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Abstract—This paper proposes a novel attention-based convo-
lutional denoising autoencoder model to filter and diagnose atrial
fibrillation (AF) from excessively noisy wearable electrocardio-
grams (ECGs). First, the features are extracted from the ECG
signal using convolutional layers, along with the noise removal,
and then they are used to classify the AF. The model employs
skip-layer connections to reduce information loss during the
reconstruction of the denoised signal. In addition, an efficient
channel attention module that efficiently updates the features
retrieved via cross-channel interaction, allowing the network
to pay more attention to the features of relevant information
between the channels. The model is trained and tested using
four widely available databases, and simulated additive white
Gaussian noise from −20 to 20 decibels (dB) and MIT-BIH Noise
stress test database (NSTDB) noises with SNRs −6 to 24 dB are
added to the database for evaluation. The model achieved an
average SNR improvement of 28.07± 1.67 and PRD of 8.1% at
0 dB SNR noise added to the databases. The model classification
performance is found to be 99.25% precision, 99.50% recall, and
99.25% accuracy, respectively.

Index Terms—Electrocardiogram, Atrial Fibrillation, Denois-
ing Autoencoder, Convolutional Neural Network, Arrhythmias.

I. INTRODUCTION

AN electrocardiogram (ECG) is a non-invasive procedure
that records the electrical activity of the heart and aids

in the diagnosis of cardiac disease. ECG procedures are
preferred over other types of heart monitoring because they are
the most convenient and cost-effective. Recent advancements
in remote monitoring technology have enabled ECGs to be
performed in the privacy and convenience of one’s own home
or office rather than in a hospital setting. Remote monitoring
technologies have improved healthcare for those with periodic
cardiac arrhythmias because they can continually monitor heart
activity. Now, with these advancements, massive amounts of
ECG data are being gathered simultaneously, which needs
processing and interpretation. Despite being the most often
used diagnostic tool, computer-read ECGs have been found to
have considerable errors [1]. This means that conventional al-
gorithms can no longer be relied upon as a primary diagnostic
tool. To make this situation worse, there is a severe shortage
of cardiac specialists in low and middle-income countries [2].
For this reason, a simple, easy-to-use, reliable, and accurate
ECG analysis tool is required that can use to deliver better
insights on these remote monitoring devices.
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Over the last few decades, researchers have developed a
number of computer-assisted ways for automatically detecting
arrhythmias. The fundamental goal of arrhythmia detection is
to classify each heartbeat into one of several classes based on
differences in morphology. The traditional method of detecting
arrhythmias includes several steps, such as pre-processing,
feature extraction, dimensionality reduction, and classification.
Feature extraction is at the heart of most machine learning
tasks, and domain experts in the field carry it out. The
extracted features determine the classification accuracy. There
are several feature extraction methods employed for the ECG
classification task, such as wavelet transform [3], principal
component analysis (PCA) [4], independent component anal-
ysis (ICA) [5], some higher-order statistics (HOS) [6]. These
features are given to several classifiers for interpreting the
results. Another difficulty with arrhythmia classification is that
the ECG data is contaminated with noise during acquisition.
The main noise sources are interference in the device’s power
supply, baseline drift, muscle noise, and noise from electrode
contact with the skin. The presence of noise in the signal
might induce changes in the amplitude and time intervals
and can be mistakenly identified as one of the arrhythmias,
leading to misdiagnosis. Therefore, filtering those signals
is always necessary to avoid false positives and erroneous
diagnoses. As a result, adequate pre-processing is required
before analyzing the ECG signal. Denoising ECG signals can
be accomplished using various methods, the majority of which
rely on traditional techniques based on parameters that are
particularly susceptible to noise, such as fixed filters like finite
impulse response filters (FIR) and infinite impulse response
filters (IIR) [7]. Fixed filters eliminate all signals in the cut-off
frequencies, obliterating the ECG signal information in those
frequencies as well. Therefore, adaptive filtering techniques
[8] are used to denoise ECG signals. However, they often
require noise reference signals as input, which are difficult to
collect using the ECG signal acquisition system. ECG signals
are non-stationary in nature, so they can be represented in the
time-frequency domain to acquire the necessary information.
Thus, time-frequency based techniques such as wavelet [9] and
empirical mode decomposition (EMD) [10] have gained pop-
ularity and shown promising results in ECG denoising. These
time-frequency filtering methods have two flaws: first, they
only focus on low- or high-level characteristics, and second,
for low frequencies, they give greater frequency resolution but
poor time resolution; and for high frequencies, they provide
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better frequency resolution but poor time resolution [11].
Recent studies advise using deep learning (DL) algorithms

