resulting mutation spectra were indistinguishable from the 
observed spectrum of the sample. During simulation, the algorithm kept track of 
which allelic positions were mutated and considered them accordingly for biallelic 
parallel or divergent mutation and back or forward mutation. Simulations were 
repeated 1,000 times per sample.

In the neighbor resampling model, we resampled without replacement the 
mutational landscape of a tumor from the empirical mutation distribution, 
minus the annotated driver SNVs (https://dcc.icgc.org/releases/PCAWG/
driver_mutations/). Specifically, in each simulation, we randomly picked 50% 
of the observed mutations in the original tumor and resampled the other 50% 
from the pooled SNVs of representative PCAWG tumors. We defined a tumor 
as representative for the simulation target when it had the same PCAWG 
histology and similar mutational signature exposures (cosine similarity mutation 
spectra ≥ 0.9) (ref. 11). This can be viewed as sampling one allele from the original 
tumor and one allele from the corresponding empirical mutation distribution. Note 
that the approach allowed to simulate biallelic events but not back and forward 
mutation and could be applied only to tumors with a representative SNV pool 
at least 0.5 times their total mutation burden. We further excluded all graylisted 
and non-preferred multi-sample tumors13 and 21 prostate cancer cases from the 
PRAD-CA cohort (prostate adenocarcinoma-Canada), which were suspected of 
contamination harboring excess low VAF SNV calls in repetitive regions.

Neighbor resampling was also applied to indels, in which case the exact same 
pipeline described above could be followed using indels instead of SNVs. To 
identify representative tumors, we used the PCAWG indel signatures (ID 1–17) 
and their exposures in each of the samples11. Microsatellite instability classification 
of all PCAWG tumors was obtained from Fujimoto et al.26.

In all simulations, input mutations being (re)sampled were assumed 
to represent single events. Since some are in fact biallelic, this may have 
underestimated the true number of violations.

Identification of parallel mutations: allele frequencies. Parallel mutation 
increases the VAF, which can be picked up by comparing it to the B-allele 
frequency (BAF) of local heterozygous SNPs, taking tumor purity and local total 
copy number (logR) into account. We obtained phased BAF values and logR as 
an intermediate output of Battenberg copy number calling4. Briefly, allele counts 
at 1000 Genomes phase 3 SNP loci were extracted from the matched tumor 
and normal BAM files using alleleCount v4.0.0 with a minimal base quality of 
20 and mapping quality of 35. Heterozygous SNPs were identified as having 
0.1 < BAF < 0.9 in the matched normal sample and poorly behaving loci were 
filtered out (Battenberg problematic loci file). Haplotypes were imputed using 
Beagle 5.0, followed by a piecewise constant fit of the phased tumor BAF values 
and flipping of haplotype blocks with mean BAF < 0.5. Total allele counts of 
tumor and normal samples were converted into logR values and corrected for 
guanine-cytosine-content and replication timing artifacts.

BAFsegment and logRsegment estimates were computed for all PCAWG 
consensus copy number segments4. Allele counts at phased heterozygous SNPs 
were considered to be generated according to a Beta-binomial model with 
Vi ∼ Bin(ni = Vi + Ri, P ∼ Beta

(

BAFsegment × ω, (1 − BAFsegment) × ω
)

) 
where Vi and Ri are the observed counts of the major and minor allele of SNP 
i, respectively and ω is a sample-specific concentration parameter (that is, a 
pseudo-coverage of the average segment). For each sample, ω was optimized 
between 50 and 1,000 by computing a two-sided P from the Beta-binomial model 
above for each SNP and ensuring that the robustly fitted slope of a Q–Q plot of 
these P values was equal to 1.

