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Far-Field Radar Cross-Section Determination
from Near-Field 3-D Synthetic Aperture Imaging

with Arbitrary Antenna-Scanning Surfaces
Takuma Watanabe and Hiroyoshi Yamada, Member, IEEE

Abstract—In this study, we propose a generalized algorithm for
far-field radar cross-section determination by using 3-D synthetic
aperture imaging with arbitrary antenna-scanning surfaces. This
method belongs to a class of techniques called image-based
near-field-to-far-field transformation. The previous image-based
approaches have been formulated based on a specific antenna-
scanning trajectory or surface, such as a line, plane, circle,
cylinder, and sphere; majority of these approaches consider 2-
D radar images to determine the azimuth radar cross-section.
We generalize the conventional image-based technique to ac-
commodate an arbitrary antenna-scanning surface and consider
a 3-D radar image for radar cross-section prediction in both
the azimuth and zenith directions. We validate the proposed
algorithm by performing numerical simulations and anechoic
chamber measurements.

Index Terms—Near-field-to-far-field transformation, radar
cross-section, synthetic aperture radar, image reconstruction

I. INTRODUCTION

RADAR cross-section (RCS) is an essential quantity in
characterizing a target or an object to be measured using

radar systems. Because RCS is defined in the far-field distance,
which is proportional to the electrical size of the target under
test, direct RCS measurements of an electrically large target
require a considerably long distance between the target and the
radar antenna. However, the spatial requirement and the cost
of the measurement facility for the direct RCS measurement
of an electrically large target are often unacceptable, and an
alternative method must be developed to measure or predict
the RCS in a shorter antenna distance.

To achieve this, various signal processing algorithms have
been proposed to convert the scattered wave measured in the
near-field into the far-field data, and these techniques are
known as the near-field-to-far-field transformation (NFFFT).
These well-known approaches are as follows: the physical-
optics-approximation-based method [1], plane-wave synthesis
[2]–[4], and image-based method [5]–[15]. The image-based
method is used in this research. As mentioned in [9]–[13],
one of the challenges in the image-based method is the
measurement of a strongly asymmetric target under a shorter
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antenna separation from the target. The accuracy of RCS
prediction is degraded if no correction is taken into account
for this condition in the imaging process. In [9], the correction
factor was introduced in 2-D image reconstruction with a
circular scanning trajectory around the target such that the
integral transformation in radar imaging is self-consistent for
every electrically small scatterer. In [10]–[13], this correction
factor was extended to cylindrical scanning geometries, where
[12] and [13] considered a 3-D imaging problem to obtain the
RCS in the zenith or elevation direction.

In this study, we propose a generalization of the aforemen-
tioned image-based NFFFT algorithms with a correction fac-
tor. We consider an arbitrary antenna-scanning surface for the
near-field measurement, including a canonical surface, such
as a plane, cylinder, and sphere, and any other numerically
described surfaces for which an analytical expression may be
unavailable. We derive a general expression for the correction
factor that can be used for an arbitrary scanning surface and
the specific correction factors for the planar, cylindrical, and
spherical scanning surfaces as special cases. Furthermore, we
formulate a numerical computation scheme for the correction
factor, and it enables the use of a numerically described
scanning surface. The derivation of this generalized correction
factor is a major novelty and contribution of this study.

As we consider 2-D scanning surfaces in the 3-D spatial
domain, the 3-D radar image is utilized instead of the 2-
D image to derive the far-field RCS. Image-based methods
using circular scanning assume that the height of the target is
sufficiently small such that the far-field criterion is satisfied
with respect to the height dimension. By generating a 3-
D radar image with a 2-D scanning geometry, such as a
cylindrical or spherical surface, we can remove this restriction
[10]–[13]. Moreover, the NFFFT based on the 3-D image
can produce the RCS pattern in both the azimuth and zenith
(or elevation) directions [12], [13], and the location of the
scattering source can be determined in 3-D spatial domain.

The remainder of this paper is organized as follows. In
Section II, we present the formulation of the proposed image-
based NFFFT algorithm. Section III details the numerical
simulation of the proposed NFFFT algorithm, using a simple
model consisting of point scatterers. A spherical scanning
surface is used for the demonstration. Section IV presents the
experimental validation performed in an anechoic chamber. In
this experiment, we apply cylindrical antenna scanning and
employ a metallic aircraft model as the test target. Finally,
Section V summarizes the study presented in this paper.
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Fig. 1. System model of the synthetic aperture imaging with an arbitrary
antenna-scanning surface.

II. PROBLEM FORMULATION

In this section, we discuss the formulation of the proposed
NFFFT algorithm. We considered a monostatic scattering
experiment in which the transmitting and receiving antennas
were scanned over an arbitrary surface around the target
under investigation. For this measurement configuration, we
derived a correction factor used in the image reconstruction
procedure, which improved the accuracy of the following RCS
computation.