to denoise ECG signals based on the above analysis. One such
DL architecture used to filter ECG signals is the Denoising
Autoencoder (DAE). In [12], the ECG signal is denoised
using a stacked contractive denoising auto-encoder. They also
demonstrated a DNN-based DAE for noise reduction in the
ECG, with significant improvements in the signal to noise ratio
(SNR) and root mean square error (RMSE) on noise-induced
from the MIT-BIH noise stress test database (NSTDB), rang-
ing from 0 to 5 dB. In [13] authors combined DAE and wavelet
transform with soft thresholding to achieve better denoising in
the range of 0 to 5dB on NSTDB. In [14] authors proposed a
13-layer fully convolutional network (FCN) based DAE for
denoising ECG signals. They enhanced the SNR by 15.49
decibels using the NST database, and they investigated noise
corruption levels ranging from -1 to 7 decibels. Some of the
recent studies that used DL techniques to denoise ECG signals
are discussed further. The authors of [15] presented a multi-
kernel linear and non-linear (MKLANL) module for baseline
wander (BLW) removal that is inspired by the Inception mod-
ule and achieved highly promising results when compared to
state-of-the-art signal processing approaches. The study’s only
drawback is that it focused solely on reducing baseline wander
noise and ignored other noises. In [16] authors proposed a two-
stage denoising approach. In the first stage, a U-net model is
used to remove the noise from the ECG. Then, a DR-net is
designed in the second stage for the detailed restoration of the
ECG signal. The experiment demonstrates the applicability of
this strategy in the presence of significant noise. Despite that,
the study cannot remove noises with low SNRs. Nowadays,
with wearable devices, such as smartwatches and patches, it
is possible to monitor heart disease continuously. The ECGs
collected from these devices are highly contaminated with
noise as the individual moves and possibly runs while carrying
these devices. Despite the researcher’s best efforts, denoising
of ECG beats remains a challenge, especially for noisy or low
SNR conditions.

A. Contributions and Organization

To address above mentioned issues of not being able to
denoise low SNR ECG signals, this study proposes a deep
convolutional denoising autoencoder network with symmetric
skip-layer connections for two-channel ECG denoising. The
model is inspired by the work of [17] on image restoration;
however, the hyperparameters are redesigned for 1D ECG
time series data. Furthermore, the efficient channel attention
(ECA) structure is introduced to efficiently update the features
retrieved via cross-channel interaction, allowing the network
to pay more attention to the features of relevant information.
As a result, the complexity of CDAE was optimized owing to
the skip connections. The network is trained and tested using
four widely used and readily available ECG databases. The
databases are corrupted with several types of noise, including
baseline wander(BW), muscles artifact (MA), electrode motion
(EM), and additive white Gaussian noise (AWGN), to test the
effectiveness of the proposed model. The results are compared

to state-of-the-art techniques. The main contributions of the
study are as follows:

• A novel neural network model named attention-based
convolutional denoising autoencoder (ACDAE) is pro-
posed with symmetric skip-layer connections for two-
channel ECG denoising.

• The efficient channel attention (ECA) mechanism is in-
tegrated for the denoising and classification tasks which
will help restore ECG morphology.

• Two models are used to evaluate the classification per-
formance of the atrial fibrillation using compressed fea-
tures obtained from the encoder phase of the model.
Furthermore, this study investigated the classification
performance of different SNRs of noise introduced.

• To the best of the author’s knowledge, this is the first
comprehensive attempt to investigate the different case
scenarios that influence classification performance from
noisy ECG signals.

The rest of this article is organized as follows. Section II
describes the dataset used and pre-processing steps. In Section
III, the primary methods, including DAE and ECA, are briefly
reviewed. The denoising problem to be solved is formulated
and describes the proposed attention-based convolutional de-
noising autoencoder in detail. Section IV presents three case
studies to evaluate the performance of the proposed method.
Section V discuss the study and compare the results with
state-of-the-art methods. Finally, conclusions are provided in
Section VI.

II. DATASET USED AND PRE-PROCESSING

In this study, four prominent freely available databases
from the Physionet are used [18]. MIT-BIH Atrial fibrilla-
tion database (AFDB) and MIT-BIH Normal Sinus Rhythm
Database (NSRDB), MIT-BIH Arrhythmia (BIHA) Database
and MIT-BIH Noise Stress Test Database (NSTDB) are used to
train and test ACDAE denoising and AF classification models.

AFDB includes twenty-five 10 hours of two-channel ECG
recordings sampled at 250Hz. Two records, ”04936” and
”05091”, were not used out of twenty-five records due to
incorrect annotations. These recordings come with rhythm
annotation files that have been painstakingly generated. If one
or more beats in a beat sequence show signs of AF, the beat
sequence is classed as AF (usually paroxysmal), while all other
beats are classified as normal in the database.