A similar model could subsequently be used to test whether a variant was 
present on a higher number of copies than the number of copies of the major allele 
present in the tumor. In pure tumor samples, this would be directly observable 
since their allele frequency exceeds that of local heterozygous SNPs on the major 
allele. However, when considering admixed normal cells, the maximal expected 
allele frequency needed to be corrected for tumor purity and total copy number of 
the segment as follows:

BAFsomatic = BAFsegment −
1 − ρ

(2 (1 − ρ) + ρΨt) 2logRsegment

with ρ and Ψt as the PCAWG consensus tumor purity and ploidy, respectively4. 
This amounted to subtracting from the segment BAF the contribution of the major 
allele from admixed normal cells. If BAFsomatic was estimated to be <0.05 for a 
segment, it was conservatively raised back to BAFsegment.
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The final Beta-binomial model with BAFsomatic and ω then describes the 
expected allele counts Vi of clonal somatic variants carried on all copies of the 
major allele. This model was used to perform a one-sided test for the SNVs 
contained on that copy number segment as P(Vi ≥ v|Vi + Ri, BAFsomatic, ω). 

An independent filtering step required P(Vi + Ri ≥ v|Vi + Ri, BAFsomatic, ω) 
<0.001 to remove sites with low statistical power (that is, low total read counts 
or BAFsomatic ∼ 1). P values were corrected for multiple testing according 
to Benjamini and Hochberg and SNVs were considered as potential parallel 
mutations when q ≤ 0.1.

Additional quality checks and filters mitigated potential errors and biases 
in allele counts, consensus genome segmentation, purity and ploidy: (1) SNVs 
overlapping a known heterozygous germline SNP in the individual were filtered 
out; (2) candidate variants were filtered when they resided in a region of common 
structural variation as listed in nstd186 (National Center for Biotechnology 
Information (NCBI) Curated Common SVs, all populations from 1000 Genomes; 
allele frequency ≥ 1%); (3) the BAF and logR of proximal heterozygous SNPs on 
either side of a candidate variant should not represent outliers on the segment, 
which could indicate a missed copy number event. For the BAF, we required 
the two-sided Beta-binomial P values of these SNPs, as computed above, to be 
>0.001 and their combined P > 0.01 (Fisher’s method). For the logR, identical 
thresholds apply, with P values derived using a two-tailed test assuming a Gaussian 
distribution with the mean equal to the median segment logR and s.d. equal to 
the median absolute deviation adjusted for asymptotic consistency; (4) candidate 
parallel mutations with ≥2 heterozygous SNPs within 25 bp were filtered out 
because these can affect mapping qualities and bias allele counts; (5) SNVs in 
regions with loss of heterozygosity in the PCAWG consensus copy number were 
not tested. In males, only the pseudoautosomal regions of X were considered; (6) 
the robustly fitted slope of a Q–Q plot of the final SNV P values should be ≤1, if 
not, sample purity may have been underestimated and the sample was excluded; 
(7) candidate variants from tumors where both simulators yielded zero biallelic 
mutations across 1,000 simulations were excluded.

Further flags were included for quality control but were not used during 
filtering of the final call set: (1) candidate biallelic hits at T and B cell receptor loci 
were flagged to assess the impact of V(D)J recombination in infiltrating immune 
cells on allele frequencies and coverage; (2) for each variant, we checked whether it 
lifted over from the 1000 Genomes GRCh37 build to a single location on hg38 and 
required the same reference allele; (3) SNVs were flagged if near an indel (position 
−10 to +25) in the sample.

Identification of parallel mutations: variant phasing. Phasing information was 
obtained for all heterozygous SNP–SNV pairs that were within 700 bp of one 
another. We counted only read pairs with mapping quality ≥20, base quality ≥25, 
no hard or soft clipping, which were properly paired, were not flagged as duplicates 
and did not have a failed vendor quality control flag. We further removed read 
pairs with indels and those that had ≥2 mismatches in a single read or ≥3 in the 
whole pair (if the phased variants were spanned by different reads in the pair).

We inferred a parallel mutation when, for a heterozygous SNP–SNV pair, ≥2 
reads from each allele of the SNP reported the somatic variant, that is, ≥2 Ref/Alt 
and ≥2 Alt/Alt reads. In addition, Ref/Alt and Alt/Alt reads each should represent 
>10% of the total phased reads. To avoid a scenario where, after a gain of the 
chromosome copy carrying the somatic variant, the in-cis allele of the heterozygous 
SNP is mutated to the in-trans allele, we required that the BAF of this SNP was not 
an outlier on the segment by requiring that its two-sided Beta-binomial P > 0.001.

