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Biallelic mutations in cancer genomes reveal local

mutational determinants

Jonas Demeulemeester©®'22<, Stefan C. Dentro®4, Moritz Gerstung©®3# and Peter Van Loo

The infinite sites model of molecular evolution posits that
every position in the genome is mutated at most once'. By
restricting the number of possible mutation histories, hap-
lotypes and alleles, it forms a cornerstone of tumor phylo-
genetic analysis? and is often implied when calling, phasing
and interpreting variants®* or studying the mutational land-
scape as a whole’. Here we identify 18,295 biallelic muta-
tions, where the same base is mutated independently on both
parental copies, in 559 (21%) bulk sequencing samples from
the Pan-Cancer Analysis of Whole Genomes study. Biallelic
mutations reveal ultraviolet light damage hotspots at E26
transformation-specific (ETS) and nuclear factor of activated
T cells (NFAT) binding sites, and hypermutable motifs in
POLE-mutant and other cancers. We formulate recommenda-
tions for variant calling and provide frameworks to model and
detect biallelic mutations. These results highlight the need
for accurate models of mutation rates and tumor evolution, as
well as their inference from sequencing data.

Recent studies have shown systematic variation in mutation rates
across the genome, resulting in specific hotspots®”. In addition,
breakdown of the infinite sites assumption at the scale of individ-
ual single-nucleotide variants (SNVs) was inferred from single-cell
tumor sequencing data and flagged as a confounder during phylo-
genetic reconstruction®. In bulk tumor data, population averaging
and limited long-range information make it difficult to assess muta-
tional recurrence and its impact on analyses.

In a single diploid lineage, four classes of infinite sites viola-
tions may be considered (Fig. 1): (1) biallelic parallel and (2) bial-
lelic divergent, where two alleles independently mutate to the same
or different alternate bases, respectively; (3) monoallelic forward
and (4) monoallelic back, where one variant is mutated to another
or back to wild type (WT), respectively. We focused on biallelic
mutations, which become problematic when artificially treating
genomes as haploid, hypothesizing these may be observed directly
in bulk tumor genome sequencing data. Loss of variants owing to
large-scale genomic deletion does not strictly contradict the infinite
sites assumption, yet should be accounted for in cancer genomes™*’.

To assess the landscape of infinite sites violations, we started with
a simulation approach using the Pan-Cancer Analysis of Whole
Genomes (PCAWG) dataset of 2,658 whole-genome sequenced
cancers. We resampled a tumor’s observed mutations, preserving
mutational signature exposures'®'' but otherwise assuming uni-
form mutability across the callable diploid genome (uniform per-
mutation model; Extended Data Fig. 1 and Supplementary Table 1).
Since mutation rates are certainly not uniform and any deviation
increases the number of violations®, this derives a lower bound of
at least 1, typically parallel, violation in 147 tumors (5.5%; Fig. 2a).
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Fig. 1| Possible violations of the infinite sites assumption in a single
clonal lineage. Two subsequent mutations at a diploid locus can affect the
same or alternate alleles. Depending on the base changes, there are four
scenarios: biallelic parallel or divergent mutations affect separate alleles,
whereas monoallelic forward and back mutations hit the same allele twice.

A second simulation approach, resampling (without replacement,
nondriver) mutations from tumors of the same cancer type with
similar mutational signature activities, confirms these observa-
tions (neighbor resampling model; Fig. 2b, Extended Data Fig. 1
and Supplementary Table 2). In addition, this approach indicated
that four microsatellite unstable tumors harbored hundreds of par-
allel biallelic indels (Extended Data Fig. 2). Consistent differences
between the simulators, in the number of violations per tumor type,
inform on the nonuniformity of the mutational processes, that is,
a reduced ‘effective genome size’ (akin to the population genetics
concept of effective population size; Fig. 2¢).

Distinct preferences for parallel, divergent, forward and back
mutations may be understood from the active mutational processes
(Fig. 2d). For instance, the dominant mutagenic activity of ultra-
violet (UV) light in cutaneous melanoma (single base substitution
signature 7a/b, SBS7a/b) yields almost uniquely C>T substitutions
in CC and CT contexts'®"!, which can only result in the accumu-
lation of biallelic parallel mutations. In contrast, in esophageal
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Fig. 2 | Simulated landscape of infinite sites violations in the PCAWG cohort.
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a, Number and type of infinite sites violations in 147 PCAWG samples with

>1 expected violation under a uniform mutation distribution. The bar height indicates the expected number of violations and the colored subdivisions
represent the fractions contributed by each violation type. Tumor type of the samples is color-coded below the bars. The four samples highlighted in d are
indicated. b, Comparison of the expected biallelic violations from the uniform permutation and neighbor resampling models. Every dot represents a tumor
simulated 1,000 times with each model. Color and size reflect, respectively, tumor type and the cosine similarity of the predicted biallelic mutation spectra.
¢, Box and scatterplot showing the effective genome size perceived by the mutational processes per cancer type, as estimated from the per-sample
differences between simulation approaches. The dashed line indicates the callable genome size. The effective genome size is smallest in Lymph-BNHL

(approximately 37 Mb), likely driven by recurrent focal hypermutation'. Center

line, median; box limits, upper and lower quartiles; whiskers, 1.5x

interquartile range. Only tumors with >10 biallelic mutations across 1,000 simulations are included and their numbers are indicated between parentheses

next to the tumor type. Only tumor types with >10 such tumors are shown. CN
violation contributions indicated in a. The 16 distinct trinucleotide contexts are
each colored block. The proportion of parallel, divergent, back and forward mut

S, central nervous system. d, Mutation spectra of four tumors with distinct
provided on the x axis for C>A type substitutions and are the same for
ations is indicated in the stacked bar on the right. Frequent combinations of

mutations leading to specific infinite site violations are highlighted as well as the signatures generating them.

adenocarcinoma DO50406, interplay between SBS17a and SBS17b'*"!
results in various substitutions of T in a CT'T context, generating both
parallel and divergent variants. Back and forward mutations occur
when the variant allele retains considerable mutability.