A. System and Signal Model

Fig. 1 depicts the system model of the synthetic aperture
imaging with an arbitrary antenna-scanning surface. We con-
sider a measurement in the 3-D spatial domain (x, y, z), and
denote a general location in this space as r. The transmitting
and the receiving antennas are located on an arbitrary scanning
surface r0(u, v) parametrized by the variables (u, v). These
vectors r and r0(u, v) are defined as follows:

r = xx̂+ yŷ + zẑ (1a)
r0(u, v) = x0(u, v)x̂+ y0(u, v)ŷ + z0(u, v)ẑ, (1b)

where x̂, ŷ, and ẑ are the unit vectors along the x-, y-, and
z-directions, respectively. For simplicity, we assume a simply-
connected closed surface for r0(u, v), which completely en-
closes the spatial domain to be imaged. However, an open
surface and a discrete set of antenna locations can be employed
for the measurement and image reconstruction, as discussed
in Section II-C and Section II-E.

The transmitting antenna at location r0(u, v) on the scan-
ning surface emits an electromagnetic wave, and the receiving
antenna at the same location collects the scattered wave. This
measurement procedure was repeated for all desired antenna
locations. We define the angular frequency of the transmitted
wave as ω and the corresponding wavenumber as k = ω/c,
where c is the wave-propagation speed.

If we denote the reflection coefficient at location r by C(r),
which is distributed over the spatial volume V , the received
signal can be expressed as

Es(k, r0) =
k2√
4π

∫
V

P 2(k, r0, r)C(r)
e−2jk|r0−r|

|r0 − r|2
dr, (2)

where P (k, r0, r) is the directive pattern of the antenna in the
direction from r0 to r. If the target is a cloud of discrete point

scatterers located at ri, i ∈ {1, 2, . . .}, the reflection coefficient
C(r) can be defined as

C(r) =
∑
i

Ciδ(|r − ri|), (3)

where Ci represents the reflectivity of the ith point scatterer
and δ(·) is the delta function. For electrically small spheres of
radii ai (kai < 0.4), we can use the following expression for
Ci [9], [16]:

Ci = 3
√
πa3i . (4)

Substituting Eq. (3) into Eq. (2) yields the following received
signal model for the discrete scatterers:

Es(k, r0) =
k2√
4π

∑
i

P 2(k, r0, ri)Ci
e−2jk|r0−ri|

|r0 − ri|2
. (5)

The use of the discrete scatterer model in Eq. (5) to test the
proposed algorithm is described in Section III.

B. Image Reconstruction

The first step of image-based NFFFT is to reconstruct a
spatial image from the received signal. We considered an ideal
3-D spatial image ψ(r) of an electrically small scatterer (a
point scatterer) at location r1 = (x1, y1, z1). According to
Eq. (3) with i ∈ {1}, it is defined as

ψ(r) = C1δ(x− x1)δ(y − y1)δ(z − z1). (6)

Our objective was to reconstruct the 3-D spatial image ψ(r)
of Eq. (6) from the measured scattered signal Es(k, r0) of
Eq. (5) with i ∈ {1}. The general expression for the image
reconstruction is given by the following integral transformation
of the received signal Es(k, r0):

ψ(r) =

∫ ∞

0

∫
Dv

∫
Du

Es(k, r0)F (k, r0, r) du dv dk, (7)

where Dv and Du represent the domains of the integration of
u and v, respectively. The weighting function F (k, r0, r) is
referred to as the focusing factor and is given by

F (k, r0, r) = g(r0, r)
|r0 − r|2

P 2(k, r0, r)
e2jk|r0−r|. (8)

In Eq. (8), g(r0, r) is the correction factor to be determined.
Note that the conventional standard formulation of the syn-
thetic aperture imaging corresponds to g(r0, r) = 1.

C. Correction Factor

Next, we derive the correction factor g(r0, r) in Eq. (8).
The derivation is similar to that discussed in [9], [12], [13],
except that the problem is generalized to 3-D imaging with
an arbitrary scanning surface. The correction factor should be
appropriately selected so that the integral transformation of
Eq. (7) is self-consistent for every electrically small scatterer;
that is, Eq. (7) should be reduced to Eq. (6) corresponding to
an ideal image.

According to Eq. (5) with i ∈ {1}, we consider the scattered
wave produced by a point scatterer located at r1 as

Es(k, r0) = P 2(k, r0, r1)
k2C1√
4π

e−2jk|r0−r1|

|r0 − r1|2
. (9)
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Antenna

Fig. 2. Local coordinate system centered at the scatter location r1.

Substituting the received signal of Eq. (9) into Eq. (7) yields
the following equation:

ψ(r) =
C1√
4π

∫ ∞

0

∫
Dv

∫
Du

g(r0, r)
P 2(k, r0, r1)

P 2(k, r0, r)

· |r0 − r|2

|r0 − r1|2
ej2ksk2 du dv dk (10a)

s =|r0 − r| − |r0 − r1|. (10b)

Here, we consider the local coordinate system (x′, y′, z′),
the basis vectors for which are same as those for the global
coordinate system (x, y, z), centered at the scatterer location
r1 as shown in Fig. 2. We define vector R from point r1 to
the antenna at r0(u, v) as

R(u, v) = r0(u, v)− r1 = Rxx̂+Ryŷ +Rzẑ, (11)

and the distance between the scatterer at r1 and the antenna
at r0(u, v) as

R(u, v) = |R(u, v)| =
√
R2

x +R2
y +R2

z. (12)

In this local coordinate system, the azimuth angle α(u, v) and
zenith angle β(u, v) of the antenna are defined as

α(u, v) = tan−1 [Ry(u, v)/Rx(u, v)] (13a)

β(u, v) = tan−1 [ρ(u, v)/Rz(u, v)] (13b)

ρ(u, v) =
√
R2

x(u, v) +R2
y(u, v). (13c)

Note that, throughout this study, the arctangent tan−1(·/·) is
assumed to be calculated within the range (−π, π], depending
on the signs of the numerator and denominator.