While phasing info was sparse, it was less dependent on copy number, purity 
and coverage than the VAF approach. Phasing to a heterozygous SNP can detect 
late parallel mutations with multiplicity smaller than the copy number of the 
major allele, for example, on a segment with copy number 2 + 1 where both 
parental alleles have 1 copy mutated. Therefore, phasing may be used to evaluate 
the performance of the VAF approach in a sample. However, both approaches are 
blind in regions with loss of heterozygosity. Parallel mutations can occur in these 
contexts when the copy number ≥2 but cannot readily be distinguished from early 
mutations that have occurred before the duplication.

The precision and recall of the VAF approach were assessed by taking all 
evaluated phaseable SNVs (that is, SNP–SNV pairs having ≥2 reads each for the 
SNP Ref and Alt alleles and ≥4 reads reporting the SNV). Precision was calculated 
as the fraction of VAF-inferred biallelic parallel mutations that were confirmed 
by phasing. Recall was the fraction of phasing hits picked up through their allele 
frequencies. Overall performance was reported as the median precision and recall 
for samples with ≥10,000 phaseable SNVs.

By extrapolating the rate of parallel mutation at phaseable SNVs to all 
testable SNVs (that is, those passing the quality checks and filters listed above), 
we estimated the total number of parallel mutations in a sample i (nviolation,i). 
The estimate and its uncertainty can be described using a Beta-binomial model 
nviolation,i ∼ Bin(n = ni, P ∼ Beta

(

nphasing,parallel,i + 0.001, nphasing,single,i + 0.001
)

) 
where ni is the total number of passed SNVs, nphasing,parallel,i the number of 
phasing-informed biallelic parallel mutations and nphasing,single,i the number of 
phaseable SNVs without evidence for a parallel hit.

Birthday problem approximation. The number of infinite sites violations in a 
sample may be approximated by a variant of the birthday problem, which asks for 
the probability that at least two people share a birthday in a group of n random 
people. While ignoring intricacies such as mutation types and copy number, it 
provides a reasonable approximation and straightforward formulation. We started 
with the probability that mutations A and B hit the same locus: P (A = B) = 1/N  
where N is the size of the genome. From this we derived the probability that they 
did not share a locus P (A ̸= B) = 1 − 1/N . The probability that A does not hit 
the same locus as n other mutations is then P (A ̸= B1, …, Bn) = (1 − 1/N)n−1. 
To obtain the expected number of mutations not sharing a locus, this probability 
was multiplied by the total mutation burden n. Finally, the number of infinite 
sites violations was then E [no.violations] = nviolation = n − n × (1 − 1/N)n−1. 
Given that for a human genome 1/N ∼= 3−10

≈ 0, Taylor approximation yields 
nviolation ∼= n − n × (1 − (n − 1)/N) ∼= n2/N , indicating that the number of 
infinite sites violations scales with the square of the total mutation burden and the 
inverse of the genome size.

Motif enrichment. To assess enrichment of specific motifs at sites with biallelic 
mutations, we extracted 15-bp sequence contexts (+ strand where C or T was 
the reference base and − strand otherwise), for all parallel and divergent biallelic 
mutations. For every biallelic mutation, we sampled 10 mutation type-matched 
SNVs from the same tumor and extracted their 15-bp contexts as a control set. 
The Multiple EM for Motif Elicitation suite of tools (STREME and TomTom 
v.5.3.2) was used to discover sequence motifs enriched in the biallelic set relative 
to the control set14,17. In the case of melanoma, identified motifs were linked 
to known transcription factor recognition sequences from the HOmo sapiens 
COmprehensive MOdel COllection (HOCOMOCO) Human v.11 Core collection 
using TomTom with the Sandelin–Wasserman motif comparison function18. P 
values were computed according to STREME and TomTom.