We next set out to directly detect biallelic mutations in PCAWG
genomes. Parallel mutation increases the variant allele frequency
(VAF) and may be distinguished from local copy number gains by
comparing the VAF to the allele frequencies of neighboring hetero-
zygous SNPs, taking tumor purity and copy number into account.
Additionally, when proximal to a heterozygous germline vari-
ant, read phasing can evidence mutation of both alleles (Fig. 3a,b,
Extended Data Fig. 3 and Supplementary Table 3). Without phas-
ing information, we can only detect parallel mutations on more
copies than the major allele tumor copy number. Hence, no paral-
lel mutations are called in regions with loss of heterozygosity and
late or subclonal events are likely to be underrepresented. Insights
into the latter can be glimpsed from multi-sample studies. In a
cohort of patients with metastatic prostate cancer with sequencing
of matched primary and metastases'>"*, we discerned early clonal
(preceding the most recent common ancestor) as well as candidate
late and subclonal events (Extended Data Fig. 4).
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Divergent mutations can be picked up by variant callers but are
traditionally filtered out’. Since neither the PCAWG consensus
nor the four contributing pipelines reported divergent mutations,
we recalled mutations with Mutect2 for 195 relevant cases, allow-
ing 2 alternative alleles (Fig. 3c and Supplementary Tables 4 and
5). Overall, recalling identified a median 96.3% of consensus vari-
ants and added 9.5% new variants, with 0.04% of the latter contrib-
uted by divergent mutations (Supplementary Fig. 1). For 90% of
divergent mutations, 1 of the alternate alleles was reported in the
PCAWG consensus.

In total, we identified 5,330 divergent mutations, 12,937 parallel
SNVs and 14 dinucleotide variants in 559 (21%) PCAWG samples
(Supplementary Tables 3-5). Parallel mutations confirmed by phas-
ing were found in tumors with as few as 8,892 SN'Vs while divergent
mutations were repeatedly identified in esophageal adenocarcino-
mas with 20,000-30,000 SNV (Extended Data Fig. 5). At the other
end of the spectrum, phasing indicated that 2 ultra-hypermutated
colorectal adenocarcinomas each boasted around 8,000 parallel and
1,700 divergent mutations.

Biallelic mutations carry a footprint determined by, but distinct
from, the overall mutational profile. For example, since parallel
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Fig. 3 | Detecting biallelic mutations in a case of melanoma. a, Tumor allele-specific copy number and binned mutation copy number plotted for
chromosomes 1-5 of melanoma DO220906. Somatic SNVs with a mutation copy number exceeding that of the major allele (and equal to the total copy
number) are evident, suggesting biallelic parallel mutation events. The error bars and their centers represent the posterior 95% highest density interval
and maximum likelihood estimate, respectively obtained from a Beta-binomial model of the observed reference and alternate allele read counts with a
uniform Beta(1,1) prior (Methods). b,¢, Integrative Genomics Viewer visualization of DO220906 tumor (top) and matched normal (bottom) sequencing
data at two loci, illustrating how read phasing information can confirm independent mutation of both parental alleles for parallel (b) and divergent (c)
mutations. Reads (horizontal bars) were downsampled for clarity and local base-wise coverage is indicated to the left of the histograms. In total, we
identified 373 parallel mutations (74 supported by phasing) and 8 divergent mutations in DO220906.

mutations require two independent identical hits, they show a
mutation spectrum similar to the square of that of SNVs (Fig. 4a,b).
Indeed, the observed biallelic mutations were better explained by
the simulated violation spectra than the overall mutation spectra
(P=2.83x10"* and 1.35X107* for parallel and divergent, respec-
tively; median simulated-observed cosine similarities 0.968 and
0.944; Mann-Whitney U-test, samples with >10 violations). This
further supports the accuracy of our biallelic mutation calls, exclud-
ing major contributions from sequencing and alignment artifacts,
germline variants, focal tandem duplicator phenotypes, precursor
lesions or somatic gene conversion.

While the uniform permutation model underestimates, neighbor
resampling accurately predicts the number of biallelic mutations
(Fig. 4c and Extended Data Fig. 6). Resampling mutation burdens
and tumor types with the confirmed model demonstrates how bial-
lelic mutations are proportional to the square of the mutation bur-
den (n% Fig. 4d). The coefficient per tumor type (C,,.) scales the
callable genome size (N) and provides straightforward estimation of
the number of violations as Ctypenz/N (Fig. 4d.e).

Biallelic mutations are not associated with somatic rear-
rangements (P,;>0.31; Mann-Whitney U-test, Benjamini-
Hochberg-corrected) but occur at loci with a higher mutation rate
(Extended Data Fig. 7), some of which harbor recurrent biallelic
events (Fig. 5a). The promoter of RPL18A shows 3 parallel, 1 diver-
gent and 9 single mutations at chr19:17,970,682, all in melanoma
(12% total; Extended Data Fig. 8) (ref. '*). Motif enrichment at loci
with biallelic versus trinucleotide-matched monoallelic hits in mel-
anoma reveals enrichment of YCTTCCGG and WTTTCC motifs
(Fig. 5a,b) (ref. ). YCTTCCGG motifs are recognized by E26
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transformation-specific (ETS) transcription factor family members.
Binding increases their sensitivity to UV damage due to perturbation
of the TpC C5-C6 interbond distance d and torsion angle #, favor-
ing cyclobutane pyrimidine dimer formation (Fig. 5¢,d) (refs. '>'¢).
The WTTTCC motif matches the recognition sequence for nuclear
factor of activated T cells (NFAT) transcription factors'”'®. Analysis
of crystal structures of NFATc1-4 bound to DNA indicates that
binding induces similar, less outspoken TpC conformational
changes that may explain its increased mutability (Fig. 5d and
Supplementary Table 6). While we cannot formally exclude selec-
tion as a contributor to these recurrent mutations, no effects on total
or allele-specific expression of genes with biallelic promoter muta-
tions could be observed (Extended Data Fig. 9).