NSRDB includes 18 long-term ECG recordings. No arrhyth-
mia beats are available except sporadic ectopy. The recordings
were digitized at 128 samples/second/channel. A reference
annotation file specifying the location and kind of each beat
is included with each digitized recording.

The MIT-BIH Noise Stress Test Database (NSTDB) [19]
contains 12 half-hour ECG recordings and three half-hour
recordings of noise typical in ECG recordings. The database
includes noise records such as baseline wander ’bw’, electrode
motion ’em’, and muscles artifacts ’ma’ that can be added to
ECG records to create noise stress test records.

The MIT-BIH Arrhythmia (BIHA) Database has 48 two-
lead ECG records of 30-minute duration. The sampling fre-
quency of BIHA is 360Hz which was re-sampled at 250 Hz
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for our experimentation. The network NSTDB noise is added
for denoising purposes for training and testing.

A. Preprocessing of ECG signals
Since each database has a distinct sampling frequency,

thus they all are re-sampled to 250 Hz. The pre-processing
is divided into the following steps: First, the two-channel
ECG data from the AFDB database is segregated into atrial
fibrillation and normal beats using an annotation file. Then,
the signals normalized between 0 and 1. Next, the signals
are segmented so that they can be given to the model for
training and testing. We need at least two R peaks in a
segmented window for atrial fibrillation classification. Hence,
R peaks are detected using Christov segmenter algorithm from
BioSPPy toolbox [20]. A Window of 1.2 sec is taken as
the normal range for RR interval is 0.6-1.2 seconds. Normal
ECG signals RR intervals are much larger than AF signals.
Therefore, proper zero-padding is performed to ensure that
each window has the same size. Similarly, NSRDB is also
pre-processed. Data prepared is shuffled and split into training,
testing and validating data in the ratio of 80:10:10 percentage,
respectively. To remove the effect of imbalanced data, 30,000
samples for AF and non-AF is chosen randomly, a total of
60,000 samples.

B. Data preparation for experiments
Some studies suggest testing models on noises ranging

from 12 dB to -6 dB, as the majority of wearable devices
may produce noise in this range [21]. However, to examine
the effectiveness of the proposed model, we have added the
AWGN noise with levels ranging from -20dB to 20dB, with
a 5dB step size.

A total of two experiments are carried out in this research,
as follows:

• First experiment is used to evaluate the ECG denoising
performance and classification performance of atrial fib-
rillation (AF). For this experiment, AFDB and NSDB pre-
processed data are mixed with the AWGN. So, overall 9
experiments are done with SNR levels of -20, -15, -10,
-5, 0, 5, 10, 15, 20 dB.

• Second experiment is carried out to evaluate the sug-
gested model on more realistic noise experienced by ECG
and the BIHA, and NST databases are used to train and
test the model performance. The NSTDB comes with
noise records such as ’bw’, ’em’, and ’ma’, therefore
these are added with varying SNR levels of -6 dB, 0
dB, 6 dB, 12 dB and 24 dB to BIHA ECG records. The
experiment is also performed using AWGN with -20 dB
to 20 dB SNRs. A total of 47 records are used as two
records belong to the same subject. Thirty records are
used for training, five records for validation, and 12 for
testing. The experiment results are discussed in sections
IV and V.

III. METHODOLOGY

The proposed method is shown in Fig. 1. It has two primary
functions: 1) an Attention-based Convolutional Denoising Au-
toencoder (ACDAE) that aids in the denoising of ECG signals,

and 2) two classification modules. Classification module 1
(M1) takes the encoder’s learnt feature maps and passes them
to the ECA module, where cross-channel weighted attention is
given to the important feature maps before passing them to the
fully connected (FC) layer for atrial fibrillation classification.
Classification module 2 (M2) also uses the encoder’s learnt
feature maps but now, instead of the ECA module, it is fed to
the global pooling average (GAP) and FC layer. The goal of
this analysis is to see how ECA attention impacts classifica-
tion. Detailed information about each module is described in
the following subsections.
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Fig. 1: Flowchart of Proposed Method

A. Convolutional Denoising Autoencoder

Autoencoder (AE) is an excellent unsupervised learning
approach for extracting data feature representation. They are
commonly utilized in biomedical applications for compression,
feature extraction, and denoising. In [22] authors used long-
short term memory (LSTM) based autoencoders for ECG
arrhythmia detection. Apart from ECG signals, AE is also
used in machine applications, such as the authors of [23] [24]
[25] [26] used different AE networks for fault detection and
to predict the health state of the machine. AE is divided into
two paths: encoding, which compresses signals by learning
features, and decoding, which expands the compressed signal
back to its original shape. The repeated convolutional layer is
followed by a non-linear activation function and a max-pooling
operation for downsampling in the encoder path. On the other
hand, the decoder path starts with transposed convolutional
layers followed by upsampling layer and activation function
and will give the denoised signal by reconstructing the input.
The mathematical formulation is as follows:

The encoding path h = c(x; θ) translates a given input,
x ∈ [0, 1]n, to a hidden layer, h ∈ [0, 1]m, with parameters
θ and n,m ∈ N. The decoding path x̂ = f(h; θ′) converts h
into a reconstruction in the input space x̂ ∈ [0, 1]n. The AE’s
training goal is to identify parameters θ, θ′ that minimise the
reconstruction error L(x, x̂), i.e., the difference between x and
x̂ for all xi, i ∈ (1, ...τ) samples in the training set:

θ, θ′ = argmin[
1

τ

τ∑
i=1

L(xi, x̂i)] (1)



IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT CLASS FILES, VOL. XX, NO. X, XX 2022 4

To calculate the reconstruction error, traditional squared
error L(x, x̂) = ∥x− x̂∥2 can be used or the cross entropy
error function as

L(x, x̂) = −
τ∑

n=1

[xnlogx̂n + (1− xn)log(1− x̂n)] (2)

The hidden layer algorithm can learn input features along
the primary axes of variation coordinates by minimizing re-
construction errors. They follow the same principle used in the
principal component analysis (PCA). Data are projected onto
the primary component that captures the most important data.
Some relevant information may be lost during the compression
of the original feature map. It is designed to have a small
reconstruction error for test data but not for data randomly
selected from input space because it compresses the training
data.

As the AE model task is to reconstruct the input, they should
be sensitive enough to recreate the original observation but
insensitive enough to the training data, i.e. the model should
not learn the input while training, which will cause overfitting.
Therefore, [27] proposed a study where they corrupted the
input by introducing some noise so that model now does not
simply develop a mapping that memorizes the training data
because now input and target output are different. Instead, the
model learns a vector field for mapping the input data towards
a lower-dimensional manifold.

Here, each training example x is the ECG signal. It is
corrupted by a stochastic mapping x̂ = q(x̃|x), i.e., AWGN is
added to the input data, which partially destroys it according
to the destruction rate (based upon SNR). The DAE then
uses the encoding and decoding functions to determine the
reconstruction of the corrupted input, as x̂ = f(c(x̃)). Then the
parameters are updated in the direction of δL(x,x̂)

δθ . As a result,
the DAE tries to reconstruct x instead of x̃. After obtaining
the reconstruction signal from DAEs, the signal-to-noise ratio
(SNRs) value must be determined to assess signal quality.

The signal corruption process can be formulated as:

x̂ = η(x) (3)

where η : Rn → Rn is an arbitrary stochastic corrupting
process that corrupts the input. The learning aim of the
denoising job thus becomes:

f = argminEy

∥∥f(x̂)− x
∥∥2 (4)

This formulation goal is to identify a function f that best ap-
proximates η−1. The signal denoising and restoration problems
in a cohesive framework are tackled by selecting appropriate
η in different contexts. The next section will discuss the ECA
network and its working.

B. Efficient Channel Attention Network

According to cognitive research, people use an attention
mechanism to preferentially concentrate on a subset of all

information while ignoring other observable information. Con-
volutional neural networks (CNNs) performance has recently
been demonstrated to be improved by a channel attention
method. The squeeze-and-excitation network (SENet) [28] is
one of these approaches, which captures channel attention for
each convolutional block and achieves a noticeable perfor-
mance boost for various CNN models. Wang et al. [29] real-
ized that recording dependencies across all channels are waste-
ful and redundant. Therefore they avoided the dimensionality
reduction step to reduce trainable parameters and presented an
efficient channel attention network (ECANet) that establishes
channel weights by conducting a rapid one-dimensional (1D)
convolution of size k to capture cross-channel interactions
quickly. ECA module working is as shown in Fig. 2 and
discussed as follows:

By modelling the connection between the fused feature
channels, the ECA structure is utilized to learn the weights
of the features under several local channels. First, for the nth
channel, a global average pooling is used to reduce the feature
maps size in single values of size equal to the number of
channels in the convolutional layer as follows:

Conv

X

L

C

Feature Map F

L

C

Improved Feature 

Map F ̃

    1 x1 x C                       1 x1 x C

GAP
g_n(F)

σConv1D

Fig. 2: Schematic of ECA module

gn(F ) =
1

L

L∑
i=1

fi (5)

Where L is the length of the feature sequence F , following
the global average pooling process. Features of gn(F ) has
certain periodicity and correlation which will be learned by
fast 1D CNN with a kernel size of K. Fast 1D CNN is run on
gn(F ) to learn the feature weights under various channels, as
shown below:

ω = σ(Conv1dk (gn(F ))) (6)

where, Conv1d denotes a 1D convolution, and in order to
compute the kernel size K with the channel dimension C is
given as:

k = | log2(C)

2
+

1

2
|odd (7)

Where C is non-linearly correlated with K and the sigmoid
function is denoted by σ. σ is used to compute the activation
value of convolutional output to get new weights ω, which will
reflect the local relationship and essential degree of the feature
channel. New weights are now multiplied with each feature of
the set F , implying that relevant features will be given higher
weights to be improved, while less important features will
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be given lower weights, resulting in their suppression. Thus,
an improved feature map with more relevant information is
obtained. As a result, the ECA module is added after every
trans conv block in the decoder of our proposed network
so that no extraneous data from the preceding block’s feature
maps are used in the reconstruction of the denoised signal.
The architecture of the proposed model is described in the
following section.

C. Proposed Model Architecture and Learning

In this study, we proposed a novel attention based convo-
lutional denoising autoencoder (ACDAE) as shown in Fig. 3.

 

 

        

  

 

 Input         Noisy ECG 

  

 

 

 

                        

    

    

 

 

  

 Trans_Conv_4                Trans_Conv_3         Trans_Conv_2 

                                                                              Decoder  

                                                                                                                                        

 

 

     Conv_1 Conv_2 Conv_3 Conv_4 

Trans_Conv_1 

E

C

A 

E

C

A 

E

C

A 

 

x̂ 

x x ̃

ECGReconstructed 

                       Encoder  

 

E

C

A 

Convolutional 

block 

 

MaxPooling LeakyReLU 

 

ECA Attention module 

Transposed 

Convolutional 
block 

 

Upsampling 

Fig. 3: Schematic of proposed Attention Based Convolutional
Denoising Autoencoder

It comprises of two modules: an encoder and a decoder.
The encoder module has four 1D convolutional layers, while
the decoder module has four symmetric 1D transposed con-
volutional (trans conv) layers. As input, the network re-
ceives a noisy ECG signal (x̃i) noised with AWGN and
outputs a denoised ECG signal( x̂i). Initially, the feature maps
are extracted using convolutional layers (Conv-layers) and
downsampled using the Max-pooling layer of two. The noise
gets suppressed during this encoding task while retaining the
underlying structure. Next, the transposed convolutional layers
trans conv and upsampling layer decode the compressed
ECG abstraction. The Conv-layers and the trans conv layers
are symmetrically connected via skip connections, as shown
by dash lines. The role of the skip connections is two-fold.
First, they help in back-propagating the gradients to the bottom
layers and also help in recovering the ECG signal detail lost
during the encoding and decoding process. ECA modules are
connected after trans conv 1 to trans conv 3 as shown
by the red colour box; they efficiently update the features
retrieved via cross-channel interaction, allowing the network
to pay more attention to the features of relevant information

between the channels. The output x̂i is then reconstructed
through trans conv and ECA module. The target of the
training is to minimize the mean square value given by Eq. 11
between the x̂i and the input xi. The smaller the loss function
value, the more likely the output x̂i will reconstruct the input
xi. We experimented by placing the ECA module before
Conv-2 and Conv-3 of the encoder, but it hardly improved
the performance. We also explored the possibility of putting
dropout layers. However, we found that the ECA module
does not require dropouts as ECA helps get the attention
from relevant channels, leading to solving the problem of
overfitting. Therefore, ECA modules are only placed in the
decoder path to reduce the computational time and resources.

This study is carried out on the Keras library with Google
Tensorflow 2.6 and Python 3.7. NVIDIA GeForce GTX 1070
graphics card with Cuda libraries, 16GB of RAM, and an Intel
Core i7-8700 3.20GHz CPU are installed on the machine and
segmented noisy ECG samples from channels 1 and 2 of 300
(1.2 s), each concatenated and given input to the network. On
the other hand, the proposed approach can also be used with
any reasonable segmented window size (e.g., 5s–30s). The
normalized mean square error given in Eq. 11 is minimized
during the network’s training. Keras-tuner [30] random search
library is used to find the optimal hyperparameters of the
neural network. The Adam algorithm, which has a learning
rate of 0.0001, was chosen for optimization. A batch size of 32
is used, and epochs are set to 50 with Early-stopping callbacks,
which is used to avoid overfitting. The network’s details are
provided in Table. I

