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Abstract—Federated edge learning (FEEL) is a fast-growing
distributed learning technique for next-generation wireless edge
systems. Smart systems in different application domains suffer
from data heterogeneity, limited wireless resources, and device
heterogeneity, necessitating the need for intelligent participants’
selection schemes that accelerate the convergence rate. Hence,
this paper proposes joint participants selection and bandwidth
allocation schemes to address these challenges. First, we formu-
late an optimization problem considering communication and
computation latencies and imbalanced data distribution that
meets a target round deadline and bandwidth constraints. To
tackle participant selection combinatorial problems, we use a
relaxation method followed by a proposed priority selection algo-
rithm to select near-optimal participants. The proposed algorithm
initially prioritizes participants with more data, effective channel
states, and better CPU speed. To tackle data heterogeneity,
we propose a randomized deadline controlling algorithm that
diversifies the updates by enabling the edge server to involve
various participants with small data samples into training rounds.
The proposed algorithms provide near-optimal performance com-
pared to the brute-force method. Experiments demonstrate that
our proposed scheme accelerates the convergence rate by up to
55% under extensive non-i.i.d settings compared to benchmarks.
Additionally, the controlling algorithm significantly improves the
performance of the high data heterogeneity levels, resulting in
faster FEEL systems.

Index Terms—Federated Edge Learning, Edge Computing,
Participants selection, Imbalanced Data Distribution, Data Di-
versity, Resource Allocation

I. INTRODUCTION

NOWADAYS, devices at the wireless network edge pro-
duce enormous amounts of data, and extracting knowl-

edge from this data is essential to build advanced AI-based
applications in order to build more reliable intelligent sys-
tems [1]. Machine Learning (ML) and Deep Learning (DL)
techniques specifically are being developed rapidly [2], [3] to
exploit this data and induce advanced AI services in diverse
domains, such as Intrusion Detection Systems [4], Industry
4.0 [5], and Animal–vehicle Collision Avoidance systems [6].
However, most of the current ML and DL approaches are
limited to centralized algorithms, where a server consolidates
all raw data to train a robust model. For example, online
learning, as in [7], is a centralized ML technique where the
model is initially built using currently available data. Then,
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the model is continuously updated when new samples arrive.
Such centralized approaches are becoming increasingly costly
since offloading high dimensional data from end devices to
the edge server in intelligent systems is often infeasible due
to limited wireless resources, latency, and privacy concerns [8],
[9]. Therefore, the data generated at the edge devices needs
to be stored and processed locally. To satisfy these needs, an
emerging paradigm called Federated Learning (FL) has been
recently introduced. FL trains and updates a shared model
collaboratively without sharing the raw data [10], [11].

Federated Learning (FL) algorithms have recently been
pushed towards the network edge, and the Federated Edge
Learning (FEEL) systems are being developed to enable low
latency edge intelligence where the data is produced. FEEL is a
cutting-edge decentralized technique that enables edge devices
to train machine learning models using real-time data and then
send updates back to the coordinating edge server [12]. FEEL
enables intelligent systems to collaboratively train a shared
machine learning model while keeping all the training data
on edge devices, thereby decoupling the ability to do machine
learning from the need to upload/store data in the cloud. It
aims to leverage the massive amount of data collected by edge
devices in real-time without compromising their privacy [13].

However, FEEL encounters two major challenges: one is
data heterogeneity, i.e., imbalanced and non-i.i.d. data distri-
bution and the other is resource heterogeneity. As for the data
heterogeneity, data is massively distributed among clients, i.e.,
participating devices in a non-i.i.d. and imbalanced manner.
Each device in the network, in particular, has its own data,
which varies in size, labels, and forms. In general, ML models
require a large amount of data from a variety of sources
in order to be successful in decision-making which requires
considerable efforts to address such a challenge. As for the
resource heterogeneity, devices have varying computing and
communication capabilities, while the network has limited
bandwidth. For example, uploading of models updates in
FEEL consumes significant bandwidth as DL models con-
tain billions of parameters [14]. Therefore, the local updates
by thousands of transmitting edge participants might simply
congest the air interface, making it a bottleneck for efficient
edge learning. This situation is further exacerbated by the fact
that the edge server needs to wait for the arrival of all the
updates. Hence, due to varying computing capabilities, the
global update synchronization requirement in such a system
incurs an unnecessary delay due to the idle time wasted while
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waiting for the "stragglers" (i.e., the devices with slower
processors, bad channels, having large data size etc.). As a
solution, the server should specify the optimal deadline for
synchronizing the global model.

As per the above remarks, designing a joint participant
selection and bandwidth allocation for FEEL in large-scale
networks is challenging. Thus, a key question is how to
optimally and efficiently select participants and allocate edge
resources to accelerate the convergence rate while considering
all of the aforementioned challenges.

In response, many existing selection approaches [15]–[20]
have been proposed to either select the participants randomly
or select the participants with shorter update time and then
allocate the resources accordingly. For example, the works
in [15], [18]–[20] introduced greedy-based approaches trying
to find the participants that provide the least updating time
regardless of the size of local data samples. However, first,
these works [15], [18]–[20] assumed that the data distribution
is balanced and of similar data size among clients, which
doesn’t reflect core assumptions of FL that generally have
imbalanced and massively distributed non-i.i.d data. Second,
these approaches can not guarantee the optimal or even near-
optimal solution. Third, the data diversity is not considered
where setting a fixed deadline leads to having a biased
model for the dominant participants that are always selected.
Fourth, the works in [15], [18]–[20] did not account for the
combinatorial nature of participant selection and its adverse
effects, especially with large-scale edge network systems
where a greedy based selection algorithm is used to select
the participants. Therefore, it is necessary to develop novel
and efficient approaches that account for all these gaps. To this
end, this takes into account the aforementioned challenges and
introduces novel approaches. First, we account for the imbal-
anced and non-i.i.d. data distribution. Second, we introduce
an algorithm that ensures near-optimal solutions. Third, we
propose a dynamic deadline controlling algorithm to address
the data diversity. Fourth, we account for the combinatorial
nature of participant selection using the relaxation method.
Our specific contributions can be delineated as follows:

• Formulate an online joint optimization problem to select
the optimal participants and allocate the resources consid-
ering the imbalanced data distribution among participants.
In each round, participants are selected based on a priority
metric; the local data size, the channel state, and the local
computation speed.

• Propose a priority selection algorithm to find the list of
participants with low time complexity in a polynomial
time.

• Introduce a dynamic deadline controlling algorithm in-
stead of a fixed deadline as in state-of-the-art [15], [18]–
[20] to tackle the heterogeneity and non-i.i.dness. As
a consequence, the edge servers can choose different
participants and aggregate different updates during global
training round resulting unbiased trained model.

• Reformulate the problem using a relaxation method to
tackle the combinatorial nature of participant selection
and its adverse effects, especially when dealing with
large-scale edge systems.

• Perform a theoretical analysis to show the relationship
between the convergence rate of the global model and the
number of selected participants weighted to the number
of local data samples.

• Assess the performance of our proposed scheme
using realistic federated datasets under non-i.i.d
settings. We benchmark our results with the state-
of-the-art [15], [18]–[20]. Simulation experiments
demonstrate that the convergence time is significantly
reduced, and the performance is substantially improved.
The source codes and the datasets are available at
https://github.com/Abdullatif2/FL_Particpant_selection_
Based_Fixed_and_dynamic_deadline.