Similar analysis in colorectal adenocarcinoma revealed special
cases of the SBS10a/b and SBS28 sequence contexts, which are asso-
ciated with POLE exonuclease domain mutations (Fig. 5a,e)'*'"".
AWTTCT and TTCGAA for SBS10 and AAATTT for SBS28 all carry
extra adenosine and thymine bases surrounding the regular trinucle-
otide context of the mutated C and T, respectively. Likewise, AT-rich
sequences surrounding the canonical SBS17 CTT context render
some loci hypermutable in esophageal and stomach adenocarcino-
mas (AAACTTA motif; Fig. 5a,e). These preferences have also been
observed in the recent extension from tri- to pentanucleotide signa-
tures''. However, it is unclear how these additional bases increase
local mutability. Lastly, it is worth highlighting recurrent (biallelic)
mutation at chr6:142,706,206, in an intron of ADGRG6 (Fig. 5a). The
CTCTTTGTAT-GTTC-ATACAAAGAG palindrome may adopt a
hairpin structure, exposing the hypermutable C in a 4-base pair (bp)
loop and rendering it susceptible to APOBEC3A deamination’.
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Fig. 4 | Comparison between observed and simulated biallelic mutations. a, Bar chart highlighting the mutation spectrum of observed and predicted
parallel mutations (circles) and the background SNVs for melanoma DO220906 (bars). Cosine similarities between the spectra are indicated. The error
bars represent the 95% confidence intervals obtained from a Dirichlet-multinomial model of the observed biallelic parallel mutation type counts with a
uniform Dirichlet prior. b, Similar to a but showing divergent mutations for esophageal adenocarcinoma DO50406. The bars are stacked to reflect the
frequency of the color-coded base changes indicated on top. ¢, Scatterplot of the observed versus neighbor resampling model-expected number of biallelic
mutations (parallel + divergent) for all PCAWG tumors. For cases with >10,000 phaseable SNVs (red borders), the phasing-based number is provided.
Colors reflect tumor type as in Fig. 2. The Pearson correlation and a spline regression fit with 95% confidence interval (shaded gray) are shown. d, Number
of biallelic violations expected according to the neighbor resampling model for a range of mutation burdens and tumor types. The dashed line indicates
the birthday problem estimate equal to the square of the mutation burden divided by the genome size (n?/N). The full colored lines are the linear fits per

tumor type. e, Bar plot of the fitted coefficients of n?/N as derived in d.

Biallelic hits provide insights beyond mutational processes. The
rate of biallelic mutation is proportional to that of parallel mutation
between clones and increases with both the number of lineages con-
sidered and total mutation burden (Supplementary Fig. 2). When
constructing phylogenies from ever more exhaustive multi-sample
or single-cell data®”!, biallelic mutations provide an estimate for the
number of parallel events.

Using single-sample bulk sequencing to establish evolutionary
relationships between subclones is challenging®*. Under the infinite
sites assumption, one can examine rare pairs of phaseable SNVs in
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regions without copy number gains**. Specifically, a pattern where
one SNV is only found on a subset of the reads reporting the other
evidences a linear relationship (Extended Data Fig. 10a). In PCAWG
melanomas, however, a median 67% of these pairs in diploid regions
reflect phylogenetically uninformative biallelic parallel mutations
(Extended Data Fig. 10b). To avoid biasing phylogenies, biallelic
SNVs should be filtered by restricting analyses to haploid regions or
scrutinizing the VAF and the likelihood of biallelic mutation in the
sample’. SNV clustering approaches, which rely on the infinite sites
assumption for subclonal reconstruction and assignment of each
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Fig. 5 | Biallelic mutations reveal hotspot motifs. a, Heatmap of the 50 most frequently mutated loci in PCAWG with at least 1 biallelic mutation. The
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¢, Superposition of TpC dinucleotides in crystal structures of ETS-bound (GABP), NFAT-bound (NFAT1c) and free B-form DNA (PDB ID: TAWC, TOWR and
1BNA, respectively). The distance d between the midpoints of the two adjacent C5-C6 bonds as well as their torsion angle 7 is indicated. d, Scatter plot
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n increase the yield of UV-based pyrimidine dimer formation, as indicated by the arrow. e, Sequence logos of motifs enriched at loci with biallelic mutations
in colorectal adenocarcinoma (SBS10, 28) and esophageal/stomach adenocarcinoma (SBS17). A Fisher exact test was used to assess motif enrichment.

variant to a specific lineage, may pick up ‘superclonal clusters’ of bial-  to capture the full extent of somatic variation. Indeed, while only
lelic parallel mutations but are otherwise expected to remain robust ~ 2.8% of biallelic hits fall within or near exons, we identified 8 can-
at the levels identified in this study (Extended Data Fig. 10c) (ref. *?).  didate biallelic driver events. Parallel nonsense mutations in the

Phasing is also used to boost the accuracy of variant callers for  tumor suppressors ASXL2 and CDKN2A and divergent events in
single-molecule sequencing data®*. As with multi-allelic variants, ~ERBB4 suggest that, in rare cases, biallelic mutations are selected for
relaxation of the set of allowed haplotypes will need to be considered ~ (Extended Data Fig. 10d and Supplementary Table 7).
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Taken together, we identified 18,295 biallelic mutations in 21%
of PCAWG cases, demonstrating how the infinite sites assumption
breaks down at the bulk level for a considerable fraction of tumors.
By extension, the model is untenable in most, if not all, tumors
at the multi-sample or single-cell level. If not correctly identified,
biallelic mutations confound variant interpretation, ranging from
driver inference to subclonal clustering and timing analyses, as well
as phylogenetic inference. Nevertheless, at-scale detection of bial-
lelic mutations affords an intimate look at the mutational processes
operative in cells, such as hotspots, hypermutable motifs and the
molecular mechanisms of DNA damage and repair.
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Methods
SNV calling. PCAWG consensus single- and multi-nucleotide variant calls were
obtained from the International Cancer Genome Consortium (ICGC) (http://
dcc.icge.org/releases/PCAWG/consensus_snv_indel/). Briefly, these calls were
constructed according to a 2+ out of 4’ strategy, where calls made by at least
two callers (the three Broad, EMBL/DKFZ and Sanger core PCAWG pipelines
plus MuSE v.1.0) were selected as consensus calls”’. Postmerging, these calls were
subject to further quality control including filtering against oxidative artifacts
(Ox0G), alignment (Burrows—Wheeler Aligner versus BLAST-Like Alignment
Tool), or strand biases resulting from different artifact-causing processes, as well as
checks for tumor-in-normal and sample cross-contamination. Crucially, care was
taken to avoid ‘bleed-through’ of germline variants into the somatic mutation calls.
Specifically, absence from the Broad panel of normals based on 2,450 PCAWG
samples and a higher read coverage (>19 reads with at most 1 read reporting the
alternate allele) in the matched normal sample were required to call a somatic
mutation at 1 of the >14M common (>1%) polymorphic loci of the 1000 Genomes
Project. SNVs that overlapped a germline SNV or indel call in the matched normal
were also removed. The sensitivity and precision of the final consensus somatic
SNV calls were 95% (90% confidence interval (CI) =88-98) and 95% (90%
CI=71-99), respectively, as evaluated by targeted deep-sequencing validation'.
Of note, 18 biallelic parallel mutations identified in this study were covered by the
PCAWG validation effort with 17 passing and 1 not being observed.