TABLE I: Detailed Parameters of the ACDAE

Layer Kernel Size Filter Size Output Activation
Conv 1 13 x 1 16 600 x 16 LeakyReLU
Conv 2 7 x 1 32 300 x 32 LeakyReLU
Conv 3 7 x 1 64 150 x 64 LeakyReLU
Conv 4 7 x 1 128 75 x 128 LeakyReLU
trans conv 1 7 x 1 128 75 x 128 LeakyReLU
ECA Module 3 x 1 75 x 128 Sigmoid
Addition 75 x 128
trans conv 1 7 x 1 64 150 x 64 LeakyReLU
ECA Module 3 x 1 150 x 64 Sigmoid
Addition 150 x 64
trans conv 1 7 x 1 32 300 x 32 LeakyReLU
ECA Module 3 x 1 300 x 32 Sigmoid
Addition 300 x 32
trans conv 1 13 x 1 16 600 x 16 LeakyReLU
Dense Layer 1 600 x 1

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Evaluation Metrics

Denoising performance of ACDAE model for ECG signals
is measured using three metrics: mean squared error (MSE),
signal-to-noise ratio (SNR) and percentage-root-mean-square
difference (PRD), given as follows:

SNRin = 10 log10

∑n
i=1 xi)

2∑n
i=1 (xi − x̃i)2

(8)
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SNRout = 10 log10

∑n
i=1 xi)

2∑n
i=1 (xi − x̂i)2

(9)

SNRimp = SNRout − SNRin (10)

RMSEout =

√√√√ 1

N

n∑
i=1

(xi − x̂i)2 (11)

PRD =

√∑n
i=1 (xi − x̂i)2∑n

i=1 x̂i)2
∗ 100 (12)

Where xi is a sample of the original signal, x̂i is sample
the denoised signal and x̃i is the sample of noise-induced
ECG. Mean squared error is used during pre-training since
it serves as a loss function for weight update. On the other
side, the signal to noise ratio was utilized to compare different
denoising algorithms.

To evaluate the performance, performance measures like
precision, recall, F1-score and accuracy is calculated. Formu-
lae for calculating performance measures are given as follows:

Accuracy =
TP + TN

TP + FP + FN + TN
(13)

Precision =
TP

TP + FP
(14)

Recall =
TP

TP + FN
(15)

Where TP is True Positive, TN is True Negative, FP is False
Positive, FN is False Negative.

B. Denoising performance of the proposed model

Two experiments are performed to evaluate the denoising
performance of the proposed model. In experiment one, the
segmented window of AFDB and NSRDB are used as de-
scribed in section II. These databases are added with AWGN
noise of different SNRs. In experiment two BIHA database is
noised with AWGN noise and NST database noise. The details
are described in the following subsections.

1) Denoising performance using additive white Gaussian
noise: In this experiment, 1.2s segmented two-channel ECG
signals from the AFDB and NSRDB databases are used for
the experiment. Each window contains 250 × 1.2 = 300
samples, where 250 Hz is the signal’s sampling frequency,
two channels are concatenated and fed to the model for
training. The AWGN noise is added, as discussed in section
II. The AWGN stipulates the same amount of energy across
all spectral bands. Denoising based on AWGN demonstrates
the model’s robustness when facing random perturbations.
Denoising potential diminishes as the SNR of a system drops.
ECG signals are corrupted using AWGN of varying standard
deviations. We observed that the signal almost lost all morpho-
logical information with SNR of -15 dB and below as shown
in Fig. 4 and Fig. 5. A random window from the test set is
chosen to visualize the results of the denoised signal from 0

dB to -15 dB. Here, the top figure is the original signal chosen
randomly, in the figure blue color shows the channel 1 signal
and red color shows the channel 2 signal. Subsequent plots
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Fig. 4: Denoising Performance of ACDAE with different
AWGN added to ECG signal

show the noised signal and their denoised output from the
model ranging from 0 dB to -15 dB. As depicted, the model
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achieves a good denoising result till -15 dB, as it was able to
reconstruct the morphology of the signal from the significant
noise-induced. However, for -20 dB, the model is not able
to reconstruct the morphology of the signal from channel 1
as indicated by blue color, whereas the morphology of the
signal from channel 2 is reconstructed accurately, as shown in
Fig. 5. It indicates that there is a need for increased training
epochs, but as model training is using early stopping callback
with a patience value of 5 therefore, it could be concluded
that the proposed model’s threshold had reached. As a result,
additional tuning is necessary to reconstruct signals at and
beyond -15 dB AWGN SNR. As previously stated, the largest
range of noise that can disturb ECG is -6 dB on a wearable
device, for which our model performs well. Therefore, we
chose the range for our proposed model in which it will
give great results are -15 dB to 20 dB SNR. Our assertion
is also supported by a quantitative comparison in terms of
SNR improvement and PRD, as shown in Table. II.
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Fig. 5: Denoising Performance of ACDAE at -20dB AWGN

