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Abstract

Unconventional epitopes presented by HLA class I complexes are emerging targets

for T cell targeted immunotherapies. Their identification by mass spectrometry (MS)

required development of novel methods to cope with the large number of theoreti-

cal candidates. Methods to identify post-translationally spliced peptides led to a broad

range of outcomes.We here investigated the impact of three common database search

engines – that is, Mascot, Mascot+Percolator, and PEAKS DB – as final identifica-

tion step, as well as the features of target database on the ability to correctly iden-

tify non-spliced and cis-spliced peptides. We used ground truth datasets measured

by MS to benchmark methods’ performance and extended the analysis to HLA class

I immunopeptidomes. PEAKSDB showed better precision and recall of cis-spliced pep-

tides and larger number of identified peptides in HLA class I immunopeptidomes than

the other search engine strategies. The better performance of PEAKS DB appears to

result from better discrimination between target and decoy hits and hence a more

robust FDR estimation, and seems independent to peptide and spectrum features here

investigated.
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1 INTRODUCTION

CD8+ Tcells patrol cells by scanning the sequenceof peptides bound to

Human LeucocyteAntigen class I (HLA-I) complexes, which are present

in thousands of different variants in the human population. The com-

bination of binding affinity of peptides and HLA-I variants as well as

the avidity of T cell receptors αβ (TCRαβ) for peptide sequence is a

highly efficient systemto scanpeptide-HLA-I complexes (Barbosaet al.,
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2021). Various techniques have been developed to identify peptides

bound to HLA-I complexes, that is, HLA-I immunopeptidomes. A com-

monly used strategy is pulling-down and eluting peptides from HLA-

I complexes, followed by measuring them through mass spectrome-

try (MS) and by analysing the data by applying exhaustive database

search engines (Purcell et al., 2019). Despite the remarkable tech-

nical and bioinformatics progress in the field in the last decade, the

choice of how eluting, measuring and analysing immunopeptidomes
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can strongly impinge upon the identified peptide pools. For instance,

it has been shown that elution strategies affect peptide yields and cre-

ate a bias in detected sequence repertoire (Nicastri et al., 2020). It is

also generally accepted, and confirmed by various groups (Bichmann

et al., 2019; Parker et al., 2021), that the number and features of iden-

tified peptides in canonical HLA-I immunopeptidomes strongly vary

depending on the search engines that are used in the analysis of MS

measurements.

HLA-I immunopeptidomes are mainly produced by proteasomes

through the degradation of a broad range of proteins. Human cells

can express various proteasome isoforms, which vary in conforma-

tion, catalytic dynamics, preference for substrates and preferential

processing of peptide sequences. However, all proteasome isoforms

can cleave after each known amino acid (Dianzani et al., 2019; Fabre

et al., 2015; Guillaume et al., 2012; Kuckelkorn et al., 2019; Liepe et al.,

2015; Mishto & Liepe, 2017; Mishto et al., 2014; Specht et al., 2020;

Toste Rêgo & da Fonseca, 2019). These proteases can cut proteins and

release ‘non-spliced’ peptides, as well as ligate non-contiguous peptide

fragments, thereby producing spliced peptides. Proteasome-catalysed

peptide splicing (PCPS) can occur by combining non-contiguous pep-

tide fragments of the same molecule – i.e., cis-PCPS – or of two

distinct proteins - i.e., trans-PCPS (Liepe et al., 2018) (Figure 1A).

Proteasome-generated cis-spliced epitopeswere identified for the first

time in 2004 (Hanada et al., 2004; Vigneron et al., 2004). They can tar-

get a CD8+ T cell response in vivo against bacterial antigens, which

would be neglected by these T cells in the absence of cis-spliced

epitopes (Platteel et al., 2017). They can also activate CD8+ T cells

through cross-recognition of pathogen-derived non-spliced epitopes

(Paes et al., 2019; Platteel et al., 2016). Cis-spliced epitopes derived

from melanoma-associated antigens are recognised by CD8+ T cells

in peripheral blood of melanoma patients (Ebstein et al., 2016; Faridi

et al., 2020), and can be successfully targeted by adoptive T cell ther-

apy in melanoma patients (Dalet et al., 2011; Robbins et al., 1994). Cis-

spliced epitopes could carry tumour-specific mutations (Mishto et al.,

2019, 2021) and seem to drive the immune response triggered by syn-

thetic peptide vaccination in a mouse model of glioblastoma (Fidanza

et al., 2021). Although trans-spliced peptides are produced in vitro

by proteasomes (Berkers et al., 2015; Dalet et al., 2010; Liepe et al.,

2010; Mishto et al., 2012; Specht et al., 2020) and detected in HLA-I

immunopeptidomes (Faridi et al., 2018), their immunological relevance

still need to be confirmed and thus theywere not included in this study.