Using the angles α and β, we can approximate the function
s in the vicinity of the scatterer at r1 as [9], [12], [13]

s ≈ (x−x1) sin β cosα+(y−y1) sin β sinα+(z−z1) cosβ.
(14)

Substituting Eq. (14) into Eq. (10) yields the following ap-
proximation of the spatial image:

ψ(r) ≈ C1√
4π

∫ ∞

0

∫
Dv

∫
Du

g(r0, r)

· exp [j2k(x− x1) sin β cosα]

· exp [j2k(y − y1) sin β sinα]

· exp [j2k(z − z1) cosβ] k
2 du dv dk. (15)

In Eq. (15), we perform the integration by substitution
using the following spatial frequency with respect to the local
coordinate centered at point r1:

kx = 2k sinβ cosα, ky = 2k sinβ sinα, kz = 2k cosβ.
(16)

If the scanning surface is a closed surface that completely
encloses the area to be imaged, the ranges of the local azimuth
angle α and zenith angle β are [0, 2π] and [0, π], respectively.
Therefore, the range of integration with respect to spatial
frequency variables kx, ky , and kz is [−∞,∞]. A similar
reasoning can be applied to an open surface, that is, the surface
can be extended virtually to make it a closed surface and
the received signal at the extended part of the surface can
be considered zero.

Using Eq. (16) in Eq. (15), we obtain the following equa-
tion:

ψ(r) ≈ C1√
4π

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
g(r0, r) (17)

· ejkx(x−x1)+jky(y−y1)+jkz(z−z1)k2/|J | dkx dky dkz,

where J represents the Jacobian and is given by

J =
∂(kx, ky, kz)

∂(k, u, v)
=

∣∣∣∣∣∣∣
∂kx

∂k
∂kx

∂u
∂kx

∂v
∂ky

∂k
∂ky

∂u
∂ky

∂v
∂kz

∂k
∂kz

∂u
∂kz

∂v

∣∣∣∣∣∣∣
= −8k2 sinβ (αuβv − αvβu) . (18)

In Eq. (18), we have used the following definitions:

αu =
∂α

∂u
=

1

ρ2
(Rxy0u −Ryx0u) (19a)

αv =
∂α

∂v
=

1

ρ2
(Rxy0v −Ryx0v) (19b)

βu =
∂β

∂u
=

1

R2
(Rzρu − ρz0u) (19c)

βv =
∂β

∂v
=

1

R2
(Rzρv − ρz0v) (19d)

ρu =
∂ρ

∂u
=

1

ρ
(Rxx0u +Ryy0u) (19e)

ρv =
∂ρ

∂v
=

1

ρ
(Rxx0v +Ryy0v) (19f)

χξ =
∂χ(u, v)

∂ξ
, χ ∈ {x0, y0, z0}, ξ ∈ {u, v}. (19g)

By comparing the integral form of the 3-D delta function,

δ(x− x1)δ(y − y1)δ(z − z1) =
1

(2π)3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

· ejkx(x−x1)+jky(y−y1)+jkz(z−z1) dkx dky dkz, (20)

with Eq. (17), we obtain the correction factor as

g(r0, r) =
|J |

2π
5
2 k2

=
4

π
5
2

| sinβ| |αuβv − αvβu| . (21)

Using the focusing factor defined in Eq. (8) along with the
derived correction factor of Eq. (21), we can reduce the
integral transformation given in Eq. (7) to Eq. (6); thus,
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(a) (b) (c)

Fig. 3. Canonical antenna-scanning surfaces. (a) Planar surface. (b) Cylin-
drical surface. (c) Spherical surface.

the desired image reconstruction is achieved. Eq. (21) is the
general expression of the correction factor for an arbitrary
scanning surface. For a parametric surface defined by an
analytical formula, such as a plane, cylinder, or sphere, the
exact expression for the partial derivative χξ(u, v) can be
obtained, and the exact correction factors for these surfaces
can be derived, as discussed in Section II-D. However, for an
arbitrary surface, obtaining the corresponding partial derivative
χξ(u, v) in analytical form may not be possible. In such a
case, we must perform numerical computation of the partial
derivative, as described in Section II-E.

The correction factor, g(r0, r), has a geometrical interpre-
tation that it is related to the differential solid angle of the
scanning surface with respect to the local coordinate system
(x′, y′, z′). This differential solid angle represents the spatial
sampling density on the scanning surface, and the correction
factor functions as a regulator for image reconstruction such
that the spatial sampling density on the surface is uniform.
Note that the correction factor is not necessarily constant with
respect to the surface parameters (u, v) for a scanning surface
that is sufficiently far from the spatial area to be imaged.
This is because the irregularity of the spatial sampling density
cannot be resolved by simply increasing the antenna distance
from the imaged area; a simple example is the spherical
scanning discussed in the numerical simulation in Section III.