To identify biallelic divergent variants, which are filtered out in PCAWG,
we recalled variants on 195 non-graylisted'> PCAWG tumor-normal pairs (not
showing any tumor-in-normal contamination) where we might reasonably expect
to find such mutations according to our uniform permutation simulations.
Included also, as an internal control, were all other samples from the MELA-AU
cohort (skin cancer-Australia), which met these criteria but where we did not
expect biallelic divergent mutations. SNVs and indels were called using Mutect2
(Genome Analysis Toolkit (GATK) v.4.0.8.1) on the base quality score-recalibrated
PCAWG BAM files and filtered according to best practices”. The Genome
Aggregation Database (gnomAD) was provided as a germline resource and an
additional panel of normals was derived from all matched normal cases. To prevent
filtering of biallelic variants, FilterMutectCalls was run with --max-alt-allele-count
2. Additional filtering against germline SNPs was done by requiring a posterior
probability for the alternative allele to be germline (P_GERMLINE) < —1 for both
of the alternate alleles and requiring a minimal depth of 19 high-quality reads
(mapping quality > 35 and base quality >20) in the matched normal sample.

Consensus copy number, purity and ploidy. PCAWG consensus copy number,
tumor purity and ploidy were obtained from the ICGC*" (http://dcc.icgc.org/
releases/PCAWG/consensus_cnv/). Briefly, each cancer’s genome was first
segmented into regions of constant copy number using six individual copy number
callers: ABSOLUTE; ACEseq; Battenberg; cloneHD; JaBbA; and Sclust, run as
detailed in Dentro et al.". Consensus segment breakpoints were determined from
the PCAWG consensus structural variants (http://dcc.icgc.org/releases/PCAWG/
consensus_sv/) complemented with high-confidence breakpoints identified by
several of the copy number callers. The six callers were then rerun, enforcing this
consensus segmentation and separately established consensus tumor ploidy, which
was typically obtained by resolving disagreement on whether a whole-genome
duplication had occurred by an expert panel’. The allele-specific copy number
calls were combined by looking, for each segment, at the agreement in major and
minor allele copy number states between callers. Lastly, consensus on tumor purity
was obtained by combining the calls from the six copy number callers with those
from subclonal architecture reconstruction methods that leverage SNV data: CliP;
CTPsingle; PhyloWGS; cloneHD; and Ccube, as detailed in Dentro et al.*. This
multitiered approach yielded a purity for every tumor and a quality-tiered copy
number for every consensus segment.

Simulating infinite sites violations. To estimate the number of infinite sites
violations in tumors, we developed two distinct simulation approaches leveraging
the PCAWG consensus SNV calls.

Our uniform permutation model resamples the observed SNVs in a
tumor uniformly across the callable regions of the chromosomes, according
to the observed trinucleotide-based mutational spectrum. A single simulation
proceeds as follows. First, the total mutational load #, g, eq is resampled from
a gamma-Poisson mixture where the Poisson rate parameter 1 ~ Gamma
with mode equal to the observed mutational load 7, s and an s.d. of

6 = 0.05 X My opserved> that is, 7 gimulated ~ Poisson (A ~ Gamma (r, )) where

the rate of the Gamma distribution was r = #ygbserved + 1/ M opserved + 202/20°

and the shape was f = 1 + 1 gbserved X 7. Mimicking the observed distribution,
these mutations are then divided across the chromosomes according to a
Dirichlet-multinomial model with 7, gylatea trials and parameter vector a
where a, is equal to 1 4 the total mutational burden on chromosome i. That is,
Ngimutatea ~ MU, Gnitaear 7~ Dir(@)) With @ = (1 gervess Maabserveds- - ->Mxabservea) + 1-
Next, mutation spectra per chromosome (r;) were sampled from a Dirichlet
distribution with parameter vector p; where y;; is equal to a pseudocount
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w; derived from the overall mutational spectrum plus the observed
number of mutations of type j on chromosome i, that is, ; ~ Dir(u,) with

B = (ﬂi,A[C>A]A,observed’ Mi,A[C>G]A,0bserved’ R ﬂi,T[T>G]T,observ€d> +y with

v = (”t,A[C>A]A,observed + L Miaiesciacbserved T L oo By (TG Tobserved T 1)

X 23/M; gpserved- These spectra were then normalized to mutation type probabilities
using the trinucleotide content on the corresponding chromosomes. In turn,

the probabilities were used for rejection sampling of #; mulaeq Mutations at
trinucleotides taken uniformly along the two (diploid) copies of the callable parts
of chromosome i. The resulting mutation spectra were indistinguishable from the
observed spectrum of the sample. During simulation, the algorithm kept track of
which allelic positions were mutated and considered them accordingly for biallelic
parallel or divergent mutation and back or forward mutation. Simulations were
repeated 1,000 times per sample.

In the neighbor resampling model, we resampled without replacement the
mutational landscape of a tumor from the empirical mutation distribution,
minus the annotated driver SNV (https://dcc.icgc.org/releases/PCAWG/
driver_mutations/). Specifically, in each simulation, we randomly picked 50%
of the observed mutations in the original tumor and resampled the other 50%
from the pooled SNV’ of representative PCAWG tumors. We defined a tumor
as representative for the simulation target when it had the same PCAWG
histology and similar mutational signature exposures (cosine similarity mutation
spectra>0.9) (ref. ''). This can be viewed as sampling one allele from the original
tumor and one allele from the corresponding empirical mutation distribution. Note
that the approach allowed to simulate biallelic events but not back and forward
mutation and could be applied only to tumors with a representative SNV pool
at least 0.5 times their total mutation burden. We further excluded all graylisted
and non-preferred multi-sample tumors' and 21 prostate cancer cases from the
PRAD-CA cohort (prostate adenocarcinoma-Canada), which were suspected of
contamination harboring excess low VAF SNV calls in repetitive regions.