In contrast, trans-spliced peptides presented by HLA-II molecules and

produced by other proteases are immunologically relevant in type 1

diabetes (Arribas-Layton et al., 2020; Delong et al., 2016; Reed et al.,

2021;Wang et al., 2019).

Despite this seminal evidence of the immunological relevance of

spliced peptides in HLA-I immunopeptidomes, their frequency is still

a controversial issue. After the publication of the first method for

the identification of cis-spliced peptides in HLA-I immunopeptidomes

(Liepe et al., 2016), other groups published alternative methods and

obtained contrasting results about their frequency (Admon, 2021;

Faridi et al., 2021;Mishto, 2020; Purcell, 2021). Two recent studies re-

analysed the list of cis-spliced peptides, which we previously identified

in HLA-I spliced immunopeptidomes using Spliced Peptide Identifier

(SPI) and SPI-delta methods (Liepe et al., 2016, 2019), by using PEAKS

X software. They identified many peptide-spectrum matches (PSMs)

that, according to their analysis (Erhard et al., 2020; Lichti, 2021), have

been wrongly assigned to cis-spliced peptides in the original papers.

Since both SPI and SPI-delta methods used Mascot as the database

search engine (Liepe et al., 2016, 2019), Erhard and colleagues (Erhard

et al., 2020) hypothesised that this phenomenon could in part be due to

difference inPSMassignments byMascot andPEAKSDB. Suchhypoth-

esiswas shown tobe correct forHLA-I non-spliced immunopeptidomes

(Bichmann et al., 2019).

To verify whether this hypothesis was correct also for HLA-I cis-

spliced immunopeptidomes, we here implemented two methods that,

despite using a similar pipeline, reported a discordant range of cis-

spliced peptide frequencies in HLA-I immunopeptidomes, that is,

Bassani–Sternberg’s method (MBS) (Mylonas et al., 2018) and Pur-

cell’s method (AP) (Faridi et al., 2018, 2019), and applied them using

either Mascot or PEAKS DB as final search engine. In the case of

Mascot, we also applied the Percolator post-processing tool (i.e.,

Mascot+Percolator). Percolator is a semi-supervisedmachine-learning

algorithm used to increase the number of peptides identified at a given

FDR threshold and it is often used as post-processing step of Mascot

(The et al., 2016).

We tested Mascot, Mascot+Percolator and PEAKS DB on ground

truth HLA-I immunopeptidome datasets to compute search engine

performance and to understand how performance is associated to

the features of target databases, as well as on experimental HLA-

I immunopeptidome datasets to measure non-spliced and cis-spliced

peptide yield.

2 MATERIALS AND METHODS

2.1 Cell lines

All cell lines weremycoplasma-negative and cultured in 5%CO2 atmo-

sphere at 37◦C. K562-B*07:02 and K562-A*02:01 cell clones express

single HLA-I alleles. They derive from the leukaemia K562 cell line

(ATCCCCL-243), which does not express endogenous HLA-I and -II

molecules. The K562-A*02:01 clone was generated as described else-

where (Eichmann et al., 2014). Briefly, the HLA-I allele was cloned

and inserted into a pcDNA3.1 vector, transfected into K562 cell clone,

which was then geneticin-selected and periodically single-cell sorted.

The K562-B*07:02 clone was generated by Lorenz et al. (2017) as

previously described, by linking cDNAgene sequences ofHLA-B*07:02

allele to GFP via an internal ribosomal entry site. This gene cassette

was inserted into the γ-retroviral vector MP71 for the generation of

viral particles. Sorting of transduced K562 clones was performed upon

surface HLA-I expression usingmagnetic bead separation.

K562 clones were grown in RPMImediumwith 10% FCS, 2mMglu-

tamine and PenStrep. TheHLA-A andHLA-B allele data fromRobinson

et al. (2020)was appended to the transcriptome to control and validate

the K562 cell clones.
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F IGURE 1 Proteasome-generated spliced peptides and analysis workflow. (A) Proteasome-generated spliced peptides can be formed by: i) cis
PCPS, when the two splice-reactants, that is, the non-contiguous peptide fragments ligated by proteasomes, derive from the same polypeptide
molecule; the ligation can occur in normal order, that is, following the orientation fromN- to C-terminus of the parental protein (normal cis-PCPS),
or in the reverse order (reverse cis-PCPS); ii) trans-PCPS, when the two splice-reactants originate from two distinct protein molecules or two
distinct proteins. (B) Overview of the workflow ofMBS and APmethods. (C) Overview of the workflow used to test the performance ofMascot,
Mascot+Percolator and PEAKSDB as final search engines

The 721.221 HLA-I deficient cell line are Epstein–Barr virus (EBV)

transformed B cells, which do not express HLA-I complexes. They have

been transfected with an HLA-A*02:01 expressing vector by Abelin

et al. (2017), and they are here referred to as 721.221-A*02:01.