D. Exact Correction Factors for Special Surfaces

In this section, we demonstrate how the derived general
expression for the correction factor in Eq. (21) can be used to
produce the specific correction factors for a planar, cylindrical,
and spherical antenna-scanning surface. Fig. 3 depicts the
special surfaces considered in this study. In the following, we
only provide the form of the partial derivatives αξ and βξ
(ξ ∈ {u, v}) without substituting them into Eq. (21).

1) Planar Scanning: Fig. 3(a) shows a planar antenna-
scanning surface. We assume that the scanning plane is parallel
to the x- and z-axis, and fixed at y = yc. The surface is defined
by the following expression:

x0(u, v) = u, y0(u, v) = yc, z0(u, v) = v. (22)

The partial derivatives αξ and βξ are

αu = −Ry/ρ
2, αv = 0 (23a)

βu = RxRy/(R
2ρ), βv = −ρ/R2 (23b)

and the corresponding correction factor can be determined by
Eq. (21).

2) Cylindrical Scanning: Fig. 3(b) shows a cylindrical
antenna-scanning surface expressed as

x0(u, v) = ρ0 cosu, y0(u, v) = ρ0 sinu, z0(u, v) = v, (24)

where ρ0 denotes the constant radius of the cylinder. In this
case, the partial derivatives αξ and βξ are given as follows:

αu =
r0
ρ2

(Rx cosu+Ry sinu) , αv = 0 (25a)

βu =
Rzρ0
R2ρ

(Ry cosu−Rx sinu) , βv = − ρ

R2
, (25b)

and the corresponding correction factor can be computed by
substituting these partial derivatives in Eq. (21). Note that the
other relevant expressions for the cylindrical case have been
derived in [10]–[13].

3) Spherical Scanning: Fig. 3(c) depicts a spherical
antenna-scanning surface expressed as

x0(u, v) = r0 cosu sin v, y0(u, v) = r0 sinu sin v,

z0(u, v) = r0 cos v, (26)

where r0 denotes the constant radius of the sphere. In this
case, the partial derivatives αξ and βξ are given by:

αu =
r0 sin v

ρ2
(Rx cosu+Ry sinu) (27a)

αv =
r0 cos v

ρ2
(Rx sinu−Ry cosu) (27b)

βu =
Rzr0 sin v

ρR2
(Ry cosu−Rx sinu) (27c)

βv =
r0
ρR2

[
Rz cos v(Rx cosu+Ry sinu) + ρ2 sin v

]
, (27d)

and the correction factor can be calculated by applying Eq.
(21).

E. Numerical Correction Factor

In this section, we present the proposed numerical com-
putation of the correction factor, which can be applied for
antenna scanning over an arbitrary surface. We considered a
discrete subpatch of the scanning surface, as shown in Fig. 4. A
discrete point on the subpatch is denoted by (um, vn), where
um,m ∈ {1, 2, . . . ,M} and vn, n ∈ {1, 2, . . . , N} are the
discrete spatial coordinates along the surface corresponding to
u and v, respectively. For notational simplicity, we define the
indices m = 1 and n = 1 to represent the smallest spatial
variables within this subpatch and m =M and n = N as the
indices that represent the largest spatial variables within the
subpatch. The spatial variables χ(um, vn), χ ∈ {x0, y0, z0}
are abbreviated as χm,n. Using the aforementioned notation,
we describe the following two types of numerical differentia-
tion of the subpatch: the finite difference approximation and
polynomial approximation.

1) Finite Difference Approximation: A simple solution for
computing the Jacobian of Eq. (18) is to approximate the
partial derivative with respect to the spatial variable using the
finite difference. By employing the central difference, we can
numerically compute the partial differences as

χu(um, vn) ≈
χm+1,n − χm−1,n

um+1 − um−1
(28a)
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Fig. 4. Discrete subpatch of the scanning surface.

χv(um, vn) ≈
χm,n+1 − χm,n−1

vn+1 − vn−1
. (28b)

Using Eq. (28) and Eq. (19), the correction factor defined in
Eq. (21) can be approximated and computed for an arbitrary
scanning surface. Note that if the forward sample (i.e., m+1
and/or n+1) or backward sample (i.e., m−1 and/or n−1) is
unavailable, the backward or forward differences, respectively,
can be used instead of the central difference of Eq. (28).

2) Polynomial Approximation: As an alternative approach,
polynomial-based numerical differentiation can be used to
compute the correction factor. We considered the following
polynomial expansion of χm,n at coordinates (um, vn).

χm,n =

K∑
p=0

L∑
q=0

a(χ)p,qu
p
mv

q
n, (29)

where a
(χ)
p,q is the unknown expansion coefficient to be de-

termined, [·](χ) indicates that this coefficient is related to
element χ ∈ {x0, y0, z0} of the position vector r0, and K
and L represent the order of the polynomial for um and vn,
respectively.