Neighbor resampling was also applied to indels, in which case the exact same
pipeline described above could be followed using indels instead of SNVs. To
identify representative tumors, we used the PCAWG indel signatures (ID 1-17)
and their exposures in each of the samples''. Microsatellite instability classification
of all PCAWG tumors was obtained from Fujimoto et al.**.

In all simulations, input mutations being (re)sampled were assumed
to represent single events. Since some are in fact biallelic, this may have
underestimated the true number of violations.

Identification of parallel mutations: allele frequencies. Parallel mutation
increases the VAE, which can be picked up by comparing it to the B-allele
frequency (BAF) of local heterozygous SNPs, taking tumor purity and local total
copy number (logR) into account. We obtained phased BAF values and logR as
an intermediate output of Battenberg copy number calling’. Briefly, allele counts
at 1000 Genomes phase 3 SNP loci were extracted from the matched tumor

and normal BAM files using alleleCount v4.0.0 with a minimal base quality of
20 and mapping quality of 35. Heterozygous SNPs were identified as having

0.1 < BAF < 0.9 in the matched normal sample and poorly behaving loci were
filtered out (Battenberg problematic loci file). Haplotypes were imputed using
Beagle 5.0, followed by a piecewise constant fit of the phased tumor BAF values
and flipping of haplotype blocks with mean BAF < 0.5. Total allele counts of
tumor and normal samples were converted into logR values and corrected for
guanine-cytosine-content and replication timing artifacts.

BAFegment and [0gRegment estimates were computed for all PCAWG
consensus copy number segments’. Allele counts at phased heterozygous SNPs
were considered to be generated according to a Beta-binomial model with
Vi ~ Bin(n; = Vi + R;, P ~ Beta (BAFegment X @, (1 — BAFsegment) X @))
where V; and R; are the observed counts of the major and minor allele of SNP
i, respectively and w is a sample-specific concentration parameter (that is, a
pseudo-coverage of the average segment). For each sample, w was optimized
between 50 and 1,000 by computing a two-sided P from the Beta-binomial model
above for each SNP and ensuring that the robustly fitted slope of a Q-Q plot of
these P values was equal to 1.

A similar model could subsequently be used to test whether a variant was
present on a higher number of copies than the number of copies of the major allele
present in the tumor. In pure tumor samples, this would be directly observable
since their allele frequency exceeds that of local heterozygous SNPs on the major
allele. However, when considering admixed normal cells, the maximal expected
allele frequency needed to be corrected for tumor purity and total copy number of
the segment as follows:

I—p
2(1=p)+p¥y) 210gR cgment

with p and ¥, as the PCAWG consensus tumor purity and ploidy, respectively’.
This amounted to subtracting from the segment BAF the contribution of the major
allele from admixed normal cells. If BAF,omatic Was estimated to be <0.05 for a
segment, it was conservatively raised back to BAFsegment-

BAFsomatic = BAFsegment -
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The final Beta-binomial model with BAFsomatic and @ then describes the
expected allele counts V; of clonal somatic variants carried on all copies of the
major allele. This model was used to perform a one-sided test for the SNVs

contained on that copy number segment as P(V; > v|V; + R;, BAFsomatic, @).

An independent filtering step required P(V; + R; > v|V; + Ri, BAFsomatic» @)
<0.001 to remove sites with low statistical power (that is, low total read counts
or BAFsomaiic ~ 1). P values were corrected for multiple testing according

to Benjamini and Hochberg and SNV's were considered as potential parallel
mutations when ¢ <0.1.

Additional quality checks and filters mitigated potential errors and biases
in allele counts, consensus genome segmentation, purity and ploidy: (1) SNVs
overlapping a known heterozygous germline SNP in the individual were filtered
out; (2) candidate variants were filtered when they resided in a region of common
structural variation as listed in nstd186 (National Center for Biotechnology
Information (NCBI) Curated Common SVs, all populations from 1000 Genomes;
allele frequency >1%); (3) the BAF and logR of proximal heterozygous SNPs on
either side of a candidate variant should not represent outliers on the segment,
which could indicate a missed copy number event. For the BAF, we required
the two-sided Beta-binomial P values of these SNPs, as computed above, to be
>0.001 and their combined P>0.01 (Fisher’s method). For the logR, identical
thresholds apply, with P values derived using a two-tailed test assuming a Gaussian
distribution with the mean equal to the median segment logR and s.d. equal to
the median absolute deviation adjusted for asymptotic consistency; (4) candidate
parallel mutations with >2 heterozygous SNPs within 25bp were filtered out
because these can affect mapping qualities and bias allele counts; (5) SNVs in
regions with loss of heterozygosity in the PCAWG consensus copy number were
not tested. In males, only the pseudoautosomal regions of X were considered; (6)
the robustly fitted slope of a Q-Q plot of the final SNV P values should be <1, if
not, sample purity may have been underestimated and the sample was excluded;
(7) candidate variants from tumors where both simulators yielded zero biallelic
mutations across 1,000 simulations were excluded.

Further flags were included for quality control but were not used during
filtering of the final call set: (1) candidate biallelic hits at T and B cell receptor loci
were flagged to assess the impact of V(D)] recombination in infiltrating immune
cells on allele frequencies and coverage; (2) for each variant, we checked whether it
lifted over from the 1000 Genomes GRCh37 build to a single location on hg38 and
required the same reference allele; (3) SNVs were flagged if near an indel (position
—10 to +25) in the sample.

Identification of parallel mutations: variant phasing. Phasing information was
obtained for all heterozygous SNP-SNV pairs that were within 700 bp of one
another. We counted only read pairs with mapping quality >20, base quality >25,
no hard or soft clipping, which were properly paired, were not flagged as duplicates
and did not have a failed vendor quality control flag. We further removed read
pairs with indels and those that had >2 mismatches in a single read or >3 in the
whole pair (if the phased variants were spanned by different reads in the pair).