Gene expression analysis. PCAWG expression data were obtained from the ICGC 
Data Portal http://dcc.icgc.org/releases/PCAWG/transcriptome/gene_expression/27. 
Briefly, reads were aligned with both TopHat2 v.2.0.12 and STAR v.2.4.0i 
(two-pass). Read counts for genes were calculated using HTSeq-count v0.11.1 and 
the GENCODE v.19 annotation. Counts were normalized using fragments per 
kilobase of transcript per million mapped reads and upper quartile (FPKM-UQ) 
normalization27. The final expression values are an average of the TopHat2 and 
STAR-based alignments. FPKM-UQ values for genes with recurrent (biallelic) 
promoter mutations in melanoma were extracted and stratified by promoter 
mutation status in the tumor (WT, single SNV, biallelic mutation).

To assess whether the single SNVs induced allele-specific expression, we 
used Rsamtools v3.11 to pile up base counts from the STAR-aligned BAM files 
at heterozygous germline SNPs. Posterior 95% highest density intervals were 
computed for the DNA and RNA base counts assuming a uniform Beta(1,1) prior 
and a binomial likelihood. Nonoverlapping intervals can indicate allele-specific 
expression.

Structural analysis. X-ray diffraction and solution nuclear magnetic resonance 
structures for free B-form DNA, NFAT- or ETS-bound DNA were obtained from 
the Research Collaboratory for Structural Bioinformatics (RCSB) Protein Data 
Bank (PDB). C5–C6 interbond distances d and torsion angles η were extracted 
using PyMOL v.2.4.0 at the relevant TpC dinucleotide in the ETS and NFAT 
recognition motifs and at nonterminal TpC dinucleotides in the free B-DNA. When 
multiple chains were present in a single structure, the average d and η were used.

Statistics and reproducibility. No statistical method was used to predetermine 
sample size. The experiments were not randomized. The investigators were not 
blinded to allocation during the experiments and outcome assessment. After 
quality assurance by the PCAWG Consortium, data from 176 of its 2,834 donors 
were excluded as unusable. Reasons for data exclusions included inadequate 
coverage, extreme bias in coverage across the genome, evidence for contamination 
in samples and excessive sequencing errors13. These exclusion criteria were 
predetermined.

In our neighbor resampling simulations, we additionally excluded samples 
that had been graylisted by the PCAWG Consortium and used only the PCAWG 
designated representative sample for each patient with multiregion sequencing13. In 
addition, we excluded 21 prostate cancer cases from the PRAD-CA cohort, which 
were suspect of contamination, harboring excess low VAF SNV calls in repetitive 
regions of the genome as described in the corresponding Methods section.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The PCAWG dataset is available through the ICGC data portal at https://dcc.icgc.
org/pcawg13. Further information on accessing the data, including raw read files, 
can be found at https://docs.icgc.org/pcawg/data/. In accordance with the data 
access policies of the ICGC and The Cancer Genome Atlas (TCGA) projects, most 
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molecular, clinical and specimen data are in an open tier that does not require 
access approval. To access information that could potentially identify participants, 
such as germline alleles and underlying sequencing data, researchers will need to 
apply to the TCGA Data Access Committee via the database of Genotypes and 
Phenotypes (dbGaP) (https://dbgap.ncbi.nlm.nih.gov/aa/wga.cgi?page=login) 
for access to the TCGA portion of the dataset and to the ICGC Data Access 
Compliance Office (http://icgc.org/daco) for the ICGC portion. In addition, to 
access somatic SNVs derived from TCGA donors, researchers will also need to 
obtain dbGaP authorization. Structural data were obtained from the RCSB PDB 
(https://www.rcsb.org/). The HOCOMOCO Human v.11 Core set was used as the 
source of known transcription factor recognition sequences (https://hocomoco11.
autosome.ru/). NCBI Curated Common SVs are available via the NCBI dbVar at 
https://www.ncbi.nlm.nih.gov/dbvar/studies/nstd186/. The germline resources 
of the 1000 Genomes Project and gnomAD were obtained from the International 
Genome Sample Resource (https://www.internationalgenome.org/) and gnomAD 
(https://gnomad.broadinstitute.org/), respectively.