The remainder of the paper is organized as follows: related
works are discussed in Section II. The system model, federated
learning preliminaries, and definitions are then introducedin
Section III. Afterwards, the problem formulation is given in
Section IV. The supported theory is given in detail in Section
V. Section VI introduces the proposed solutions where we
present the complexity, optimality, and implementation of the
algorithms. We present the experimental setup, results, and
discussion in Section VII alonge with most important lessons
learned. Finally, we conclude our work and present the future
research directions in Section VIII.

II. RELATED WORK

Previous studies [21]–[27] addressed many of the chal-
lenges associated with the use of FL over wireless channels.
For instance, to address the latency problem, the broadband
analog aggregation (BAA) scheme was proposed in [23]–
[26] to reduce the transmission time between edge devices
and the orchestrator server by utilizing the superposition
property of wireless channels via over-the-air computation
(AirComp) [27]. Furthermore, considering a limited band-
width over multiple fading channels, a distributed stochastic
gradient descent scheme was investigated in [30], where
each device is selected opportunistically for transmission based
on the channel conditions. Earlier work assumed perfect
updates-uploading, representing an approach to address the
communication-latency challenge in federated edge learning
systems. However, the effects of wireless channels are not
considered. Hence, to support low-latency federated edge
learning from the communication perspective, a novel band-
width allocation strategy was proposed in [21]. Subsequently,
given limited radio resources, namely, channel bandwidth,
the BAA scheme was fine-tuned for Gaussian channels in
[30]. To be specific, the edge devices first determine the
sparsity of the updates (gradients) and then project them to
a lower-dimensional space imposed by the available channel
bandwidth before transmission.

Focusing on the participant’s selection scheduling policies,
the work in [16] studied three scheduling policies and their
effects on the convergence rate. The works in [15] and [18]
proposed greedy algorithms to select the participants that
provide less updating and uploading time. However, if the data
size is imbalanced, the participants with large data sizes are not
considered as they need more time to train their models despite

https://github.com/Abdullatif2/FL_Particpant_selection_Based_Fixed_and_dynamic_deadline
https://github.com/Abdullatif2/FL_Particpant_selection_Based_Fixed_and_dynamic_deadline
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TABLE I: RELATIONSHIP BETWEEN OUR WORK AND THE RECENT LITERATURE

Ref Imbalanced
Data
samples

Non-i.i.d
class-
distribution

Data Het-
erogeneity

Devices
Heterogeneity

Control
the
deadline

Channel Un-
certainty

Nishio et al. [15] ✕ ✓ ✕ ✓ ✕ ✕
Shi et al. [18] ✕ ✓ ✕ ✓ ✕ ✓

Chen et al. [19] ✕ ✕ ✕ ✓ ✕ ✓
Xu et al. [20] ✕ ✓ ✕ ✓ ✕ ✓

Wang et al. [28] ✕ ✓ ✕ ✓ ✕ ✕
Anh et al. [29] ✕ ✕ ✕ ✓ ✕ ✕

Our work ✓ ✓ ✓ ✓ ✓ ✓

their strong effects on the convergence rate. A new approach
was proposed by Chen et al. [19] to minimize the convergence
time using artificial neural networks (ANN) to predict the
clients’ updates not involved in the learning round. In addition,
they proposed that the base station stays connected with the
clients provided less value of the loss function. However, the
clients with few data samples will continuously produce less
value of the loss function, and the clients having more data
deliver a large value of the loss function as they need more
local iteration to converge.

To conclude, as illustrated in Table I, these series of prior
works [15], [18]–[20] assumed that the data distribution is
balanced and of similar data size among clients, which does
not reflect the core assumptions of FL. These assumptions
do not reflect existing scenarios of FL that generally have
imbalanced and massively distributed non-i.i.d data. The works
in [15], [18]–[20] introduced greedy-based approaches trying
to find the participants that provide the least updating time
regardless of the size of local data samples. These approaches
can not guarantee the optimal or even near-optimal solution.
In addition, the data diversity is not considered leading to have
a biased model for the dominant participants that are always
selected. However, none of these approaches can guarantee
an optimal or even near-optimal solution. Additionally, data
diversity is not considered, resulting in a biased model for the
participants who are always selected. Moreover, the works in
[15], [18]–[20] did not account for the combinatorial nature
of participant selection and its adverse effects, especially
with large-scale edge network systems where a greedy based
selection algorithm is used to select the participants. Last,
some works that use a deadline constraint to choose the
participants, as in [15], considered a fixed deadline where the
same participants are selected during the training rounds.

III. SYSTEM MODEL

This section discusses the fundamentals of FEEL, data
producers, and the computation and communication models.
Table II summarizes the main notations used throughout this
paper.

In this work, we consider a wireless edge network as
depicted in Fig. 1 with a single edge server connected to an
edge cell (i.e., base station) that wirelessly communicates with
K edge devices. Each edge device k ∈ {1, 2, ...,K}, has its
local dataset Dk where Dk = {xk,d ∈ Rd, yk,d ∈ R}, and
|Dk| is the number of local data samples. Here xk,d is the d-
dimensional input data vector at k-th participant, and yk,d is
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GM-  Global Model
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Fig. 1: Federated Edge Learning System with Participants
Selection under Data and Resource Heterogeneity.

the corresponding label associated with xk,d. The data among
the participants is imbalanced depending on their activity. Each
edge participant k trains its local model (LM) using its data Dk

without exposing it to other participants or the edge server. To
collaborate with others, the FEEL system enables edge devices
to share the gradients and weights θk with a central edge
server (i.e., Base station) that aggregates and fuses all updates
to form a new global model (GM) using federated averaging
(i.e., FedAvg) [31]. In the FEEL system, the server can not
involve all available devices in the learning round due to
wireless networks’ characteristics (i.g., bandwidth limitation,
channel uncertainty, fading) and the deadline constraint set to
avoid a long waiting time for a model update. Thus, only a
subset Sr, where Sr is the indices vector that includes the
selected participant’s ids that are eligible to participate in a
particular FEEL round. This leads to a challenge of optimally
selecting the participants that accelerate the convergence rate
considering the deadline requirement set by the server and
available network resources. Moreover, unlike conventional
decentralized ML, the FEEL system’s data is unbalanced
and distributed in a non-i.i.d fashion, resulting in increased
data heterogeneity across the network, which necessitates the
design of an efficient selection technique that addresses all
these challenges.