2.2 RNA sequencing

RNA was extracted from K562, K562-B*07:02 and K562-A*02:01

cell line pellets (n = 1 per cell line clone) read by using the Qiagen

‘RNeasy Mini Kit’ and quantified using NanoDrop spectrophotometry.

Extracted total RNA was sequenced and processed by GENEWIZ Inc.

After polyA enrichment, mRNA was fragmented, and cDNA was pro-

duced using NEBNext Ultra RNA Library Preparation Kit with random

priming. Sequencing was performed using HiSeq 2 × 150 PE HO with

the depth of 20–25 million reads per sample. Reads were trimmed

using Trim Galore with stringency parameter of 5. Quantification

was performed using Salmon (v1.1.0) (Patro et al., 2017) with decoy-

augmented GENCODE v33 human reference transcriptome (Frankish

et al., 2019). Salmon selective alignment mode was shown to improve

the transcript quantification accuracy and can be used together

with sample-specific GC-content, position and sequence bias models

(Srivastava et al., 2019). In order to further enhance the sensitivity,

particularly in short transcripts (Wu et al., 2018) the k-mer size was

reduced to 23 bp and 1,000Gibbs sampleswere drawn from the poste-

rior distribution of transcript abundances. To take advantage of Gibbs
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sampling and to correct for gene-length bias, the tximport R package

(Soneson et al., 2015) was used to import transcript quantification

results and to scale the resulting transcript per million values using

median transcript length amongst gene isoforms, and then the library

size (dtuScaledTPM). Only the transcripts that have received more

than 10 estimated counts in at least one sample were considered to be

expressed and their GENCODE protein-coding transcript translation

sequences were selected for a common database forMS search.

2.3 Mass spectrometry

MS data generated for this project were collected using Orbitrap

Fusion Lumos mass spectrometer coupled to an Ultimate 3000 RSLC

nano pump (both from ThermoFisherScientific). Briefly, peptides were

loaded and separated by a nanoflow HPLC (RSLC Ultimate 3000)

on an Easy-spray C18 nano column (50 cm length, 75 mm inter-

nal diameter; ThermoFisherScientific), coupled in-line to a nano-

electrospray ionisation Orbitrap Fusion Lumos mass spectrometer

(ThermoFisherScientific). Peptides were eluted with a linear gradient

of 5%–45% buffer B (80% ACN, 0.1% formic acid) at a flow rate of

300 nl/min over 90 min at 50◦C, with the exception of the MS file

‘PR487_Michele_20180604_B07.raw’, which was acquired under the

same setting as above but over 60 min. The sample eluate was ionised

by electrospray ionisation operating under Xcalibur v4.1. The instru-

ment was first programmed to acquire using an Orbitrap-Ion Trap

method by defining a 3 s cycle time between a full MS scan and

MS2 fragmentation using higher energy collision induced dissociation

(HCD). We acquired one full-scan MS spectrum at a resolution of

120,000 at 200 m/z with an automatic gain control (AGC) target value

of 2 × 105 ions and a scan range of 350–1550 m/z. The MS/MS frag-

mentation was conducted using HCD collision energy (30%) with an

orbitrap resolution of 30,000 at 200m/z. TheAGC target valuewas set

up as 5× 104 with amax injection time of 120ms. A dynamic exclusion

of 30s and1–4 included charge stateswere definedwithin thismethod.

MS data previously published and derived from 721.221-A*02:01

cell line clone were generated using an Orbitrap Q-Exactive Plus mass

spectrometer, as described by Abelin et al. (2017).