We inferred a parallel mutation when, for a heterozygous SNP-SNV pair, >2
reads from each allele of the SNP reported the somatic variant, that is, >2 Ref/Alt
and >2 Alt/Alt reads. In addition, Ref/Alt and Alt/Alt reads each should represent
>10% of the total phased reads. To avoid a scenario where, after a gain of the
chromosome copy carrying the somatic variant, the in-cis allele of the heterozygous
SNP is mutated to the in-trans allele, we required that the BAF of this SNP was not
an outlier on the segment by requiring that its two-sided Beta-binomial P> 0.001.

While phasing info was sparse, it was less dependent on copy number, purity
and coverage than the VAF approach. Phasing to a heterozygous SNP can detect
late parallel mutations with multiplicity smaller than the copy number of the
major allele, for example, on a segment with copy number 2 + 1 where both
parental alleles have 1 copy mutated. Therefore, phasing may be used to evaluate
the performance of the VAF approach in a sample. However, both approaches are
blind in regions with loss of heterozygosity. Parallel mutations can occur in these
contexts when the copy number >2 but cannot readily be distinguished from early
mutations that have occurred before the duplication.

The precision and recall of the VAF approach were assessed by taking all
evaluated phaseable SNV (that is, SNP-SNV pairs having >2 reads each for the
SNP Ref and Alt alleles and >4 reads reporting the SNV). Precision was calculated
as the fraction of VAF-inferred biallelic parallel mutations that were confirmed
by phasing. Recall was the fraction of phasing hits picked up through their allele
frequencies. Overall performance was reported as the median precision and recall
for samples with >10,000 phaseable SNVs.

By extrapolating the rate of parallel mutation at phaseable SNV to all
testable SN'Vs (that is, those passing the quality checks and filters listed above),
we estimated the total number of parallel mutations in a sample i (Myiolation,i)-

The estimate and its uncertainty can be described using a Beta-binomial model

Myiolation,i ~ Bin(n = nj, P ~ Beta (nphasing,parallel,i + 0.001, Mppasingsingle,i 0~001))

where #; is the total number of passed SNV, #hasing paraltel,i the number of
phasing-informed biallelic parallel mutations and #yingsingle,i the number of
phaseable SNVs without evidence for a parallel hit.

NATURE GENETICS | www.nature.com/naturegenetics

Birthday problem approximation. The number of infinite sites violations in a
sample may be approximated by a variant of the birthday problem, which asks for
the probability that at least two people share a birthday in a group of n random
people. While ignoring intricacies such as mutation types and copy number, it
provides a reasonable approximation and straightforward formulation. We started
with the probability that mutations A and B hit the same locus: P (A = B) = I/N
where N is the size of the genome. From this we derived the probability that they
did not share alocus P (A # B) = 1 — 1/N. The probability that A does not hit
the same locus as # other mutations is then P (A # By, ...,B,) = (1 — I/N)"~ L.
To obtain the expected number of mutations not sharing a locus, this probability
was multiplied by the total mutation burden ». Finally, the number of infinite
sites violations was then E [no.violations] = #yiopaion = 7 — # X (1 — 1/N)" 1,

Given that for a human genome 1/N 22 37'° ~ 0, Taylor approximation yields
yiolation = 1 — 1 X (1 — (n — 1)/N) 2 n*/N, indicating that the number of
infinite sites violations scales with the square of the total mutation burden and the
inverse of the genome size.

Motif enrichment. To assess enrichment of specific motifs at sites with biallelic
mutations, we extracted 15-bp sequence contexts (+ strand where C or T was
the reference base and — strand otherwise), for all parallel and divergent biallelic
mutations. For every biallelic mutation, we sampled 10 mutation type-matched
SNVs from the same tumor and extracted their 15-bp contexts as a control set.
The Multiple EM for Motif Elicitation suite of tools (STREME and TomTom
v.5.3.2) was used to discover sequence motifs enriched in the biallelic set relative
to the control set'*"”. In the case of melanoma, identified motifs were linked

to known transcription factor recognition sequences from the HOmo sapiens
COmprehensive MOdel COllection (HOCOMOCO) Human v.11 Core collection
using TomTom with the Sandelin-Wasserman motif comparison function's. P
values were computed according to STREME and TomTom.

Gene expression analysis. PCAWG expression data were obtained from the ICGC
Data Portal http://dcc.icgc.org/releases/ PCAWG/transcriptome/gene_expression/?.
Briefly, reads were aligned with both TopHat2 v.2.0.12 and STAR v.2.4.0i
(two-pass). Read counts for genes were calculated using HTSeq-count v0.11.1 and
the GENCODE v.19 annotation. Counts were normalized using fragments per
kilobase of transcript per million mapped reads and upper quartile (FPKM-UQ)
normalization”. The final expression values are an average of the TopHat2 and
STAR-based alignments. FPKM-UQ values for genes with recurrent (biallelic)
promoter mutations in melanoma were extracted and stratified by promoter
mutation status in the tumor (W'T, single SNV, biallelic mutation).

To assess whether the single SNV induced allele-specific expression, we
used Rsamtools v3.11 to pile up base counts from the STAR-aligned BAM files
at heterozygous germline SNPs. Posterior 95% highest density intervals were
computed for the DNA and RNA base counts assuming a uniform Beta(1,1) prior
and a binomial likelihood. Nonoverlapping intervals can indicate allele-specific
expression.

Structural analysis. X-ray diffraction and solution nuclear magnetic resonance
structures for free B-form DNA, NFAT- or ETS-bound DNA were obtained from
the Research Collaboratory for Structural Bioinformatics (RCSB) Protein Data
Bank (PDB). C5-C6 interbond distances d and torsion angles 1 were extracted
using PyMOL v.2.4.0 at the relevant TpC dinucleotide in the ETS and NFAT
recognition motifs and at nonterminal TpC dinucleotides in the free B-DNA. When
multiple chains were present in a single structure, the average d and 7 were used.

Statistics and reproducibility. No statistical method was used to predetermine
sample size. The experiments were not randomized. The investigators were not
blinded to allocation during the experiments and outcome assessment. After
quality assurance by the PCAWG Consortium, data from 176 of its 2,834 donors
were excluded as unusable. Reasons for data exclusions included inadequate
coverage, extreme bias in coverage across the genome, evidence for contamination
in samples and excessive sequencing errors'’. These exclusion criteria were
predetermined.