By formulating Eq. (29) for all the sample points within
the subpatch, the simultaneous equations with the unknown
coefficients a(χ)p,q are obtained. Subsequently, by solving this
equation for a(χ)p,q , the antenna-scanning surface can be approx-
imated by polynomial equations within the subpatch, making it
possible to evaluate the partial derivative χξ. In the following
discussion, we provide a least-squares solution to Eq. (29).

Eq. (29) can be equivalently expressed by the following
vector and matrix notation:

χm,n = uT
mA(χ)vn (30a)

um =
[
1, um, u

2
m, . . . , u

p
m, . . . , u

K
m

]T
(30b)

vn =
[
1, vn, v

2
n, . . . , v

q
n, . . . , v

L
n

]T
(30c)

A(χ) =
[
a
(χ)
0 ,a

(χ)
1 , . . . ,a(χ)

p , . . . ,a
(χ)
K

]T
(30d)

a(χ)
p =

[
a
(χ)
p,0 , a

(χ)
p,1 , . . . , a

(χ)
p,q , . . . , a

(χ)
p,L

]T
, (30e)

where [·]T represents the transpose operation. Eq. (30) can be
reformulated into the following form:

χm,n = (um ⊗ vn)
T
[
a
(χ)T
0 ,a

(χ)T
1 , . . . ,a(χ)T

p , . . . ,a
(χ)T
K

]T
= wT

m,na
(χ) (31a)

a(χ) =
[
a
(χ)T
0 ,a

(χ)T
1 , . . . ,a(χ)T

p , . . . ,a
(χ)T
K

]T
, (31b)

where ⊗ denotes the Kronecker product. Considering the
representation in Eq. (31) for all sample points within the
subpatch, the following expression is obtained:

χ = Wa(χ) (32a)

χ =
[
χT

1 ,χ
T
2 , . . . ,χ

T
m, . . . ,χ

T
M

]T
(32b)

χm = [χm,1, χm,2, . . . , χm,n, . . . , χm,N ]
T (32c)

W =
[
W T

1 ,W
T
2 , . . . ,W

T
m, . . . ,W

T
M

]T
(32d)

Wm = [wm,1,wm,2, . . . ,wm,n, . . . ,wm,N ]
T
. (32e)

The least-squares solution to the coefficient vector a(χ) can
then be obtained as follows:

a(χ) =
(
W TW

)−1

W Tχ. (33)

Using the coefficient vector a(χ), we can approximate the
subpatch as

χ(u, v) ≈ u(u)A(χ)vT (v) (34a)

u(u) =
[
1, u, u2, . . . , up, . . . , uK

]T
(34b)

v(v) =
[
1, v, v2, . . . , vq, . . . , vL

]T
. (34c)

Therefore, the partial difference χξ(u, v) can be numerically
evaluated as

χu(u, v) =
∂χ(u, v)

∂u
≈ u′(u)A(χ)vT (v) (35a)

χv(u, v) =
∂χ(u, v)

∂v
≈ u(u)A(χ)v′T (v) (35b)

u′(u) =
[
0, 1, 2u, . . . , pu(p−1), . . . ,Ku(K−1)

]T
(35c)

v′(v) =
[
0, 1, 2v, . . . , qv(q−1), . . . , Lv(L−1)

]T
. (35d)

The aforementioned procedure is applied for x0, y0, and
z0 to obtain partial derivative χξ(u, v). Subsequently, the
correction factor of Eq. (21) and the focusing factor of Eq. (8)
are numerically computed. A similar procedure was repeated
for all the subpatches within the scanning surface. In the
numerical simulation presented in Section III and the experi-
mental validation presented in Section IV, we use a polynomial
approximation to compute the numerical correction factor.

F. Radar Cross-Section Computation

The final step of image-based NFFFT is to compute the
far-field RCS from the reconstructed radar image. We assume
that the image is generated using Eq. (7) with the correction
factor given by Eq. (21) and considered to be a sum of the
ideal images defined by Eq. (6). Therefore, the scattered field
at an arbitrary location r0 can be computed using Eq. (2) as
follows:

Es(k, r0) =
k2√
4π

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ψ(x, y, z)

· e
−2jk|r0−r|

|r0 − r|2
dx dy dz. (36)
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Note that we have defined P (k, r0, r) = 1. Moreover, in the
following, we assume that the location r0 = (x0, y0, z0) is the
spherical coordinate defined as follows:

x0(ϕ0, θ0) = r0 cosϕ0 sin θ0, y0(ϕ0, θ0) = r0 sinϕ0 sin θ0,

z0(ϕ0, θ0) = r0 cos θ0, (37)

where r0, ϕ0, and θ0 are the radius, the azimuth angle, and
the zenith angle, respectively.

If the observation point r0 lies in the far-field region, that
is, |r0| ≫ |r|, the distance between points r and r0 can be
approximated as

|r0 − r| ≈ r0 − r̂0 · r, (38)

where r̂0 = r0/r0. Using Eq. (38), we obtain the following
far-field approximation of the scattered field Es(k, r0):

Es(k, r0) ≈
k2e−j2kr0

r20
√
4π

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ψ(x, y, z)

· exp(jkr · r) dx dy dz

=
k2e−j2kr0

r20
√
4π

F−1
(x,y,z) [ψ(x, y, z)] , (39)

where kr(k, ϕ0, θ0) = 2kr̂0 represents the spatial frequency,
and F−1

(x,y,z)[·] is the 3-D inverse Fourier transform with
respect to the spatial variables, (x, y, z).