2) Denoising performance on NST database: This exper-
iment is performed using the BIHA and NST databases,
as explained in section II. For this experiment, the signal
window of 10 sec is taken, and the signal is re-sampled at
250 Hz before giving it to the model. A sample size of
10 × 250 = 2500 samples are fed to the model as input.
The prepared data is then added with ’em’, ’bw’, ’ma’ noises
in the same proportion for training and testing. The record
number used for test set are 103, 107, 116, 117, 119, 124,
205, 207, 212, 220, 228, 233. The model performance for a
random window with -6 dB and 0 dB SNR can be seen in
Fig. 6. Here, the first window represents noised signal added
with NSTDB noise, and the second window represents the
reconstructed signal in red and the original signal in green.
Individual SNRimp s defined in Eq. 10 for the test records
is shown in Fig. 9. Moreover, the BIHA database is also
tested with AWGN noise as presented in the previous section
and results obtained are shown quantitatively in Table. II.
Individual SNRimp for the test records is shown in Fig. 8.
The plots are between records (on the X-axis) and SNRimp

(on Y-axis).

C. Classification performance of Proposed Model

This study uses two classification modules for atrial fibrilla-
tion (AF) classification from the normal signal. As explained
in section II, the experiments are performed on two-channel
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Fig. 6: ACDAE reconstruction performance on NST Database

ECG segment windows. A total of 60,000 samples are used
with 30,000 AF beats and 30,000 non-AF beats. SNR values
ranging from -20 dB to 20 dB with a step size of 5dB
are used to train and test each module similar to that of
the denoising task. Classification performance was evaluated
using Eq. 13, 14, 15. For simplicity, classification module 1 is
referred to as M1 and module 2 as M2 throughout the paper.

M1 uses the feature map that was got from the encoder of
the model. These feature maps are a compressed representation
of ECG signals. This experiment aims to see the classification
performance of the compressed feature maps. The advantage
of using compressed feature maps or signals is that they take
less power while transferring wireless and take less memory.
Both the advantages are very much required for modern cloud-
based wearable devices. Therefore, ECA attention modules are
used for the classification task. They can help get relevant
information from the compressed feature maps as it has the
GAP layer that will average each feature map and reduce its
size. These will be passed through the 1D CNN layer with
adaptive kernel size for local channel attention, suppressing the
weak channel features and giving attention to only important
features as explained in section III(B).

M2 uses FC layer followed by GAP layer as shown in
Fig 1. This experiment aims to see the difference using the
ECA module as the ECA module comes with some extra
trainable parameters. Therefore, M2 employs the GAP and
FC layers instead of the ECA module. M1 performed better
than M2, showing the usefulness of the ECA module. M1
achieved precision, recall and accuracy of 99.25%, 99.50%,
and 99.25%, respectively, followed by M2 with 97.50%,
97.50%, and 97.75%, respectively. Table III shows the classi-
fication performance at 10 dB added noise. We used a 10 dB
added signal as it hardly adds any noise and can be compared
with other published work. The experiment is performed for 9
SNR levels as explained in section II, and precision, accuracy
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TABLE II: Comparison of ACDAE performance with AWGN on different Databases

Database -10 dB -5 dB 0 dB

SNRimp RMSE PRD(%) SNRimp RMSE PRD(%) SNRimp RMSE PRD(%)

AFDB database 31.87 0.0587 21.1 27.4 0.0315 11 19.31 0.0134 6.90

BIHA Database 22.06 0.0612 31.72 18.57 0.0432 24.1 14.63 0.0231 9.8

and recall for M1 and M2 are shown in Fig. 7 where the
top figure shows the results for AF class and the lower figure
shows the result of normal class. Here, we can observe that the
performance of classification models till -10 dB is almost the
same as shown in Table III and for -15 dB, overall accuracy
for M1 is reduced to 95.84% from 99.25 %, and similarly
precision and recall also decreased to 92.51% and 97.62 %,
respectively, and a similar trend can be seen for M2. At -20
dB, the performance for M1 and M2 drops drastically, as also
can be seen from the figure.

TABLE III: Performance of two modules for Atrial Fibrillation
classification

Models A N
Precision Recall Accuracy Precision Recall Accuracy

Module 1(M1) 99.50 99.50 99.0 99.00 99.50 99.50

Module 2(M2) 97.50 96.50 97.50 97.50 98.50 98.00
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Fig. 7: Classification Performance of M1 and M2 with differ-
ent AWGN added to ECG signal