Code availability
The core computational pipelines used by the PCAWG Consortium for alignment, 
quality control and variant calling are available to the public at https://dockstore.
org/search?search=pcawg under the GNU General Public License v.3.0, which 
allows for reuse and distribution. All custom scripts for simulating, identifying 
and characterizing biallelic mutations from the PCAWG data are available on 
GitHub (https://github.com/jdemeul/InfiniteSites). R v.4.0.0 was used for the final 
analyses. Variant recalling on 195 PCAWG samples was done using GATK v.4.0.8.1, 
which is available from https://gatk.broadinstitute.org/. STREME and TomTom 
v.5.3.2 (MEME suite, https://meme-suite.org/) were used for motif enrichment and 
analysis. PCAWG consensus SNV, MNV, indel and structural variant calling was 
described by the ICGC/TCGA PCAWG13. PCAWG consensus copy number calling 
was described by Dentro et al.4. PCAWG gene expression analysis was reported in 
Calabrese et al.27 and was based on TopHat2 v.2.0.12 and STAR v.2.4.0i alignments. 
PyMOL v.2.4.0 was used for the structural analyses.
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Extended Data Fig. 1 | Simulation approaches for infinite sites violations. Schematic overview of the uniform permutation (left) and neighbor resampling 
(right) approaches to assess the number and type of infinite sites violations expected in a tumor. Numbers in the uniform permutation panel highlight the 
sequential nature of the sampling, which keeps track of mutated positions to consider them accordingly for biallelic, forward, and back mutation. Note that 
the neighbor resampling model excludes all PCAWG annotated driver mutations and allows simulation of biallelic events only.
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Extended Data Fig. 2 | Biallelic indels are expected in a subset of microsatellite unstable tumors. Bar plots of the observed indel burden and signature 
(left) and the expected biallelic indels according to the neighbor resampling model (right). Bar height indicates total numbers and colored subdivisions 
represent fractions contributed by each indel signature (left) or biallelic indel type (right). Only PCAWG tumors with ≥1 expected biallelic indel are shown. 
Four microsatellite unstable tumors are predicted to boast several hundreds to over one thousand, mostly parallel, biallelic indels. These mainly originate 
from indel signatures 1 and 2, likely reflecting slippage during DNA replication and subsequent 1 bp T (or A) insertion and deletion in thymine (adenosine) 
mononucleotide repeats, respectively.
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Extended Data Fig. 3 | Detection of biallelic parallel mutations by allele frequency. (a) Flow chart showing the filtering steps, phasing-based estimates 
of precision and lower bound recall, as well as the input and output data for our pipeline to detect biallelic parallel mutations in PCAWG based on variant 
allele frequencies (VAF). Three filtering steps highlighted in bold are further illustrated in panels (b-d). (b) Rainfall plot of all biallelic parallel hits obtained 
after omitting the germline SV filter. Streaks of colored dots indicate a clustering of hits in regions with common germline structural variants. While 
demonstrating the ability of the pipeline to detect VAF outliers, these hits are poorly supported by phasing data and likely represent single somatic SNVs 
in the context of a heterozygous germline deletion. (c) Example of reference bias in the PCAWG consensus SNV read counts. Reads carrying the somatic 
variant contain alternate germline alleles at three proximal positions, resulting in an underreporting of the number of wild type reads and an overestimation 
of the VAF. (d) Diagnostic QQ-plots of the unadjusted one-sided beta-binomial read count test P-values for two samples (Methods). DO41578 P-values 
are overinflated (slope > 1), hinting at consensus purity/ploidy errors, and the sample is excluded as a result.