A. Local loss function

This function captures the error of the model on the dataset
{xk,d, yk,d} for each k. For local updates at every round r,
the loss function is expressed as follows:

F r
k (θ) ≜

1

|Dk|
∑
s∈Dk

Fs(θ), (1)
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TABLE II: SYMBOLS AND NOTATION

D The total dataset across devices
Dk The dataset of k-th participant
xk,d the d-dimensional input data vector
yk,d the corresponding label associated with xk,d
b The batch size
E The number of local epochs
S The selection matrix that include all selected partic-

ipants indices for all rounds
Sr A vector representation of a subset of devices se-

lected to join FEEL round r

S
(k)
r A selection indicator for the k-th participant at r-th

round
K The available total number of participants
θr The global model parameters at r-th round
θr
k The local model parameters of the k-th participant

at r-th round
θr
k(i) The local update at local iteration i

F r
k (θ) The local loss function of participant k at r-th round
F (θ) The global loss function
Fs(θ) The loss function within the local data samples that

captures the local error over each sample s
T The deadline requirement set by server

T cmp
k,r The local computation time of participant k at r-th

round
Tup
k,r The upload link time of k-th participant needed to

send the model to the edge server at r-th round
τ The Time frame
R The number of communication rounds
hr
k The channel gain between the k-th participant and

the edge server at r-th round
prk The transmit power of the the k-th participant at r-th

round
N0 The Noise spectral density (Gaussian Noise)
B The total bandwidth
Rk

r The achievable transmission rate in bits per second
(bits/s) of k-th participant sent to the edge server at
r-th round

η The learning rate
ϵ An arbitrary constant 0 ≤ ϵ ≤ 0.1 to specify

whether the model converge to the optima or not.
δk The weighted number of local data samples
ξ The size of the model parameters sent to the server

in bits
n The number of local updates

where Fs(θ) captures the local error over each sample s.
Hence, the total data across the edge network can be defined
as: D ≜

∑K
k=1 |Dk|, and δk denote the weighted number of

local data samples defined as follows,

δk =
|Dk|
D

. (2)

To train the model, each k-th participant runs its local solver
locally, such as stochastic gradient descent (SGD) to minimize
the loss function defined in (1) simultaneously for several local
epochs denoted by E 1. For example, for a minibatch SGD,
the total number of local updates is defined as:

n = E |Dk|
b

, (3)

where b is a batch-size determining a subset of the training
set required for one local update. Namely, the local model
parameters θk are updated as:

θr
k(i) = θr

k(i− 1)− η∇F r
k (θ

r
k(i)), (4)

where i = 1, 2, . . . ,n is the number of local updates per-
formed by participant k and η is the step size (i.e., learning

1GD method is logical when every participant has a small number of data
samples, i.e, |Dk| << D, ∀ Sr while for a large portion of data samples
Dk , SGD could be adopted to relieve the computation load on the participant,
though the rate of convergence is different.

rate) at each round, θr
k(0) are the global parameters θr−1

received from server and θr
k(n) are the local parameters update

θr
k sent back to the server.

B. Global loss function

Once all local models θr
k and local loss functions F r

k (θ)
are calculated locally using (1) and (4), and are uploaded to
the server, the global loss function across participants at every
round r is computed as:

F r(θ) ≜
K∑

k=1

δkF
r
k (θ). (5)

Accordingly, the global model parameters are computed as
follow:

θr =

K∑
k=1

δkθ
r
k. (6)

It is worth mentioning that F r(θ) and θr are sent to all
selected participants at each round to be used as a reference
when updating the model parameters. Thus, the aim is to find
θ so as to minimize F (θ)

θ∗ ≜ argminF (θ). (7)

In machine learning models, it is difficult to derive a closed-
form solution for (7). So, GD is used to approach the solution
iteratively.
The FEEL system algorithms aim to satisfy that the iterative
minimization of the loss function is closer to the optimal-value
of loss function F (θ∗) assuming that (θ∗) is optimal model
parameters. This difference is defined as an arbitrary constant
0 ≤ ϵ ≤ 0.1:

FR(θ)− F (θ∗) ≤ ϵ. (8)

C. Local Computation model

For model updates in the FEEL system, the participants
are constrained by a training round deadline T based on
scheduling policies to upload their models to the server. The
server initiates the model parameters θ0 and then sends them
to all selected participants. Then, each k-th participant receives
the model parameters and then updates them using its local
data; then, all updates sends back to the server, which in return
aggregates and fuses all updates to form new global model
parameters. The new global model is being broadcasted again
for further updates. These steps are iteratively repeated until
the global model converges. Thus, when training identical
models on participant’s devices with either a small portion
of data samples or extremely weak computation capacities,
such devices will send undesirable updates or delay the entire
collaboration cycle, thereby hindering the ability to produce a
robust global model with faster convergence rate. To update
the model parameters θr, the participant’s data Dk is split into
batches based on a predetermined batch size b , and the number
of epochs E . Let ϕ denote the number of local computation
cycles required to process one data sample, and let fk denote
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the local processor’s speed (cycles per second). Accordingly,
the local computation time of each participant k in one round
r can be defined as: T cmp

k,r = ϕ|Dk|
fk

Subsequently, each device
runs the local solver for n iterations at each round; thus, T cmp

k,r

can be rewritten as follows:

T cmp
k,r =

nϕb

fk
. (9)

D. Communication model:

We consider Time Division Multiple Access (TDMA) for
uploading local models with a total bandwidth of B, and the
total time frame τ divided between the selected participants.
We can note that TDMA isn’t restrictive and other access
techniques, such as orthogonal frequency-division multiple
access (OFDMA), are applicable as well. For example, we
can use the number of OFDMA sub-channels instead of time
slots. Then each sub-channel performs Carrier-sense multiple
access with collision avoidance (CSMA/CA) independently to
reduce the probability of collision occurrence and enhance
the system throughput. Based on Shannon’s theorem, the
achievable transmission rate in bits sent to the edge server
can be defined as:

Rk
r = B log2

(
1 +

prk||hr
k||2

N0

)
, ∀k, (10)

where hk is the channel gain between the edge server and k-th
participant assuming that the channel between the participant
and the BS is constant within the duration of the r-th round,
and N0 is the spectral noise power. Next, let ξ denote the
model size in bits, hence the uplink latency for each k-th
participant is:

T up
k,r =

ξ

Rk
r

≤ τk, ∀k, (11)

where τk is the time slot assigned to participant k by the
edge server. It is worth noting that the inequality in (11)
is to ensure that the uploading delay should be less than
the allocated time slot. Throughout this paper, we only
consider the uplink latency, and we assume the downlink
latency is negligible due to the powerful capabilities and the
sufficient bandwidth of the edge server. We note that the
computation time is proportional to the collected data and CPU
frequency as in (9). Also, the uplink latencies depend on the
channel state, transmission power, and model size as in (11).
Accordingly, we define the total latency of k-th participant
at each round as : T k,r = T cmp

k,r + T up
k,r, ∀k while the total

latency including TDMA is defined as: max(T cmp
k,r )+τ which

includes the maximum computation time and time frame of
TDMA. Practically, the server has to enforce a pre-determined
deadline T to synchronize the updates and avoid long waiting
times. Thus, the k-th participant must finish its tasks within
T . Hence, the total latency should satisfy this condition:

(T k,r
cmp + T k,r

ul ) ≤ T , ∀k, ∀r (12)

IV. PROBLEM FORMULATION
In large-scale edge networks, selecting FEEL system par-

ticipants that capture the imbalanced data distribution, round

deadline and, available resources is crucial. The distribution of
data across the network is typically skewed depending on the
activity of each k-th participant, resulting in varying quality
of model updates. In addition, the data is distributed in non-
i.i.d., inducing the need for involving as many participants as
possible to improve the global model. Moreover, the devices
among participants are heterogeneous, having different com-
putation capabilities. Consequently, a key question is how to
select the participants optimally and efficiently use available
edge resources and data to accelerate the convergence rate,
considering the limited wireless resources, local computation
capabilities, the deadline requirement, and imbalanced data
samples. While the studies in [27], [18], [22], [32]–[34]
showed that adding more participants improves the FEEL
system performance; however, they assumed that all devices
hold the same local data size, and they didn’t address the
impacts of imbalanced data distribution on the FEEL system
performance, round deadline, and resource allocation. Fol-
lowing the above definition of FEEL system learning, we
can narrow the question to find the optimal participants that
accelerate the convergence rate of global loss, F (θ), tackle the
data heterogeneity, and diversify the updates during the FEEL
system rounds subject to the constraints mentioned earlier.