V. COMPARISON OF RESULTS

A. Comparison of Denoising Performance

The experimental results have found that the proposed
ACDAE model performed fairly well within the range of -
15 dB to 20 dB. The performance is tested using Eq. 10,
Eq. 11 and Eq. 12, with RMSE being used to quantify the
variance between the ACDAE model output and the original
signal. PRD calculates the total distortion in the denoised

signal, and SNRimp calculates the improvement in SNR
between the denoised and input signal. A comprehensive
review paper [31] is referred to for comparing the performance
of the proposed model. Our model is solely compared to
the best performance model reported in [31] and shown in
Table IV. Additionally, our model performance on the record
103 is compared to a recent study [32]. The proposed work
outperformed nearly all the work in the review paper, and
some of the tests used a different database or different noises,
which are outside of the focus of this paper. However, a
recent work [16], in which the authors developed a two-stage
denoising technique, is noteworthy since, after filtering ECG
signals, they employed a morphology reconstruction network
with five convolutional layers, making the model bulky and
computationally expensive. The proposed strategy may assist
in minimizing the size of the model while maintaining the
same performance as proven in this work by using a very
shallow model attention module with only one convolutional
layer.
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TABLE IV: Comparison of ACDAE performance with different studies on BIHA Databases in presence of AWGN

Database -5dB 0dB 5dB

SNRimp RMSE PRD(%) SNRimp RMSE PRD(%) SNRimp RMSE PRD(%)

Record 103-BIHA

Proposed ACDAE 23.73 0.0433 21.1 19.07 0.0235 11 13.08 0.0092 6.90
Successive local Filtering [32] 12 NR NR 11.7 NR NR 10.6 NR NR
IHP-ST EMD [33] 7.84 NR 72.11 6.14 NR 49.32 5.89 NR 28.54
Record Average of all records

Proposed ACDAE 19.57 0.012 23.72 16.63 0.0332 14.1 14.10 0.0231 9.8
New MP-EKF [34] 15.00 NR 32.00 11.10 NR 28.00 8.00 NR 22.00

B. Comparison of Classification Performance
The performance of the proposed model achieved better

results against many top-cited works. Our study looked at
two classification approaches M1, which uses the attention
mechanism (ECA layer) just before the fully connected (FC)
layer for classification, and M2, which uses the most com-
monly used GAP layer before the FC layer, with the results
indicating that the ECA layer helps to reduce false positives
(FP). M1 receives a 1.75 % boost in precision, as well as
a 2 % improvement in recall and 1.75 % improvement in
accuracy. This work also utilized employed Grad-CAM [35],
an explainable artificial intelligence technique to compare the
two classification modules. This will help us to look at how
the attention module is working, and we discovered that the
ECA module significantly increased attention, as shown in
Fig 10, the top heatmap shows M1 Grad-CAM, and the bottom
heatmap shows M2 Grad-CAM for the same window. Here,
red is indicting the highest attention and blue means least
attention. In M1, we can observe that more attention is paid
to the third QRS peak, and attention is increased at the first
peak, and also it got slightly improved for the second peak.
Therefore, we can confidently conclude that the proposed ECA
module will help in classifying and denoising tasks in a neural
network.

We also compared our findings to the top referenced recent
papers using AFDB, which are listed in Table V. The authors
of [36] reported 97.1 % precision and 97 % recall using sta-
tionary wavelet transform (SWT), feature extraction approach,
and support vector machine (SVM) to classify AF. The authors
of [37] transformed the ECG signal into a 2D image using
SWT and employed a three-layer 2D-convolutional layer to
classify AF with an accuracy of 98.63 %. The authors of [38]
employed a combination of CNN and LSTM with focal loss
to achieve 99.29 % precision, whereas [39] another work that
also uses a combination of CNN and LSTM layer got 97.80
% of precision. With all of the research listed, our proposed
model M1 achieves better results, demonstrating its resilience.

VI. CONCLUSION AND FUTURE WORK

The proposed attention-based convolutional denoising au-
toencoder effectively denoises the low SNR ECG signal. It out-
performed the atrial fibrillation classification results compared

Fig. 10: Grad-CAM Heatmap plot for a AF window

TABLE V: Comparison of the performances of AF detec-
tion algorithms based on their viability on MIT-BIH AFDB
database.

Algorithm Precision Recall Accuracy
Wavelet Transform with SVM [36] 97.10 97.00 -

SWT+ 2D CNN [37] 97.87 98.79 98.63

CNN + LSTM [39] 97.80 98.98 97.80

CNN + LSTM [38] 99.29 97.87 -

Proposed Model 99.25 99.50 99.25

to the most cited recent works. The study is comprehensively
evaluated using four publicly available databases. The study
uses two classification modules to test the effectiveness of
an efficient channel attention module that efficiently update
the features retrieved via cross-channel interaction, allowing
the network to pay more attention to the features of relevant
information between the channels. The model with the ECA
module is found better compared to State-of-the-art results.
This study uses NST database noises and AWGN; however,
real-time noise, particularly motion artifacts, may be different.
As a result, the recommended strategy may not yield the same
outcomes in such situations. In the future, we will refine our
algorithm by running it through a slew of real-world training
scenarios.
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