Nature Genetics | www.nature.com/naturegenetics

http://www.nature.com/naturegenetics


Letters NATurE GEnETICS

Extended Data Fig. 4 | Biallelic parallel mutation during metastatic prostate cancer evolution. Heatmap showing allele frequencies of variants found 
to be biallelic in at least one sample of eight prostate cancers with sequencing of matched primary and metastases (A10–A34, different sites indicated 
as in Gundem et al.12). Early clonal biallelic mutations are detected in all samples of a patient (for example, A10 chr19:29,339,579), while late clonal and 
subclonal ones show no evidence of being biallelic in some samples (beta-binomial p-value > 0.05 and no discordant phasing to a heterozygous germline 
SNP) or are detected in only a subset of samples (for example, A22 chr14:61,497,015 and A10 chr2:117,463,664, respectively).
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Extended Data Fig. 5 | Landscape of biallelic mutations across PCAWG. Number of observed parallel (red) and divergent (blue) mutations plotted 
in context of the total SNV burden for 84 PCAWG samples with ≥ 1 phasing-confirmed VAF hit. The range of parallel mutations expected purely from 
SNV-SNP phasing is also indicated (95% confidence interval, red vertical bars) as this approach is less sensitive to purity and copy number state than the 
VAF-based analysis. Samples for which the number of divergent mutations is not shown were not considered for Mutect2 recalling.
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Extended Data Fig. 6 | Comparison between observed and simulated biallelic mutations. (a,b) Scatterplots of the observed vs. expected number of 
biallelic mutations (parallel + divergent) for all PCAWG tumors using the uniform permutation (a) and neighbor resampling models (b). The Pearson 
correlation and a spline regression fit with 95% confidence interval (shaded grey) are shown.
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Extended Data Fig. 7 | Loci with biallelic mutations have higher intrinsic mutability. The fraction of loci with biallelic mutations is plotted for loci with 
1, 2, …, 7 monoallelic SNVs across PCAWG. Loci are further stratified per trinucleotide context and those with annotated driver mutations are excluded. 
Bootstrap resampling is performed to obtain 95% confidence intervals (shaded).
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Extended Data Fig. 8 | Recurrent mono- and biallelic mutation of the RPL18A promoter. Histograms of read coverage in 13 melanoma tumor-normal pairs 
showing mono- or biallelic mutation of the ETS-binding TCTTCCG motif at the RPL18A promoter.
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Extended Data Fig. 9 | Effect of promoter mutation on gene expression for genes with biallelic hits. (a) Box and scatter plot showing the log2-fold 
change in expression (FPKM-UQ, Methods) compared to the median wild type for promoter mutated genes in Fig. 5a. Each dot represents the relative 
expression in a single PCAWG melanoma with RNA-Seq data, stratified by the mutation status of that gene’s promoter. The total number of tumors for 
each category is indicated between parentheses. Centre line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range. A two-sided 
Student’s t-test was used to evaluate the difference between the log2-transformed expression values of wild type vs the pooled single and biallelic mutant 
cases. (b) Scatter plot of the DNA and RNA B-allele frequencies of expressed germline heterozygous SNPs in the genes/samples with a single mutant 
promoter allele in (a). The ICGC donor ID and local consensus copy number are indicated. Error bars and the centre represent, respectively, the posterior 
95% highest density interval and maximum likelihood estimate of the DNA and RNA B-allele frequencies assuming a uniform Beta (1, 1) prior and a 
binomial likelihood for the allele counts.
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Extended Data Fig. 10 | Biallelic mutations can confound common analysis. (a) Patterns of in-cis SNV pairs in a diploid region evidence linear phylogenies 
(parent-child) when the infinite sites assumption holds. (b) Bar plot showing the number of in-cis SNV pairs in PCAWG melanoma samples with at 
least two such pairs. Bar height reflects total numbers observed while the red portion indicates the fraction of all pairs with evidence for biallelic parallel 
mutation (beta-binomial p-value ≤ 0.05 or phasing to a heterozygous SNP). (c) Histogram of cancer cell fractions of SNVs in melanoma DO220906. 
The clonal cluster and a superclonal cluster containing mainly biallelic parallel mutations (red), are indicated. (d) IGV visualisation of two missed biallelic 
drivers in colorectal and oesophageal adenocarcinomas DO8730 and DO50398, respectively. Reads (horizontal bars) are downsampled for clarity and 
local base-wise coverage is indicated left of the histograms.
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