Having defined the system model, we can notice that only
a subset of the edge devices |Sr| ≤ K are selected by the
edge server at r-th round to train the global model. We aim
to maximize the number of participants at every round that
accelerates the convergence rate to find the minimum loss,
F (θ), as well as increase the data utilization. Due to limited
resource blocks, selecting a large number of participants is in-
applicable; instead, we choose the optimal participants holding
more data samples due to its impacts on training convergence,
as explained in section V. Specifically, our goal is to select
the optimal subset of participants during training round that
accelerate the convergence rate while considering data hetero-
geneity, imbalanced-data distribution, data diversity, deadline
and limited bandwidth. Let S denote the selection matrix
that include all selected participants indices for all rounds
where S = {Sr}r=1,2,...,R. It is worth noting that the number
of rounds R is chosen to be a constant large enough to
reach convergence. Then, we define a binary integer variable
for each participant k to specify whether it is selected or
not so that indices vector at r-th round can be defined as
Sr = [S

(1)
r , . . . , S

(k)
r , . . . , S

(k)
r ] where:

S
(k)
r =

{
1, if the kth participant is selected at round r,

0, Not selected.
(13)

Accordingly, we can formulate the optimization problem as
follows:

P1 : max
S

R∑
r=1

K∑
k=1

δkS
(k)
r , (14)

s.t.: FR(θ)− F (θ∗) ≤ ϵ, (15)
K∑

k=1

S(k)
r T up

k,r ≤ τ,∀r, (16)

S(k)
r (T cmp

k,r + T up
k,r) ≤ T , ∀k,∀r, (17)
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S(k)
r ∈ {0, 1}, ∀k, ∀r. (18)

Constraint (15) guarantees that the trained global model
converges to the optimal model θ∗. Constraint (16) is set
the ensure that the bandwidth is allocated to the optimal par-
ticipants. Constraint (17) is related to the deadline constraint
where the selected participants should accomplish the updating
and uploading tasks within T . Finally, constraint (18) is the
selection binary variable. The goal of P1 is to maximize the
number of selected participants holding large data samples
at all rounds that guarantee the convergence of the global
loss F (θ) as well as meet the required constraints. However,
solving P1 is challenging as (15) requires to know the optimal
value for the loss function F (θ∗) which needs to have the
entire datasets in a single unit and also it lacks the future
information for the value of the loss function FR(θ) at the
last round. Moreover, the uploading time T up

k,r and the local
computation time T cmp

k,r , defined in (9) and (11) vary over
rounds period. Last, some devices might be switched off or
depleted of their energy. Thus, it isn’t easy to proactively find
participant’s indices during all training rounds. Therefore, in
section VI, we solve P1 using the following steps. First, due to
the difficulty of finding a closed-form solution for many DL
algorithms, constraint (15) is eliminated. As a consequence,
as shown in Section V, (15) is recursively solved, and the gap
is reduced by finding the optimal participants who hold more
local data samples. Then, for every r-th round, we reformulate
a joint resource allocation and participant selection. Second,
we address the combinatorial nature of participant selection
and its computational complexity by finding a lower bound
solution for the problem by employing a relaxation method
that makes the selection constraint less restrictive followed
by priority selection algorithm to utilize the relaxed-based
solution and perform the FEEL process. Last, to tackle the
data heterogeneity, a dynamic deadline controlling algorithm
is proposed to diversify the updates through training rounds.

V. IMPACTS OF DATA AND PARTICIPANTS
SELECTION ON CONVERGENCE RATE

In this section, we prove how the data and the selection of
participants affect the convergence rate. To begin with, we use
the following assumption for all k,

Assumption 1. Fs(·) is L-smooth ∀s ∈ Dk, and Fk(·)
is L-smooth and β-strongly convex ∀k and ∀θ,θ∗ ∈ Rd,
respectively [21], [35], as follows:

∥∇F r(θr)−∇F (θ∗)∥ ≤ L∥(θr − θ∗)∥ . (19)

F r(θr) ≤ F (θ∗)+
〈
∇F (θ∗),θr − θ∗〉+L

2
∥θr − θ∗∥2 .

(20)

F r(θr) ≥ F (θ∗)+
〈
∇F (θ∗),θr − θ∗〉+ β

2
∥θr − θ∗∥2 ,

(21)

where ⟨ θ,θ∗ ⟩ denote the inner product of vectors θ and
θ∗ and ∥·∥ is the Euclidean norm. The strong convexity and

smoothness in Assumption 1, has been also used in [21],
[28], [36], and it exists in a variety of applications (i.e., l2-
regularized linear regression model). Given Assumption 1, and
the definition of F (θ) in section III-A, we have:

F (θr)− F (θ∗) ≤ β

2
∥θr − θ∗∥2 . (22)

Theorem 1. For any selected participants and optimal solu-
tion θ∗ , we have:

β

2
∥θr − θ∗∥2 =

β

2

∥∥∥∑K
k=1 S

(k)
r |Dk|(θr

k − θ∗)
∥∥∥2(∑K

k=1 S
(k)
r |Dk|

)2 . (23)

Proof. See Appendix A.

We can notice that if the data is balanced among partici-
pants, we can rewrite (23) as follows:

β

2
∥θr − θ∗∥2 =

β

2

∥∥∥∑K
k=1 S

(k)
r Dc(θ

r
k − θ∗)

∥∥∥2
(|Sr||Dc|)2

, (24)

where |Dc| is the number of balanced data samples. In FEEL
system, however, the data is imbalanced, and we must use
(23) to reflect the realistic distribution of the data across the
network.

Now let us recall Equ. (4), we have:

θr
k = θr−1 − η

n∑
i=1

∇F r
k (θ

r
k(i)). (25)

Theorem 2. For any k-th participant performing n local up-
dates, F r

k (θ
r
k(0)), F

r
k (θ

r
k(1)), . . . , F r

k (θ
r
k(n)) is a decreasing

function and its value is inverse proportional to the data size.

F r
k (θ

r
k(n))− F (θ∗) ≤ F r

k (θ
r
k(n − 1))− F (θ∗)

≤ F r
k (θ

r
k(n − 2))− F (θ∗) · · · ≤ F r

k (θ
r
k(0))− F (θ∗), (26)

F r
k (θ

r
k)−∇Fk(θ

∗) :=
∥θr

k(0)− θ∗∥22
2ηn

. (27)

Proof. See Appendix B.

From (26), we can notice that as the number of local data
points increases, the divergence between θr

k and θ∗ decreases.

Lemma 1. The convergence of the global loss function at
round r is given by [21]:

E
[
F
(
θr+1

)
− F (θ∗)

]
≤ 2c1
LD

K∑
k=1

|Dk|
(
1− S(k)

r

)
+ (1−

β

L
+

4βc2
LD

K∑
k=1

|Dk|
(
1− S(k)

r

)
)

E (F (θr
k)− F (θ∗)) .

(28)

Proof. See Appendix C.