MS2 fragmentation spectra were recalibrated using the ‘Spectrum

Files RC’ node in Proteome Discover. This calculates the PSM delta

between theoretical and experimental mass in ppm and generates a

mass shift curve. The optimal median value of calculated mass shift

was then applied to the whole database search using either Mascot

2.7.01 or PEAKS X with a mass tolerance of either 5 ppm on precursor

masses and 0.02 Da for fragment ions for the Orbitrap Fusion Lumos

mass spectrometer, or 6 ppmonprecursormasses and20ppm (0.03Da

whenusingPEAKS) forQ-ExactiveHybrid–Quadrupole-Orbitrapmass

spectrometer. In the analysis withMascot+Percolator, we used Perco-

lator 3.0.5. The feature set for Percolator was more limited for these

datasets than for a standard tryptic digest due to the non-specific

cleavage of proteasomes relative to trypsin and the fact that protein

accession features were not applicable for de novo discoveries. The

features used for Percolator were Mascot Ion Score, the percentage

differences between the Ion Score of the PSM and the second and

fifth highest ion scores for the same scan, the difference between the

theoretical and experimental precursor mass and its absolute value,

the length of the peptide, one hot encoding of the precursor charge,

and one hot encoding of the post translational modifications which

occurred inmore than 10% of samples.

2.3.1 Method workflows for the identification of
cis-spliced and non-spliced peptides (Figure 1B)

We reproduced the workflow of methods published by Faridi et al.

(2018) (AP method) and Mylonas et al. (2018) (MBS method). Both

methods consist of two main steps: (i) generation of a target database

that includes potential spliced peptide targets and (ii) identification of

spliced peptides through application of a database search engine using

a target database. AP and MBS methods apply PEAKS De novo to a

reference human proteome database, and then make use of informa-

tion gathered from de novo peptide sequencing to generate the tar-

get database. The target database is the combination of the reference

human proteome database and the spliced peptide candidates com-

puted via PEAKS De novo. AP and MBS methods generate the target

database through different strategies. In their original publications, AP

methodemployedPEAKSDBas final search engine,whileMBSmethod

employed theMaxQuant framework. Becausewe aimed to explore the

difference between Mascot, Mascot+Percolator, and PEAKS DB, for

each method we here applied either Mascot, Mascot+Percolator or

PEAKSDB as final database search engine.

The implementation of the methods here applied and deviations

from their original version, which were necessary either for technical

reasons or to provide a consistent and comparable workflow for all

methods, are the following:

AP method (Faridi et al., 2018): MS data was first searched against

a reference human proteome database using PEAKS DB. Mass spec-

tra not assigned as non-spliced peptides with 1% FDR were searched

using PEAKS De novo. For the following analysis, the top 5 de novo

candidate sequences per MS2 spectrum with an Average Local Confi-

dence (ALC) score larger than a computed cut-off were exported. The

ALC cut-off was determined based on the ALC distribution of non-

spliced peptides, which were identified both via PEAKS DB at 1% FDR

and PEAKS De novo. Among the top 5 de novo sequences within ALC

scores above the cut-off, all sequenceswere aligned to all possible non-

spliced peptides. If a potential non-spliced peptide was detected, all

respective de novo candidates were discarded from further analysis.

Otherwise, if a potential cis-spliced peptidewas detected, all remaining

respective de novo sequences were discarded, and the cis-spliced pep-

tidewith thehighestALCscorewasextracted. If nopotential cis-spliced

peptide sequence was amongst the de novo sequences, the sequence

was aligned to all possible trans-spliced peptides. Again, amongst all

possible trans-spliced peptide sequences the one with the highest ALC

score was extracted. If non, cis- and trans-spliced sequences could

not be found, the MS2 spectrum was not further considered. Finally,

per MS2 spectrum, a maximum of one spliced peptide candidate
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(either cis or trans) was extracted. All extracted spliced peptide candi-

dates were concatenated into in silico proteins, which were appended

to the reference proteome database, thereby generating a target

database. This target database was then used to re-search the MS

dataset using PEAKS DB. Identified peptides were extracted at 1%

FDR as determined by PEAKS. To note, in our implementation, we used

the PEAKS file ‘all-de-novo-candidates.csv’, which Dr. Faridi confirmed

being theactual file used inAPmethod (Faridi et al., 2018, 2020), rather

than the ‘de-novo-only peptides.csv’, which was the file reported in

Faridi et al. (2018).