The far-field expression in Eq. (39) can be used to derive
the RCS defined as follows:

σ [kr(k, ϕ0, θ0)] = lim
r0→∞

4πr20

∣∣∣∣Es(k, r0)

Ei
0(k, r0)

∣∣∣∣2 , (40)

where Ei
0(k, r0) represents the incident field given by

Ei
0(k, r0) =

e−jkr0

r0
. (41)

Substituting Eq. (39) and Eq. (41) into Eq. (40), we obtain
the following representation of the RCS in terms of the 3-D
spatial image ψ(x, y, z):

σ [kr(k, ϕ0, θ0)] = k4
∣∣∣F−1

(x,y,z) [ψ(x, y, z)]
∣∣∣2 . (42)

Therefore, once the 3-D radar image is reconstructed, the
far-field RCS is obtained by computing its inverse Fourier
transform.

Note that we have assumed that the spatial image ψ(x, y, z)
is uniquely represented as the sum of the ideal image defined in
Eq. (6), independent of the measurement parameters, such as
the frequency; bandwidth; and shape and size of the scanning
surface. However, in the actual measurement, the bandwidth
is finite and the scanning surface may not completely enclose
the area to be imaged. Consequently, the available RCS is
limited within the spatial frequency (kr) domain support, as
can be seen from the simulation results with spherical scanning
in Section III and the experimental result with cylindrical
scanning in Section IV. Therefore, one should be aware of
the available spatial frequency domain support when using the
image-based NFFFT method.
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Fig. 5. Scatterer location and spherical scanning surface. (a) Scatterer
location. (b) Spherical surface.

TABLE I
SIMULATION PARAMETERS.

Center frequency 10.2GHz
Bandwidth 4GHz
Frequency step 10MHz
Antenna-scanning surface Sphere
Angular interval in azimuth u ∈ [−180°, 180°]
Angular interval in zenith v ∈ [0°, 180°]
Angular step 0.8°
Radius of the surface r0 = 1m
Number of points in a subpatch M = N = 11
Order of the polynomial K = L = 2
Scatterer location r1 = (0, 10,−10) cm

r2 = (20, 20, 0) cm
r3 = (25, 20, 10) cm

Radius of the spherical scatterer a1 = a2 = a3 = 1mm
Voxel spacing of the spatial image 4mm

III. NUMERICAL SIMULATION

In this section, we demonstrate the proposed image-based
NFFFT using the discrete scatterer model defined in Eq. (5).
A spherical scanning surface was used in the simulation.

A. Overview of the Simulation

Fig. 5(a) and (b) show the location of the point scatterers
and the spherical scanning surface, respectively, and Table I
lists the simulation parameters. The three spherical scatterers
having equivalent radius of 1mm (kai < 0.3) were placed at
the different 3-D spatial locations. To generate the received
signal for these scatterers, we used Eq. (4) and Eq. (5),
with i ∈ {1, 2, 3}, and ri defined in Table I. The correction
factor was computed using the polynomial-based numerical
differentiation described in Section II-E2. We tested both the
exact correction factor and numerical correction factor for the
spherical scanning surface and confirmed that similar results
were obtained. The frequency parameters in Table I were
selected to ensure consistency with the experimental validation
given in Section IV. The antenna pattern was assumed to be
isotropic, such that P (k, r0, r) = 1.

We compared the reconstructed RCS with the theoretical
RCS of a cloud of point scatterers of reflectivity Ci, given as
follows:

σ = k4

∣∣∣∣∣∑
i

Ci exp (jkxxi + jkyy + jkzz)

∣∣∣∣∣
2

. (43)
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The spatial frequencies (kx, ky, kz) were determined using Eq.
(16) with α→ ϕ0 and β → θ0. To quantify the prediction error
of the NFFFT algorithm, we defined the average difference
between the theoretical far-field RCS and predicted RCS on a
decibel scale as follows:

σ̂dB
ζ =

1

Nζ

Nζ∑
n=1

∣∣∣σdB
ζ[n] − σ̃dB

ζ[n]

∣∣∣ , (44)

where σdB
ζ[n] and σ̃dB

ζ[n] (ζ ∈ {ϕ0, θ0}) are the nth samples
of the true and predicted RCS patterns in the decibel scale,
respectively, in the azimuth (ζ = ϕ0) or zenith (ζ = θ0)
direction; Nζ is the number of samples in each direction.

B. Simulation Results and Discussion

Figs. 6 and 7 show the simulation results with and without
(g(r0, r) = 1) the correction factor, respectively. In these
figures, (a), (b), (c), and (d) depict the reconstructed 3-
D spatial image, spatial-frequency spectrum of the spatial
image, azimuth RCS pattern at the zenith angle, θ0 = 90°,
and zenith RCS pattern at the azimuth angle, ϕ0 = 0°,
respectively. The spatial images and spatial frequency spectra
were normalized using the maximum value of each image.
The spatial frequency spectra within the (kx, ky)-plane and
(kx, kz)-plane are shown in these figures. All the RCS patterns
were computed for 10GHz. The solid lines represent the far-
field RCS reconstructed using the NFFFT algorithm, and the
dashed lines represent the theoretical RCS determined from
Eq. (43).