We can notice that the upper bound of the gap be-
tween the left-hand side and the right-hand side in (28) is
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2c1
LD

∑K
k=1 |Dk|

(
1− S

(k)
r

)
. This gap can be reduced by push-

ing more data and selecting more participants and hence, ac-
celerating the convergence rate as the gap between the optimal
model θ∗ and the trained model θr is inversely proportional to
the number of participants weighted to local data samples as in
(28). From (26), (27), and (28) in the above Theorems, we note
that selecting the participants with large datasets increases the
number of local updates, reduces the upper bound gap and in
turn, accelerates the convergence towards the optimal model
θ∗. Hence, maximizing the number of participants weighted
to the local data samples can minimize the value of the loss
function of the global model.

VI. PARTICIPANTS SELECTION AND RESOURCE
ALLOCATION FOR FAST CONVERGENCE RATE

As shown in Section V, using more data or increasing
the number of participants accelerate the convergence rate.
However, due to limited wireless bandwidth, the latter is
infeasible. To this end, we aim to maximize the number of
participants at each round r weighted to the number of local
data samples aiming to push more data to increase the number
of local updates and accelerate the convergence rate. Each k-
th participant is weighted based on its local data volume as in
(2). We take into account the local computation latency, uplink
latency, and available bandwidth at every round. Thus, P1 is
solved iterativly at each round to select the optimal participants
that have more data samples and provide less updating and
uploading time. The problem can be formulated as follows:

P2: max
Sr

K∑
k=1

δkS
(k)
r , (29)

s.t.:
K∑

k=1

S(k)
r T up

k,r ≤ τ, (30)

S(k)
r (T cmp

k,r + T up
k,r) ≤ T , ∀k, (31)

S(k)
r ∈ {0, 1}, ∀k. (32)

In particular, (29) aims to select the participants having more
data samples while respecting constraints (30) and (31). In
particular, constraint (32) makes the direct solution of (29)
difficult due to its complicated combinatorial nature especially
if K is large. To address this problem, we utilize a relaxation
method. First, the binary constraint (32), S

(k)
r ∈ {0, 1}, is

relaxed as fractional real-value constraint 0 ≤ S
(k)
r ≤ 1. We

can note that the fractional real-value of S(k)
r can be seen as a

selection priority for each participant k. Mathematically, (29)
after relaxation can be rewritten as follows:

P3: max
Sr

K∑
k=1

δkS
(k)
r , (33)

s.t.:
K∑

k=1

S(k)
r T up

k,r ≤ τ, (34)

S(k)
r (T cmp

k,r + T up
k,r) ≤ T , ∀k, (35)

S(k)
r ∈ [0, 1], ∀k. (36)

We can note that P3 is a convex problem and it can be
solved using a numerical method. In this work, we use Gurobi

optimizer (i.e., a suite of solvers for mathematical program-
ming) [37] on the server-side to solve P3. Gurobi optimizer
has many advanced algorithms that are more efficient for
joint optimization and large-scale inputs than conventional
techniques (i.e., Hungarian algorithm). We proposed a priority
selection algorithm called priority selection algorithm that uti-
lizes the solutions of P3 for efficient selection and allocation in
FEEL. Particularly, we utilize the outcomes of the P3 solution
to select the optimal participants as shown in Algorithm 1.
Algorithm 1 selects the participants at each round based on
their priority (i.e., fractional real value S

(k)
r ). In Algorithm 1,

step 1, the server initializes the parameters of the global model
and then starts the training rounds as in step 2. In step 3,
the server collects all required information from available
devices to select the optimal participants to update the model.
Steps 5 and 6 initialize the selection vector and estimate the
computation and communications latencies. Steps 7-8, solve
P3 to select the optimal participants that carry out the model
parameters update and then sort them in a descending order
based on their fractional real-values resulting from the solution
of P3. In steps 9-15, the server starts with a minimum number
of participants as in (39) and iterates to check the possibility
of adding more participants if the available resources are
not exhausted. Finally, in steps 16-19, the server broadcasts
the current model parameters to the selected participants to
update the parameters locally and send it back to the server.
The server then averages all incoming updates to reform new
model parameters. This procedure is repeated until the model
converges. These steps are summarized in Algorithm 1.

Algorithm 1: : FEEL Priority Selection Algorithm
1 Initialize θ0, as random vector with size ξ, and determine E and b;

2 for round r = 1 To R do
3 Input: Set of available clients K, T , |Dk|, fk, ϕ, and pk, ∀k;

4 Output: Optimal Participants that meet the constraints, and accelerate

the convergence rate ;

5 Set Sr = {};

6 Server estimates T cmp
k,r , Tup

k,r using (9) and (11) ;

7 Server solves P3 to obtain the priority of each k ;

8 Server sorts the clients based on relaxed S(k)
r in descending order ;

9 Server selects L = (Sr)min and update

Sr = Sr ∪ {k : k = 1, 2, . . . L};

10 if
∑|Sr|

k=1 Tup
k,r+TL+1

ul ≥ τ then
11 Set Sr as optimal participants;

12 else
13 while T cmp

k,r + Tup
k,r ≤ T and

∑|Sr|
k=1 Tup

k,r+TL+1
ul ≤ τ do

14 Add {L+1} to Sr i.e. Sr = Sr ∪ {k : k = L + 1} ;

15 L=L+1;

16 Server broadcasts θr−1 and ∇F r−1(θ) to all selected participants;

17 Each participant k in Sr receives θr−1 and ∇F r−1(θ) from the

server then trains its local FEEL model locally to obtain θr
k and

F r
k (θ) ;

18 Each participant k sends its local updates to the server;

19 The server aggregates and averages all updates and form a new global

model
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A. The properties of proposed solutions

In this section, we outline the complexity analysis, the
optimality gap, and the quality of the proposed solutions. From
the aforementioned discussion, one can observe that T up

k,r and
B limit the number of participants involved at each round.
This observation can be further discussed as follows:
Lemma 2. Let (Sr)min denote the minimum number of
participants and (Sr)max denote the maximum number of
participants. Then, the number of participants that can join
a FEEL training model is as follows:

(Sr)min ≤ |Sr| ≤ (Sr)max, (37)
where

(Sr)max =

 B
ξ

B log2 (1+
pmax||h∗||2

N0
)

, (38)

and

(Sr)min =

 B
ξ

B log2 (1+
pmin∥h′ ∥2

N0
)

, (39)

where ⌊.⌋ denote the floor function.

Proof. Based on (11), T up
k,r is a decreasing function of pk

and hk. Hence, the minimum uploading time is attained with
maximum pk and hk. Now, let Pk = pmax, maximum transmit
power, and hk = h∗, ideal channel state, the maximum number
of participants (Sr)max can be defined as in (38). In contrast,
let Pk = Pmin, minimum transmit power, and hk = h

′
, the

worst channel state, the minimum number of participants
(Sr)min can be defined as in (39). We define (Sr)max as the
best-case selection scenario where the edge server can select
more participants allocated minimum bandwidth. We also
define (Sr)min as the worst-case selection scenario. Whereas,
by contrast, the server can only select fewer participants
allocated maximum bandwidth.