MBS method (Mylonas et al., 2018): MS data were first searched

against a reference human proteome database using PEAKS DB. MS2

spectra not assigned as non-spliced peptide with PEAKS score -log10P

larger than 15 were re-searched using PEAKS De novo. The top five

de novo candidate sequences per MS2 spectrum, were exported and

aligned to all possible cis-splicedpeptideswith an intervening sequence

not longer than 25 amino acids (rather than 20 amino acids as in the

original study). A PEAKS local confidence score (LCS) of at least 80

was required for each amino acid in the peptide candidates. Remain-

ing de novo candidates that could be explained by cis-peptide splicing

were appended to the human reference proteome, thereby generat-

ing a target database. This target database was used to re-search the

MS data. Resulting peptides were filtered for 1% FDR. In their original

study, Mylonas et al. (2018) employed Andromeda in the MaxQuant

framework as their final search engine. In our study, we were not

able to robustly analyse MS data in the open mzML or mzXML for-

mats with MaxQuant. Furthermore, for the generation of the con-

structed ground truth datasets,MS1 andMS2 spectra fromvariousMS

runs were collected and merged into a single mzML file, which inter-

fered with the indexing of those files, making them uninterpretable

by MaxQuant. Therefore, MaxQuant could not be used for bench-

marking, and we decided to exchange the Andromeda search engine in

the MaxQuant framework either with the stand-alone Mascot search

engine or Mascot+Percolator (Mascot+Percolator). Both Andromeda

and Mascot search engines operate on comparable algorithms, and

analysis results were often found to be comparable in terms of preci-

sion and recall of non-spliced peptides (Bichmann et al., 2019; Paulo,

2013). The search results were filtered for 1% FDR using a reversed

decoy database, comparable to the implementations in MaxQuant.

However, when applying MBS method to the HLA-I immunopep-

tidomes,we filtered search results for 5%FDR, becauseMascot has too

low recall at 1% FDR.

2.3.2 Spliced peptide candidate alignment to
protein origin(s)

To determine if a sequence could be generated through splicing, it’s

possible splice reactants are aligned to all proteins in the reference

proteome. A given peptide sequence is first split into two splice reac-

tants, whereby we iterate over all possible splice sites in the candi-

date sequence. For a 9-mer candidate sequence, we would generate

all combinations of splice reactants with [1+8], [2+7], [3+6], [4+5],

[5+4], [6+3], [7+2] and [8+1] amino acids of length. For each com-

bination of splice reactants, we search the reference proteome for a

matching sequence. If both splice reactants match to the same pro-

tein, the candidate sequence could be generated through cis splicing.

If the two splice reactants match to two different proteins, the candi-

date sequence could be generated through trans-splicing. If more than

one possible explanation is found, AP and MBS methods implemented

a hierarchy, which prefers non-spliced over any spliced peptide and

prefers cis- over trans-spliced peptides.

2.3.3 Generation of constructed HLA-I
immunopeptidome datasets and reference database
for benchmarking framework (Figure 1C)

To determine the performance of Mascot, Mascot+Percolator and

PEAKS DB within MBS and AP method framework, we applied the

methods to ground truth datasets using constructed databases.

The strategy for the generation of a ground truth dataset of MS1

and MS2 spectra, that resembled the characteristics of HLA-I bound

peptides, followed the following steps: we used the MS RAW datasets

of HLA-I immunopeptidomes of two monoallelic cell lines (express-

ing either HLA-B*07:02 or HLA-A*02:01; three and six replicates,

respectively) using Orbitrap Fusion Lumos and of the monoallelic

HLA-A*02:01 immunopeptidome dataset measured with Q Exactive

Hybrid–Quadrupole (Abelin et al., 2017). The RAW MS data were

analysed by both Mascot, Mascot+Percolator and PEAKS DB. The

database used to obtain PSMs was the Uniprot reference proteome

including isoforms (version 2016). Enzyme specificities were set to

‘unspecific’ in Mascot, Mascot+Percolator and PEAKS DB. Precursor

mass tolerances were set to 5 ppm and 10 ppm for measurements

on Fusion Lumos and Q Exactive Hybrid–Quadrupole, respectively.

Fragment ion mass tolerances were set to 0.02 and 0.03 Da for

measurements on Fusion Lumos and Q Exactive Hybrid–Quadrupole,

respectively. PEAKS DB suggested peptides were filtered for 1%

FDR using PEAKS’ internal decoy-fusion strategy. Mascot suggested

peptides were retained if the ion score was at least 30 and the q-value

was below0.05.MS2 spectra assignedwith the same sequence by both

PEAKS andMascot were extracted.

We then removed all peptides andMS2 spectra thatwere I/L redun-

dant, thereby,we arrived at a final list of 1546, 1655 and1246peptides

in Orbitrap Fusion Lumos for K562-B:07*02 and K562-A*02:0 and Q

Exactive Hybrid–Quadrupole 721.211-A*02:01 datasets, respectively.

For each peptide, we selected exactly one MS2. If more than one MS2

spectrumwas assigned to the same peptide sequence, we selected one

MS2 spectrum randomly and discarded the remainingMS2 spectra.