Note that in this spherical scanning case, we can obtain the
RCS at an arbitrary combination of the azimuth and zenith
angle because the scanning surface completely enclosed the
spatial area in which the scatterers were located. However,
because the frequency bandwidth is finite, RCS is only avail-
able within this bandwidth, as mentioned in Section II-F. This
corresponds to the spatial frequency spectra shown in Figs.
6(b) and 7(b) having annulus-like supports in (kx, ky)- and
(kx, kz)-plane, where the widths of the circular bands are
dictated by the frequency bandwidth.

As shown in Fig. 6(a), without using the correction factor,
the undesired artifact appeared around the scatterers. The
spatial image of a point target is expected to be symmetric
around its location; however, the reconstructed image was
blurred and asymmetric owing to the artifact. We can see from
Fig. 6(b) that the spatial frequency spectrum is concentrated
around zenith angles θ0 = 0° and θ0 = 180° in (kx, kz)-plane.
This is because although angular sample spacing is uniform
in both the azimuth and zenith directions, the spatial density
of the sampling points on the spherical surface becomes
higher around these zenith angles. Owing to this effect, a
significant error was observed in the reconstructed zenith RCS,
as shown in Fig. 6(d). As discussed in Section II-C, this error
cannot be circumvented by simply making the radius of the
scanning sphere large; the introduction of the correction factor
is essential to compensate for the irregularity of the spatial
sampling density on the sphere.

As shown in Fig. 7(a), an obvious improvement was ob-
tained by using the proposed correction factor; each point
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Fig. 6. NFFFT with a spherical scanning surface (conventional, simulation).
(a) Spatial image. (b) Spatial frequency spectrum. (c) Azimuth RCS. (d) Zenith
RCS.

(a) (b)

0 45 90 135 180
Azimuth [deg]

-90

-80

-70

-60

-50

R
C

S
 [

dB
sm

]

NFFFT
Theory

(c)

0 45 90 135 180
Zenith [deg]

-90

-80

-70

-60

-50

R
C

S
 [

dB
sm

]

NFFFT
Theory

(d)

Fig. 7. NFFFT with a spherical scanning surface (improved, simulation). (a)
Spatial image. (b) Spatial frequency spectrum. (c) Azimuth RCS. (d) Zenith
RCS.

target showed asymmetric response with respect to the cor-
responding scatterer location. Consequently, the spatial fre-
quency spectrum shown in Fig. 7(b) is uniformly distributed
over all the azimuth and zenith angles. The resultant RCS
values showed excellent agreement with the theoretical values,
as shown in Fig. 7(c) and (d). This improvement can be
confirmed form the averaged RCS prediction error defined as
Eq. (44). Comparing the NFFFT results with and without the
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Fig. 8. Aircraft model used in the experiment. (a) Top view. (b) Perspective
view. (c) Side view. (d) Front view.
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Fig. 9. Geometry of the experiment. The target is intentionally off-centered
to demonstrate the effectiveness of the proposed correction factor.

correction factor, the prediction error was reduced from 2.9 dB
to 0.1 dB for the azimuth RCS and from 8.8 dB to 0.2 dB for
the zenith RCS.

IV. EXPERIMENTAL VALIDATION

In this section, we discuss the experimental validation of
the proposed algorithm. The experiment based on the cylin-
drical scanning was conducted in an anechoic chamber, and a
metallic aircraft model was used for the measurement.

A. Overview of the Experiment

Fig. 8 illustrates the geometry of the aircraft model used
in this experiment, where (a), (b), (c), and (d) show the top,
perspective, side, and front view, respectively. Figs. 9 and 10
show the setup and photographs of the measurement system,
respectively. The target was fixed on a styrene foam support,
and the support was placed on a turntable for azimuth rotation.
As shown in Fig. 9, the target was intentionally off-centered
to demonstrate the effectiveness of the proposed correction
factor, where the center of the model was (−15, 15, 0) cm,
and the front of the aircraft was directed toward the x-axis.
Thus, the target was strongly asymmetric about the origin of
the coordinate system.

Four standard gain horn antennas (Narda Model 640) were
used as transmitting and receiving antennas. The two horn
antennas were horizontally polarized, whereas the other anten-
nas were vertically polarized. These antennas were mounted

Fig. 10. Photographs of the experimental setup. The target was placed on
a styrene foam support. Four horn antennas were used for transmission and
reception.

on a vertical scanner that could move the antennas in the
vertical (height) direction. We performed cylindrical antenna
scanning using a turntable and vertical scanner. A vector
network analyzer (VNA, Keysight N5242A) was used as the
transmitter and receiver. Under this experimental configura-
tion, two co-polarized channels, namely, the HH- (horizontally
polarized transmission and reception) and VV-channels (verti-
cally polarized transmission and reception), were measured.
We assumed that the monostatic approximation was valid,
where the monostatic antenna was assumed to be located at
the center of the antenna separation.