More specifically, the server aggregate all prior information
from all available clients in the network, then the server solves
P3 using Gurobi solver to obtain the optimal participants
that increase the bandwidth utilization and accelerate the
convergence rate, which has a time complexity of O(K2).
After solving P3, the major complexity lies in the recursive
testing of the computational and communication constraints.
Let L denote the initial number of selected participants. In
the beginning, we can find the initial L by selecting the
participants that have the highest amount of data as in (38) as
worst-case scenario. Thus, Algorithm 1 reduces the complexity
of finding the good candidates by utilizing a pre-estimate of
the minimum participants (Sr)min that can join the FEEL
round. This can be pre-determined using (38), which has a time
complexity of O(1) because the minimum number of partic-
ipants determined by (38) can be accepted without checking
the constraints. Then, Algorithm 1 checks the possibility of
adding more participants, which takes L − (Sr)min where
(Sr)min is calculated in O(1) time complexity. For the worst-
case scenario, Algorithm 1 has a worst-case optimality gap
of O(L/K) as the first L participants directly. Moreover, it is

worth noting that this optimality gap is achieved in polynomial
time.

B. Data diversity and dynamic deadline algorithm

As discussed in Section VI, P3 aims to maximize the
weighted number of participants; however, participants having
a large number of data samples can be iteratively selected over
training rounds. This will not precisely characterize the data
heterogeneity and data diversity across the network especially
with a high degree of heterogeneity and high non-i.i.d. level,
as the neural network’s loss functions are nonconvex and do
not fully satisfy all theorems mentioned above in section V
(i.e., the convexity assumption).

As shown in [31], FEEL system with non-i.i.d data and
several tens of clients require more rounds to attain the same
accuracy as that for i.i.d data. However, increasing the number
of global training rounds leads to slower execution and higher
operational costs. Thus, apart from existing works [17], [28],
[32], [36], [38], we propose an extension for P3 and Algorithm
1 to ensure the diversity of the data and allow more participants
with heterogeneous and more diverse data samples to join
the training rounds, especially the participants with small data
samples. The proposed algorithm adopts a dynamic deadline
where different T is occupied every R

t rounds where t ∈ [1, R]
is an integer value to determine how many times the deadline
is changed. We define a deadline vector ζ to hold the round
index through which the deadline is changed. When T is
large enough, the participants having much larger data samples
are selected. Consequently, the models’ accuracy is enhanced
due to pushing much more data samples into training rounds.
Thus, the server will indisputably alternate between different
participants during global training rounds and capture more
features to improve the model’s performance. The steps of
this algorithm are illustrated in Algorithm 2. Step 1 initiates a
vector ζ that includes all rounds indices in which the deadline
has to be changed. Steps 2-6 iteratively change the deadline
when R = ζ[i] where i = 1, 2, . . . , t to T = T ∗ C where
C is a uniformly distributed between 0.5 and 1.5 to specify
the deadline expanding or dropping percentage for the current
deadline (i.e. C = 1.1 then T increases by 10%, C = 0.9 then
T decreases by 10%). The average deadline during all rounds
is T to make the total time of all rounds similar. At step-7,
Algorithm 1 is carried out to perform model training.

Algorithm 2: : Deadline Controlling Algorithm

1 Determine the round’s index through which the
deadline is changed i.e. ζ = [Rt .n : ∀ n = 1, 2, . . . t] ;

2 Set i = 1;
3 for r = 1 To R do
4 if r == ζ[i] then
5 Set T = T.C where C ∼ U(0.5, 1.5);
6 i = i+ 1 ;
7 The server invokes Algorithm 1 to train the global

model;
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VII. PERFORMANCE EVALUATION
In this section, we develop an experimental setup to demon-

strate the effectiveness of our proposed approaches to improve
FEEL system performance.

A. Experimental Setup
1) Wireless Networks and local computations
We consider TDMA with a total bandwidth of B = 1

MHz. Unless specified otherwise, we model a random wire-
less channel gain hk for each participant with a path loss
(µ = g0(

d0

d )4) where g0 = −35 dB and the reference distance
d0 = 2 m. We assume that the channel state is changing
every r-th round. The distances between edge devices and
the edge server are distributed uniformly between 5 and 100
m. Also, Additive White Gaussian Noise (AWGN) power is
set to N0 = 10−6 watt. The transmit power prk is randomly
distributed between pmin = −10 dBm and pmax = 20 dBm.
For the local computation, each participant’s processing speed
is randomly generated between minimum CPU frequency, 1
GHz, and maximum CPU frequency, 9 GHz. It is worth noting
that, the CPU frequency is changing every r-th round.

2) Simulation Environment and Datasets
To simulate our scenarios, we leverage the Tensorflow

framework [39]. We use an MNIST dataset for hand-written
digit classification with 10 classes (0-9), 69000 samples,
and 1000 workers using multi-class logistic regression. Also,
we use FEMNIST with 62 classes (digits from 1-9, A-Z,
and a-z characters), 80, 5263 samples, and 3, 550 workers.
In FEMNIST, each edge device represents a writer of the
digits/characters with multi-class logistic regression. To verify
the results, we extend our experiments by adding CIFAR10,
which consists of 60000, 32x32 colored images with 10
classes, and it has 50000 for training and 10000 for testing. All
datasets are used under the FEEL system setting, and Non-i.i.d
distribution where the MNIST and CIFAR10 datasets are first
to split into 10 partitions each (one partition for each label),
and each user is assigned batches of two classes only. We use
the same distribution for FEMNIST where the datasets are first
split into 62 partitions (one partition for each label), and then
each user is assigned batches of two labels only. We use multi-
layer perceptron (MLP) for MNIST and the convolutional
neural network (CNN) for FEMNIST and CIFAR10 to train
the models. Furthermore, the learning rate, batch size, and the
number of epochs are homogeneous. We split the data on each
device into a training set (80%) and a testing set (20%) at each
round; a unique seed is set to enable reproducible experiments.
We adopt mini-batch SGD as a local solver with η = 0.01 for
MNIST and FEMNIST and 0.001 for CIFAR10 and b = 20
for all experiments. The performance is evaluated every round.
More details, including the simulation parameters, the models,
and the datasets, are listed in appendix D.

3) Benchmarks:
The proposed approaches have been compared with the

following baselines:
• Random selection [16], [31]: The participants are se-

lected randomly in every round, and the bandwidth allo-
cation is assigned to each k based on its transmit power
and channel gain.
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Fig. 2: The Performance of priority selection algorithm in
term of data utilization vs upper and lower bounds

(R = 300, MNIST).

• Greedy Selection approaches [15], [18]: This approach
mainly selects the participants that provide minimum
updating and uploading time regardless of their impacts
on the global model or the number of local samples.

• Fixed deadline and dynamic deadline: Even though
this approach shows outstanding performance with a
fixed deadline, it lacks the flexibility of selecting dif-
ferent participants over time, especially with the ideal
channel state. To address this challenge, we benchmark
the extended proposed approach to the main proposed
algorithm, Algorithm 2, considering dynamic deadlines
as in Algorithm 2 during the global training rounds.

B. NUMERICAL RESULTS

This section presents the numerical results that we carry
out to evaluate the proposed algorithms’ performance in terms
of data utilization, testing loss, and testing accuracy. We
present a thorough evaluation under extensive simulations
using Proximal gradient descent (FedProx) algorithm [40].
FedProx is an enhanced algorithm of FedAvg [31] that controls
the local updates to be closer to the global model received from
the edge server. We employ FedProx as a local solver to train
all local models

1) Performance gain in terms of data utilization
First, we present the impact of the proposed algorithms

on the performance gain of data utilization by computing the
number of data samples injected into model training at each
round. In Fig. 2, we show the performance of the proposed
priority selection algorithm compared to Gurobi optimizer
solution. The upper bound illustrated in this figure is obtained
from the solution of (P2) before relaxation. The lower bound
also is obtained from the heuristic greedy solution where all
participants are sorted w.r.t data size and selects one by one
considering the bandwidth and deadline constraints. We can
notice that Algorithm 1 approximates the upper bound over
global training rounds because the fractional values resulting
from the solution of P3 gives more priority to participants
having more local data samples, better computation and com-
munication capabilities, and complying with resource and
deadline constraints. It is worth mentioning that all results
are averaged over five trials.