The selected MS2 spectra and their corresponding MS1 spec-

tra were merged in the mzML format to a new constructed HLA-I

immunopeptidome dataset. Resulting mzML files were tested for

validity in both PEAKS DB and Mascot to check if all selected spectra

were indeed correctly annotated (Table S1). The resulting three

datasets represent the constructed ground truth HLA-I immunopep-

tidome datasets and were employed in the benchmarking framework
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using constructed reference databases. The latter were generated by

modifying the reference human proteome database so that the target

sequences included in the benchmarking dataset could be identified

only as one of the three categories: non-spliced peptides, cis-spliced

peptides with intervening sequence shorter than 26 amino acids, or

trans-spliced peptides. Since only non-spliced and cis-spliced peptides

could be identified byMBSmethod and we aimed to focus our analysis

of the search engine performance in the identification of cis-spliced

peptides, we only considered non-spliced and cis-spliced peptides

in the respective algorithm’s performance analysis. Thereby, in the

constructed HLA-I immunopeptidome datasets, MS2 spectra derived

from the pool of defined trans-spliced peptides represented potentially

high-quality spectra, whose corresponding peptide sequence is not

encoded in most database search strategies, and which could only

be identified by exploring extremely large sequence search spaces.

We considered those MS2 spectra as ‘trapping spectra’ and the

corresponding peptides as ‘trapping peptides’. AP method may have

an advantage when challenged with those trapping spectra, because

it also considers the possible occurrence of trans-spliced peptides.

However, this potential advantage may come at the cost of overall less

accurate peptide identification.

To produce a constructed reference database: (i) we modified

the Uniprot standard proteome database by replacing all isoleucine

(I) by leucine (L), that is, removing I/L redundancies that cannot be

solved by MS; (ii) we split target sequences into the three peptide

categories in equal proportion; (iii) in constructed reference database,

we removed target sequences from the original reference database

by replacing all substrings identical to a target peptide in the original

reference database by a randomly sampled peptide sequence; (iv)

we added non-spliced, cis- and trans-spliced target sequences to the

constructed reference databases by randomly sampling proteins

from the reference database and appending the target sequences to

either C- or N-terminus of proteins. For cis- and trans-spliced peptides

we randomly sampled a splice-site within each target sequence,

split the target sequence into two splice-reactants and append the

splice-reactants either to two different proteins (for trans-spliced

peptides) or to the same protein after including a random intervening

sequence between the two splice-reactants (for cis-spliced peptides).

After each iteration of appending, we tested that none of the other

target peptide sequences could be assigned to a different peptide

category.

2.3.4 Benchmarking framework

To benchmark Mascot, Mascot+Percolator and PEAKS DB as final

search engines in the constructed HLA-I immunopeptidomes, we

appliedMBS and APmethods and extracted all identified PSMs using a

predefined scoring schedule, covering awide range of estimated FDRs.

Briefly, when applying PEAKS DB for both methods we chose a range

of 5–100 for the -log10P score. When applying Mascot as final search

engine we varied the Mascot ‘peptide expect’ (pep_expect) value from

0 to 50.When applyingMascot+Percolator, we trainedmultiple perco-

lator models to identify PSMs with Percolator q-values corresponding

to the ‘peptide expect’ values used to benchmark Mascot. We then

extracted those PSMs identified with Percolator q-value less than the

corresponding thresholds and Percolator SVM scores greater or equal

to 0.

PSMs for all methods and scoring threshold were extracted and

stored in joint query tables, which merged the respective algorithm’s

PSMs with the known correct MS2 assignments. Those tables con-

tained information about MS2 and peptide features, and analysed to

investigate if they impinged upon Mascot, Mascot+Percolator and

PEAKSDB performance.

The precision P of a method could be determined as the number of

correctly identified PSMs over the number of all assigned PSMs for a

given scoring threshold. Precision stood in direct relationship to the

FDR, which is defined as FDR = 1-P. The recall R of a method could be

determined as the number of correctly identified PSMs over the num-

ber of all true PSMs.

2.3.5 FDR estimation by Mascot,
Mascot+Percolator and PEAKS DB

We extracted the number of assigned PSMs and estimated FDRs by

Mascot, Mascot+Percolator and PEAKS DB for each scoring thresh-

old. For both search engines, a target-decoy approach to estimate

FDRs (on PSM level) was employed. FDRs in PEAKS DB were esti-

mated using a de novo assisted decoy-fusion strategy (Tran et al.,

2017, 2019). The decoy database was directly computed by PEAKS via

reversing target sequences. Estimated FDRs were extracted manually

for each scoring threshold from thePEAKSDB results summary report.

When using Mascot as final search engine, we computed the decoy

database by reversing all target sequences. ThePSMsassignedbyMas-

cot from this decoy database were used as negative training examples

forMascot+Percolator.