In our neighbor resampling simulations, we additionally excluded samples
that had been graylisted by the PCAWG Consortium and used only the PCAWG
designated representative sample for each patient with multiregion sequencing'. In
addition, we excluded 21 prostate cancer cases from the PRAD-CA cohort, which
were suspect of contamination, harboring excess low VAF SNV calls in repetitive
regions of the genome as described in the corresponding Methods section.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

The PCAWG dataset is available through the ICGC data portal at https://dcc.icgc.
org/pcawg". Further information on accessing the data, including raw read files,
can be found at https://docs.icgc.org/pcawg/data/. In accordance with the data
access policies of the ICGC and The Cancer Genome Atlas (TCGA) projects, most
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molecular, clinical and specimen data are in an open tier that does not require
access approval. To access information that could potentially identify participants,
such as germline alleles and underlying sequencing data, researchers will need to
apply to the TCGA Data Access Committee via the database of Genotypes and
Phenotypes (dbGaP) (https://dbgap.ncbi.nlm.nih.gov/aa/wga.cgi?page=login)

for access to the TCGA portion of the dataset and to the ICGC Data Access
Compliance Office (http://icgc.org/daco) for the ICGC portion. In addition, to
access somatic SNV derived from TCGA donors, researchers will also need to
obtain dbGaP authorization. Structural data were obtained from the RCSB PDB
(https://www.rcsb.org/). The HOCOMOCO Human v.11 Core set was used as the
source of known transcription factor recognition sequences (https://hocomocoll.
autosome.ru/). NCBI Curated Common SV’ are available via the NCBI dbVar at
https://www.ncbi.nlm.nih.gov/dbvar/studies/nstd186/. The germline resources

of the 1000 Genomes Project and gnomAD were obtained from the International
Genome Sample Resource (https://www.internationalgenome.org/) and gnomAD
(https://gnomad.broadinstitute.org/), respectively.

Code availability

The core computational pipelines used by the PCAWG Consortium for alignment,
quality control and variant calling are available to the public at https://dockstore.
org/search?search=pcawg under the GNU General Public License v.3.0, which
allows for reuse and distribution. All custom scripts for simulating, identifying

and characterizing biallelic mutations from the PCAWG data are available on
GitHub (https://github.com/jdemeul/InfiniteSites). R v.4.0.0 was used for the final
analyses. Variant recalling on 195 PCAWG samples was done using GATK v.4.0.8.1,
which is available from https://gatk.broadinstitute.org/. STREME and TomTom
v.5.3.2 (MEME suite, https://meme-suite.org/) were used for motif enrichment and
analysis. PCAWG consensus SNV, MNV, indel and structural variant calling was
described by the ICGC/TCGA PCAWG". PCAWG consensus copy number calling
was described by Dentro et al.". PCAWG gene expression analysis was reported in
Calabrese et al.” and was based on TopHat2 v.2.0.12 and STAR v.2.4.0i alignments.
PyMOL v.2.4.0 was used for the structural analyses.
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Extended Data Fig. 1| Simulation approaches for infinite sites violations. Schematic overview of the uniform permutation (left) and neighbor resampling
(right) approaches to assess the number and type of infinite sites violations expected in a tumor. Numbers in the uniform permutation panel highlight the
sequential nature of the sampling, which keeps track of mutated positions to consider them accordingly for biallelic, forward, and back mutation. Note that
the neighbor resampling model excludes all PCAWG annotated driver mutations and allows simulation of biallelic events only.
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Extended Data Fig. 2 | Biallelic indels are expected in a subset of microsatellite unstable tumors. Bar plots of the observed indel burden and signature
(left) and the expected biallelic indels according to the neighbor resampling model (right). Bar height indicates total numbers and colored subdivisions
represent fractions contributed by each indel signature (left) or biallelic indel type (right). Only PCAWG tumors with >1 expected biallelic indel are shown.
Four microsatellite unstable tumors are predicted to boast several hundreds to over one thousand, mostly parallel, biallelic indels. These mainly originate
from indel signatures 1and 2, likely reflecting slippage during DNA replication and subsequent 1bp T (or A) insertion and deletion in thymine (adenosine)
mononucleotide repeats, respectively.
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Extended Data Fig. 3 | Detection of biallelic parallel mutations by allele frequency. (a) Flow chart showing the filtering steps, phasing-based estimates

of precision and lower bound recall, as well as the input and output data for our pipeline to detect biallelic parallel mutations in PCAWG based on variant
allele frequencies (VAF). Three filtering steps highlighted in bold are further illustrated in panels (b-d). (b) Rainfall plot of all biallelic parallel hits obtained
after omitting the germline SV filter. Streaks of colored dots indicate a clustering of hits in regions with common germline structural variants. While
demonstrating the ability of the pipeline to detect VAF outliers, these hits are poorly supported by phasing data and likely represent single somatic SNVs
in the context of a heterozygous germline deletion. (¢) Example of reference bias in the PCAWG consensus SNV read counts. Reads carrying the somatic
variant contain alternate germline alleles at three proximal positions, resulting in an underreporting of the number of wild type reads and an overestimation
of the VAF. (d) Diagnostic QQ-plots of the unadjusted one-sided beta-binomial read count test P-values for two samples (Methods). DO41578 P-values
are overinflated (slope > 1), hinting at consensus purity/ploidy errors, and the sample is excluded as a result.
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Extended Data Fig. 4 | Biallelic parallel mutation during metastatic prostate cancer evolution. Heatmap showing allele frequencies of variants found

to be biallelic in at least one sample of eight prostate cancers with sequencing of matched primary and metastases (A10-A34, different sites indicated

as in Gundem et al.”?). Early clonal biallelic mutations are detected in all samples of a patient (for example, A10 chr19:29,339,579), while late clonal and
subclonal ones show no evidence of being biallelic in some samples (beta-binomial p-value > 0.05 and no discordant phasing to a heterozygous germline
SNP) or are detected in only a subset of samples (for example, A22 chr14:61,497,015 and A10 chr2:117,463,664, respectively).
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Extended Data Fig. 5 | Landscape of biallelic mutations across PCAWG. Number of observed parallel (red) and divergent (blue) mutations plotted