Figs. 3a and 3b shows the attained data utilization when
the number of rounds is 300 using MNIST and FEMNIST
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datasets. Comparing the proposed algorithm with benchmarks,
it is clear that the proposed algorithm significantly improves
data utilization. These gains stem from the fact that the pro-
posed algorithm provides joint data and resource optimization;
hence, including more participants with better channel states,
high-performance CPUs, and more data samples. Overall, the
proposed selection algorithms can significantly increase the
convergence rate. This improvement stems from the fact that
the training algorithms use minibatch-SGD; thus, establishing
a symbiotic relationship between the total number of data
samples across participants and the number of local model
updates.
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Fig. 3: Instantaneous data utilization vs the global training
rounds (R = 300, MNIST and FEMNIST).

2) Performance gain in terms of testing loss and accuracy

The proposed algorithms reduce the required number of
communication rounds as the total number of local data
samples increasesdue to the increase in the number of local
updates. Therefore, by reasonably increasing the number of
local iterations, we can save the overall communication costs
by reducing the number of total communication rounds re-
quired while, at the same time, improving the quality of the
global model. Since the proposed scheme can increase data
utilization, computational capabilities are also utilized.

In particular, our experiments illustrate that when the num-
ber of participants and local updates are selected appropriately,
a high convergence rate can be accomplished in fewer commu-
nication rounds. Fig. 4 shows the identification accuracy of
handwritten digits (MNIST) when the number of global rounds
is 300. From these figures, it is evident that the proposed
algorithm provides a faster convergence rate compared to the
benchmarks as the performance gets saturated in less than R

2
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Fig. 4: Instantaneous testing accuracy vs global training
rounds (R = 300, MNIST).

rounds while achieving better identification accuracy. This gain
stems from using more data and, as a sequence performing
more local updates during the learning process.

We repeat similar experiments by using FEMNIST. Fig. 5
demonstrates that our proposed selection mechanism out-
performs benchmark approaches. We can see that random
selection provides the worst performance. This is due to the
randomized nature of such an approach, as some participants
may have a bad channel state or minimum transmission power
leading to an increase in the upload time, which consumes
more bandwidth. However, it can be seen that the convergence
rate on the MNIST dataset is much faster than the convergence
rate on the FEMNIST dataset. This is because we utilize MLP
for MNIST while utilizing CNN for FEMNIST and CIFAR10.
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Fig. 5: Instantaneous testing accuracy vs. global training
rounds (R = 300 , FEMNIST) .

Fig. 6 presents the impact of using dynamic deadlines
algorithm on convergence rate through 300 global rounds. As
can be seen, there is a little acceleration in the convergence
rate. This stems from the nature of MNIST datasets which have
fewer classes than FEMNIST, and as a consequence, it has less
diverse data amongst participants. Further, Fig. 7 shows the
impacts of using dynamic deadlines on the testing accuracy
during global training rounds using FEMNIST. Note that the
dynamic deadline algorithm accelerates the convergence rate
despite the value of t as larger and more diverse data samples
are used to train the local models. However, setting a larger
integer value for t improves the model performance faster.
Further, we notice that the impact of the dynamic deadlines
algorithm on the FEMNIST dataset model is obviously better
than the model of MNIST. The reason is that FEMNIST has
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Fig. 6: Instantaneous testing accuracy of dynamic and fixed
deadlines vs the global training rounds (R = 300, MNIST).

a high level of non-i.i.d, more diverse data samples, and a
much larger number of classes (i.e., 62-class v.s. 10-class
for MNIST) which means that changing the deadline can
diversify the updates and enable the FEEL system to converge
faster, showing that a fixed deadline cannot account for all
local data distributions with the high level of non-i.i.d. among
participants. More results that show the testing loss and other
experiment scenarios are listed in appendix E.
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Fig. 7: Instantaneous testing accuracy of dynamic and fixed
deadlines vs the training rounds (R = 300 , FEMNIST).

To further verify our proposed approaches, we have ex-
tended our experiment by adding CIFAR10 with 1000 users
as a more complex training task as seen in Figs. 8a and 8b.
All results are averaged over five trails. We also repeat the
experiments with CIFAR10 to validate the performance of
the dynamic deadline algorithm, as illustrated in Fig. 9. In
summary, one can see that the proposed approaches improves
the performance significantly even when the learning task, i.e.,
CIFAR10, is complex, as in algorithm 1, where the optimal
participants are selected on a regular basis. Furthermore,
because of the adaptive deadline selection in Algorithm 2,
we ensure that the training is performed by a large number of
participants.

C. Insights and lessons learned
We can remark the following insights and lessons learned:
• Participants selection is challenging and plays a sig-

nificant role in reducing the communication costs and
enhancing the global model’s performance, especially
with large-scale edge networks. Selecting the participants
having more data accelerates the convergence rate and
strongly influences the global model.
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(a) R = 500
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Fig. 8: Instantaneous results of testing loss and accuracy vs
global training rounds (R = 300, CIFAR10).
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Fig. 9: Instantaneous accuracy of dynamic and fixed
deadlines vs the global training rounds (CIFAR10).

• The proposed algorithms can significantly accelerate the
convergence rate and increase the utilization of data by
order of magnitude within the same deadline as the
baseline algorithms.

• The model size significantly influences the convergence
rate, limiting the number of participants involved in
global training rounds. It is easy to see that the conver-
gence time needed for MNIST is much lower than the
convergence time required for FEMNIST and CIFAR10
where the latter’s model size is much larger especially the
CIFAR10’s model, leading to involve fewer participants.

• The dynamic deadlines algorithm provides a controlling
method to alternate between different participants and
tackle the problem of data heterogeneity and ensure the
data diversity during the training rounds
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VIII. CONCLUSION

This paper proposed novel selection and allocation algo-
rithms that tackle imbalanced data distribution, data diversity,
and the limited resources as well as the deadline constraint
at the network edge. Specifically, we formulated a joint
communication and computation resource allocation problem
aiming to enhance the data utilization as well as accelerate
the convergence rate. A relaxation method was utilized to
tackle the combinatorial nature of participants selection to
make the complicating constraints less restrictive. Then, we
developed a priority selection algorithm to select the optimal
participants with low time complexity utilizing the relaxed-
based solution. Finally, we extended our approach to utilize
dynamic deadlines so as to address the data heterogeneity
and diversify more features during the global training rounds.
Extensive systematic experimentation has been carried out, and
the results demonstrated that the proposed algorithms provide
much better performance than state-of-the-art baselines. The
dynamic deadline algorithm improves the intelligent system
model’s performance and ensures data diversity across the net-
work. For future work, investigating this problem considering
the energy consumption and using empirical experiments can
be an interesting direction.
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APPENDIX A
PROOF OF THEOREM 1

Given Assumption 1, and the definition of F (θ) in section III-A, we have:

F (θr)− F (θ∗) ≤ β

2
∥θr − θ∗∥2 . (40)

From (6), by the substitution of

θr =

∑|Sr|
k=1 |Dk|θr

k∑
k∈Sr

|Dk|

into the right-hand side of (40), we have the following:

β

2
∥θr − θ∗∥2 =

β

2

∥∥∥∥∥
∑|Sr|

k=1 |Dk|θr
k∑|Sr|

k=1 |Dk|
− θ∗

∥∥∥∥∥
2

=
β

2

∥∥∥∥∥
∑|Sr|

k=1 |Dk|(θr
k − θ∗)∑|Sr|

k=1 |Dk|
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2

=
β

2
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∑K

k=1 S
(k)
r |Dk|(θr

k − θ∗)∑K
k=1 S

(k)
r |Dk|

∥∥∥∥∥
2

=
β

2

∥∥∥∑K
k=1 S

(k)
r |Dk|(θr

k − θ∗)
∥∥∥2(∑K

k=1 S
(k)
r |Dk|

)2 (41)

where S
(k)
r is the indicator defined in (13).