Both target and decoy databases were searched simultaneously.

For each scoring threshold we counted the number of assigned target

sequences (T) and assigned decoy sequences (D) and estimate the FDR

as FDR = 100
2D

T+D
.

2.3.6 MS2 spectra characteristics

For each MS2 spectrum in our ground truth datasets we computed

MS2 spectra characteristics (relative ion coverage and signal-to-

noise ratio) and corresponding peptide characteristics (peptide length,

hydrophobicity index).

2.4 Statistical analysis

All statistical analysis has been implemented in R. All statistics for

performance measurement are described in the benchmarking frame-

work. FDR calculation is described in the respectivemethods sections.



7 of 16

3 RESULTS

3.1 Evaluation of Mascot, Mascot+Percolator and
PEAKS DB performance in cis-spliced peptide
identification in ground truth datasets

To evaluate the performance of Mascot, Mascot+Percolator and

PEAKS DB as final search engines for identifying cis-spliced peptides

in HLA-I immunopeptidomes, we implemented MBS and AP methods,

using the three final search engine strategies. These two methods also

generated target databases (FASTA files with canonical proteome and

appended target spliced peptide sequences), which were used for the

database search step (see also points 1 and 2 of Figure 1B). The target

databases may have different features, which might impinge upon the

final search engine performance.

In order to determine the methods’ performance in combination

with either Mascot, Mascot+Percolator or PEAKS DB in terms of pre-

cision and recall, we applied them to ground truth datasets using con-

structed reference databases (see also Materials and Methods sec-

tion).

The ground truth datasets were obtained from HLA-I immunopep-

tidomes of HLA-Imono-allelic cell lines andweremeasuredwith either

Orbitrap Fusion Lumos or Q-Exactive Plus spectrometers to account

for potential mass spectrometer bias. The HLA-I immunopeptidomes

were analysed for the identification of 8–15 amino acid long non-

spliced peptides in a standard immunopeptidomics workflow using

both Mascot and PEAKS DB. PSMs that were assigned by both Mas-

cot and PEAKS DB with high confidence and the same sequence to

non-spliced peptideswere extracted and represented the ground truth

datasets (Table S1).

The constructed reference databases were generated by modify-

ing the reference human proteome database so that we knew which

non-spliced, cis-spliced and trapping (unidentifiable) peptides were

present in these ground truth datasets (see also Materials and Meth-

ods section). Since all target peptides were, in reality, non-spliced

peptide sequences derived from the canonical human proteins, we

had to modify the reference database so that one-third of the pep-

tides could be identified only as non-spliced peptides, one third only

as cis-spliced peptides (with intervening sequences shorter than 26

residues) and one third of the peptides could not be identified. The

latter aimed to mimic the portion of HLA-I immunopeptidomes that is

neither non-spliced nor cis-spliced peptides, such as other potentially

unknown peptide sequences not encoded directly in the human pro-

teome database. In our benchmarking framework, we defined those

unidentifiable peptides as trans-spliced peptides, since these peptides

could not be identified by MBS method. In our analysis, unidentifiable

peptides represented the large pool of unconventional peptides – for

example, those derived from alternative open reading frames (ORFs),

intronic or intergenic regions, single amino acid mutations as well as

trans-spliced peptides (Erhard et al., 2020; Faridi et al., 2018; Laumont

et al., 2016, 2018; Ruiz Cuevas et al., 2021) – and that cannot be identi-

fiedwith standard immunopeptidomics strategies.We chose this equal

proportion of non-spliced, cis-spliced and unidentifiable peptides in the

constructed reference databases bearing inmind the information gath-

ered from the largest database of non-spliced, cis-spliced and trans-

spliced peptide products identified via MS in in vitro digestions of syn-

thetic polypeptides (Specht et al., 2020), and some studies detecting

other unconventional peptides in HLA-I immunopeptidomes (Erhard

et al., 2020; Faridi et al., 2018; Laumont et al., 2016, 2018; Ruiz Cuevas

et al., 2021).

This strategy relying on constructed ground truth HLA-I

immunopeptidome datasets and cognate reference databases allowed

a robust benchmark since we knew which non-spliced, cis-spliced and

unidentifiable peptides were present in these ground truth datasets;

thereby, we could directly compute precision and recall (PR) curves

(Figure 1C).