in context of the total SNV burden for 84 PCAWG samples with > 1 phasing-confirmed VAF hit. The range of parallel mutations expected purely from
SNV-SNP phasing is also indicated (95% confidence interval, red vertical bars) as this approach is less sensitive to purity and copy number state than the
VAF-based analysis. Samples for which the number of divergent mutations is not shown were not considered for Mutect2 recalling.
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Extended Data Fig. 6 | Comparison between observed and simulated biallelic mutations. (a,b) Scatterplots of the observed vs. expected number of
biallelic mutations (parallel + divergent) for all PCAWG tumors using the uniform permutation (a) and neighbor resampling models (b). The Pearson
correlation and a spline regression fit with 95% confidence interval (shaded grey) are shown.
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showing mono- or biallelic mutation of the ETS-binding TCTTCCG motif at the RPL18A promoter.
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Extended Data Fig. 9 | Effect of promoter mutation on gene expression for genes with biallelic hits. (a) Box and scatter plot showing the log2-fold
change in expression (FPKM-UQ, Methods) compared to the median wild type for promoter mutated genes in Fig. 5a. Each dot represents the relative
expression in a single PCAWG melanoma with RNA-Seq data, stratified by the mutation status of that gene's promoter. The total number of tumors for
each category is indicated between parentheses. Centre line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range. A two-sided
Student's t-test was used to evaluate the difference between the log2-transformed expression values of wild type vs the pooled single and biallelic mutant
cases. (b) Scatter plot of the DNA and RNA B-allele frequencies of expressed germline heterozygous SNPs in the genes/samples with a single mutant
promoter allele in (a). The ICGC donor ID and local consensus copy number are indicated. Error bars and the centre represent, respectively, the posterior
95% highest density interval and maximum likelihood estimate of the DNA and RNA B-allele frequencies assuming a uniform Beta (1, 1) prior and a
binomial likelihood for the allele counts.
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Extended Data Fig. 10 | Biallelic mutations can confound common analysis. (a) Patterns of in-cis SNV pairs in a diploid region evidence linear phylogenies
(parent-child) when the infinite sites assumption holds. (b) Bar plot showing the number of in-cis SNV pairs in PCAWG melanoma samples with at

least two such pairs. Bar height reflects total numbers observed while the red portion indicates the fraction of all pairs with evidence for biallelic parallel
mutation (beta-binomial p-value < 0.05 or phasing to a heterozygous SNP). (¢) Histogram of cancer cell fractions of SNVs in melanoma DO220906.

The clonal cluster and a superclonal cluster containing mainly biallelic parallel mutations (red), are indicated. (d) IGV visualisation of two missed biallelic
drivers in colorectal and oesophageal adenocarcinomas DO8730 and DO50398, respectively. Reads (horizontal bars) are downsampled for clarity and
local base-wise coverage is indicated left of the histograms.
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accessing the data, including raw read files, can be found at https://docs.icgc.org/pcawg/data/. In accordance with the data access policies of the ICGC and TCGA
projects, most molecular, clinical and specimen data are in an open tier that does not require access approval. To access information that could potentially identify
participants, such as germline alleles and underlying sequencing data, researchers will need to apply to the TCGA Data Access Committee (DAC) via dbGaP (https://
dbgap.ncbi.nlm.nih.gov/aa/wga.cgi?page=login) for access to the TCGA portion of the dataset, and to the ICGC Data Access Compliance Office (DACO; http://
icgc.org/daco) for the ICGC portion. In addition, to access somatic SNVs derived from TCGA donors, researchers will also need to obtain dbGaP authorization.
Structural data were obtained from the RCSB Protein Data Bank (https://www.rcsb.org/). The HOCOMOCO Human v11 Core set was used as the source of known
transcription factor recognition sequences (https://hocomocol1l.autosome.ru/). NCBI Curated Common Structural Variants are available via NCBI dbVar at https://
www.ncbi.nlm.nih.gov/dbvar/studies/nstd186/. The germline resources of the 1,000 Genomes Project and gnomAD were respectively obtained from https://
www.internationalgenome.org/ and https://gnomad.broadinstitute.org/.
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Sample size The PCAWG consortium compiled an inventory of matched tumour/normal whole cancer genomes in the ICGC Data Coordinating Centre.
Most samples came from treatment-naive, primary cancers, but there were a small number of donors with multiple samples of primary,
metastatic and/or recurrent tumours. The PCAWG inclusion criteria were: (i) matched tumour and normal specimen pair; (ii) a minimal set of
clinical fields; and (iii) characterisation of tumour and normal whole genomes using lllumina HiSeq paired-end sequencing reads.

In total, the consortium collected genome data from 2,834 donors, representing all ICGC and TCGA donors that met these criteria at the time
of the final data freeze in autumn 2014. No statistical methods were used to predetermine sample size.

Data exclusions  After quality assurance by the PCAWG consortium, data from 176 of its 2,834 donors were excluded as unusable. Reasons for data exclusions
included inadequate coverage, extreme bias in coverage across the genome, evidence for contamination in samples and excessive sequencing
errors (The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium, Nature, 2020). These exclusion criteria were pre-determined.

In our neighbour resampling simulations, we additionally excluded samples that had been greylisted by the PCAWG consortium and used only
the PCAWG designated representative sample for each patient with multi-region sequencing. In addition, we excluded 21 prostate cancer
cases from the PRAD-CA cohort which were suspect of contamination, harbouring excess low VAF single nucleotide variant calls in repetitive
regions of the genome as described in the corresponding Methods section.

Replication In order to evaluate the performance of our biallelic parallel mutation calling pipeline, we have used phasing information from the paired-end
reads. Precision and recall are assessed by taking all evaluated phaseable SNVs (i.e., SNP-SNV pairs having > 2 reads each for the SNP Ref and
Alt alleles and > 4 reads reporting the SNV). Precision is calculated as the fraction of VAF-inferred biallelic parallel mutations which are
confirmed by phasing. Recall is the fraction of phasing hits picked up through their allele frequencies. Overall performance is reported as the
median precision and recall for samples with > 10,000 phaseable SNVs and is estimated at 82% and 247.5%.

Randomization  No randomisation was performed - this was a descriptive study, not an experimental study.

Blinding No blinding was undertaken - this was a descriptive study, not an experimental study.
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Materials & experimental systems

Methods
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