APPENDIX B
PROOF OF THEOREM 2

Since F (·) is also L-Lipschitz (i.e., ∥∇F (θ)−∇F (θ∗)∥ ≤
∑K

k=1 δk ∥∇F r
k (θ)−∇F (θ∗)∥ ≤ L ∥θr − θ∗∥ ,∀θ,θ∗, by using

Jensen’s inequality and L-smoothness, respectively), we have

F r
k (θ

r
k)− F (θ∗)

≤ ⟨∇F (θ∗),θr
k − θ∗⟩+ L

2
∥θr

k − θ∗∥2

= ⟨∇F (θ∗)−∇F̄ r−1,θr
k − θ∗⟩+ L

2
∥θr

k − θ∗∥2

+ ⟨∇F̄ r−1,θr
k − θ∗⟩ (42)

≤
∥∥∇F (θ∗)−∇F̄ r−1

∥∥ ∥θr
k − θ∗∥+ L

2
∥θr

k − θ∗∥2

+ ⟨∇F̄ r−1,θr
k − θ∗⟩ (43)

Then, we use the fact that F (.) is a decreasing function due to the convexity and smoothness; thus, for each individual
participant, we can have:

Fk(θ
r
k)−∇Fk(θ

∗) ≤ 1

n

n∑
i=1

∇F r
k (θ

r
k(i))−∇Fk(θ

∗)

≤
∥θr

k(0)− θ∗∥22
2ηn

(44)

where
n = E |Dk|

b

is the number of local updates performed by participant k. Further, from (4), we have:

θr
k = θr−1 − η

n∑
i=1

∇F r
k (θ

r
k(i)), (45)

Thus, F r
k (θ

r
k(0)), F

r
k (θ

r
k(1)), . . . , F r

k (θ
r
k(n)) decreases with n and θr

k(.) due to its smoothness and convexity and its value
decreases as the the number of data samples increases ( the number of updates is proportional to the number of batches which
depends on the data size assuming that the batch size is homogeneous among all participants). Therefore,

F r
k (θ

r
k(n))− F (θ∗) ≤ F r

k (θ
r
k(n − 1))− F (θ∗) . . .

≤ F r
k (θ

r
k(n − 2))− F (θ∗) · · · ≤ F r

k (θ
r
k(0))− F (θ∗)



As a result from (42), (43), (44) and (45), we notice that as the number of local data points increases, the divergence between
θr
k and θ∗ decreases

APPENDIX C
PROOF OF THEOREM 1

In the following, show the relationship between the convergence rate of global model and the number of selected participants
weighted to the number of local data samples. Let S1(r) = {k ∈ {1, . . . ,K} | S(k)

r = 1} is the selected participant at round
r and S2(r) = {k ∈ {1, . . . ,K} | S(k)

r = 0} is the unselected participant at round r. we first rewrite F
(
θr+1

)
using the

second-order Taylor expansion, which can be expressed as

F
(
θr+1

)
=F (θr) +

(
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)T ∇F (θr) +
1

2
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(46)

where the inequality in (46) is resulting from assumption (1). Let’s learning rate η = 1
L , based on (20) and (21), the following

expectation E
(
F
(
θr+1

))
for the global loss holds as:
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(48)

Hence, based on Assumption 1 and triangle-inequality as in [21], [28] we have:

E
[
F
(
θr+1

)
− F (θ∗)

]
≤ 2c1
LD

K∑
k=1

|Dk|
(
1− S(k)

r

)
+ (1− β

L
+

4βc2
LD

K∑
k=1

|Dk|
(
1− S(k)

r

)
)E (F (θr

k)− F (θ∗)) . (49)

where c1, and c2 are obtained from second-order Taylor expansion. We can notice that the upper bound of the gap between
the left-hand side and the right-hand side in (49) is 2c1

LD

∑K
k=1 |Dk|

(
1− S

(k)
r

)
. This gap can be reduced by pushing more

data and selecting more participants, which leads to accelerating the convergence rate as the gap between the optimal model
θ∗ and the trained model θr is shrinking as we increase the number of participants weighted to local data samples as in (49).
Hence Proved.

APPENDIX D
EXPERIMENTS DETAILS

This appendix contains the simulation parameters as in Table III. Also, we provide details on the used datasets and models.
Both datasets are used under FEEL setting and Non-i.i.d distribution.

• MNIST: The image classification of handwritten digits 0-9 is studied in MNIST using multinomial logistic regression. To
conduct experiments under non-i.i.d settings, the data was distributed among 1000 users in such a way that each user has
imbalanced samples of just 2 digits and the number of samples per user follows a power law to ensure the imbalanced



TABLE III: EXPERIMENTAL SETUP PARAMETERS

Parameter Value
Library TensorFlow
Simulation Environment Anaconda
learning rate η 0.01 and 0.001
Batch Size 20
Number of rounds 300 and 800
Local solver Minibatch-SGD
Evaluation Period Per round

data distribution. The model input is a flattened 784-dimensional (28 × 28) image, and the output is a class label between
0 and 9.

• FEMNIST: An image classification problem is studied in more realistic datasets on the 62-class FEMNIST dataset using
multinomial logistic regression. Each user represents a writer of the digits/characters in Extended MNIST, EMNIST. This
version of the datasets is called Federated FEMNIST. The model input is a flattened 784-dimensional (28 × 28) image,
and the output is a class label between 0 and 61. To conduct experiments under non-i.i.d settings, each user was assigned
only 2 labels and the number of samples per user is randomly assigned to ensure the imbalanced data samples among
clients.

• CIFAR10: An consists of 60000, 32x32 colored images with 10 classes, and it has 50000 for training and 10000 for
testing. The images are divided into ten categories: airplane, automobile (but not truck or pickup truck), bird, cat, deer,
dog, frog, horse, ship, and truck (but not pickup truck). Each class contains 6000 photographs, comprising 5000 training
and 1000 assessment images. The data was distributed among 1000 users in such a way that each user has imbalanced
samples of just 2 digits and the number of samples per user follows a power law to ensure the non-i.i.d and imbalanced
data distribution.

Table IV illustrates the statistics of the utilized datasets under FEEL settings.

TABLE IV: STATISTICS OF THE UTILIZED DATASETS

Dataset Total number of de-
vices

Total number of data
samples

Number of classes

MNIST 1000 69000 10
FEMNIST 3,550 80,5263 62
CIFAR10 1000 60000 10
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