Table II lists the experimental parameters. The frequency
parameters similar to the previous numerical simulation were
employed for this experiment. To compensate for the effect of
the antenna pattern, the theoretical pattern of the horn antenna
was computed using an analytical expression given in [17].
Because the cylindrical scanning surface was at the far-field
distance with respect to the vertical size of the aircraft model,
the cylindrical scanning was not essential to measure the
azimuth RCS. Therefore, the cylindrical scanning was just for
obtaining the zenith RCS and for demonstrating the concept of
RCS determination from the 3-D synthetic aperture imaging.

Because we were unable to measure the far-field RCS
directly owing to the spatial limitation of the anechoic chamber
used for this measurement, the far-field RCS of the target
was computed using a numerical electromagnetic solver using
the multilevel fast multipole method (MLFMM). We assumed
the MLFMM results to be the true far-field RCS of the
experimental model to evaluate the average RCS-prediction
error defined in Eq. (44).

B. Experimental Results and Discussion

Fig. 11(a) and (b) show the HH-polarized 3-D spatial
image generated using the proposed correction factor and the
corresponding spatial frequency spectrum, respectively. The
spatial image and spatial frequency spectrum were normalized
by the maximum value of each image. As shown in Fig.
11(a), backscattering from the aircraft model was clearly
imaged. In Fig. 11(b), the spatial frequency spectra within the
(kx, ky)-plane and the (kx, kz)-plane are displayed. Although
the spatial frequency spectrum shown in Fig. 11(b) has an
annulus-like shape in (kx, ky)-plane, the spectrum appears
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TABLE II
EXPERIMENTAL PARAMETERS.

Center frequency 10.2GHz
Bandwidth 4GHz
Frequency step 10MHz
Polarization HH, VV
Antenna-scanning surface Cylinder
Angular interval in azimuth u ∈ [−180°, 180°]
Angular step 0.8°
Height (z-direction) interval v ∈ [−25, 25] cm
Height (z-direction) step 1 cm
Radius of the surface ρ0 = 1m
Number of points in a subpatch M = N = 11
Order of the polynomial K = L = 2
Target Aircraft model
Voxel spacing of the spatial image 4mm

(a) (b)

Fig. 11. Spatial image and spatial frequency spectrum (experiment, HH-
polarization, improved). (a) Spatial image. (b) Spatial frequency spectrum.

to be limited within a certain range in kz-domain. This is
because unlike the spherical case in Section III, a cylinder
with a finite length cannot completely enclose the target under
test. Therefore, RCS is only available within the range of the
zenith angle dictated by the kz-domain support, as discussed
in Section II-F.

Figs. 12 and 13 show the azimuth RCS for HH and VV
polarization, respectively, where (a) and (b) represent the
conventional and improved NFFFT, respectively. All of these
RCS patterns were computed for 10GHz. The solid lines
represent the far-field RCS reconstructed using the NFFFT
algorithm, and the dashed lines represent the far-field RCS
computed by the MLFMM solver. Thus, the improvement
of the prediction accuracy of the azimuth RCS by using the
proposed correction factor for both polarization channels can
be confirmed. Comparing Figs. 12 and 13, it can be seen that
the HH-polarized channel shows much weaker backscattering
around the azimuth angle ϕ0 = 0° in contrast to the strong
backscattering around that angle in the VV-polarized channel.
This can be attributed to the geometry of the aircraft model,
where a horizontal aperture (air intake) was present in front
of the model (see Fig. 10).

Figs. 14 and 15 show similar figures for zenith RCS for
HH and VV polarization, respectively. Both Figs. 14 and 15
show the improvement in prediction accuracy of the zenith
RCS by using the proposed correction factor although the
difference between the conventional and the improved NFFFT
is relatively unclear compared to those in the azimuth RCS.

Fig. 16(a) and (b) show the averaged prediction error for
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Fig. 12. Azimuth RCS of the aircraft model (experiment, HH-polarization).
(a) Conventional. (b) Improved.
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Fig. 13. Azimuth RCS of the aircraft model (experiment, VV-polarization).
(a) Conventional. (b) Improved.

the azimuth and zenith RCS. We only considered the zenith
angle within the interval θ0 ∈ [80°, 100°] ∪ [−100°,−80°]
for the computation of Eq. (44) because the data outside
these intervals were unavailable owing to the finite cylinder
length. From Fig. 16, both the azimuth and the zenith RCS
demonstrate the improvement by using the proposed correction
factor for both the HH- and VV-polarization channels. From
these results, we experimentally confirmed the effectiveness
of the proposed correction factor.

V. CONCLUSION

In this study, we proposed an image-based NFFFT algorithm
for far-field RCS determination that can accommodate an
arbitrary antenna-scanning surface. We derived a generalized
expression of the correction factor and focusing factor for
image reconstruction. We proposed the use of numerical
differentiation to compute the correction factor for an arbitrary
scanning surface. The numerical simulation and experimental
results confirmed the validity of the proposed algorithm. In
future work, an extension of the proposed approach to bistatic
cases and efficient numerical implementation of the imaging
algorithm should be considered.
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