We then applied AP and MBS methods – using either Mascot,

Mascot+Percolator or PEAKS DB as final search engine – to each con-

structed ground truthHLA-I immunopeptidomedataset and computed

PR curves using a range of scoring cut-offs. Both methods had high

performance for the identification of non-spliced peptides in all three

constructed ground truth HLA-I immunopeptidome datasets using

both final search engines, with the exception of Mascot+Percolator

in MBS framework. The latter may be the outcome of the limited

number of PSMs in the constructed ground truth HLA-I immunopep-

tidome datasets compared to the standard datasets on which Per-

colator is implemented (The et al., 2016). Within the range of high

precision for the identification of non-spliced peptides (i.e., 95% or

more for recalls smaller than 80%), the application of Mascot and

Mascot+Percolator consistently showed theworst performance espe-

cially in AP method and in the Orbitrap Q-Exactive Plus dataset

(Figure 2A–C). This outcome aligns with previous observations where

PEAKS DB has identified significantly more higher confidence PSMs

than Mascot+Percolator on immunopeptidome data (Bichmann et al.,

2019).

By contrast, themethod performanceswere strongly reduced in the

identification of cis-spliced peptides in all three constructed ground

truth HLA-I immunopeptidome datasets, as compared to non-spliced

peptide identification. The recall for the identification of these cis-

spliced peptides was limited, especially in the analysis carried out with

MBS method. Also, overall, AP method showed a lower precision than

MBS method. For both methods, precision of the identification of cis-

spliced peptides was strongly impaired by applying Mascot as the

final search engine. Mascot performance in the identification of cis-

spliced peptides did not benefit from the addition of Percolator, with

the exception of constructed ground truth HLA-A*02:01 immunopep-

tidome datasets using AP method framework (Figure 2A–C). This dif-

ference in precision between peptide identification strategies was

reflected in the misassignment of MS2 spectra that corresponded to

unidentifiable peptides in the constructed reference databases. MBS

method showed a similar number of unidentifiable peptides’MS2 spec-

tra wrongly assigned to non-spliced and cis-spliced peptide sequences,

which was higher when we applied Mascot+Percolator as final search

engine (Figure 3A–C). In contrast, AP method wrongly assigned more

unidentifiable peptides’ MS2 spectra to cis-spliced than non-spliced

peptide sequences (Figure 3A–C), which mirrored the lower precision
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F IGURE 2 Performance of the three database search engine strategies for the identification of non-spliced and cis-spliced peptides in
constructed ground truth HLA-I immunopeptidome datasets. (A–C) Performance of the three database search engine strategies tested in the
constructed ground truth HLA-I immunopeptidome datasets of K562-B*07:02 (A), K562-A*02:01 (B) and 721.221-A*02:01 (C). The original
datasets were obtained throughmeasurement byOrbitrap Fusion Lumos (A, B) or Q-Exactive Plus (C). PR curves for the identification of
non-spliced and cis spliced peptides in constructed HLA-I immunopeptidomes. PR curves report precision – i.e., number correctly identified
peptides over number identified peptides – on the Y axis and recall – i.e., number correctly identified peptides over number correct peptides – on
the X axis, are reported. Curves represent the performances by applying a range of scoring cut-off. Number of true peptides present in each
category is reported, which is a portion of the whole number peptides in the constructed HLA-I immunopeptidome datasets of K562-B*07:02
(n= 1556), K562-A*02:01 (n= 1668) and 721.221-A*02:01 (n= 1257)

of APmethod, regardless of the search engine applied, in the identifica-

tion of cis-spliced peptides in the three constructed ground truthHLA-I

immunopeptidome datasets (Figure 2A–C).

3.2 The features of the target databases rather
than the PSMs impinge on search engine
performance

MS2 spectra characteristics – such as ion coverage and signal-to-

noise ratio – as well as peptide characteristics – such as length and

hydrophobicity – may impinge upon both precision and recall of iden-

tified cis-spliced peptides in HLA-I immunopeptidomes.We, therefore,

investigated the characteristics of PSMs and assigned cis-spliced pep-

tides, which may be associated with the poorer performance of Mas-

cot compared to PEAKS DB in the constructed ground truth HLA-

I immunopeptidome datasets. None of the analysed characteristics

seemed to be associated with better performance of PEAKS DB as

compared to Mascot and Mascot+Percolator, as final search engine

strategies (Figure 4).

The different impact of the final search engines on each method’s

performance may be due, at least in part, to the features of the

target databases, which are the combination of the reference human

proteome database and the cis-spliced peptide sequence candidates

generated by both methods (see also points 1 and 2 of Figure 1B).

To investigate this hypothesis, in the constructed ground truth HLA-

I immunopeptidome datasets and cognate target databases, we

computed the number of true cis-spliced peptide candidates, true
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F IGURE 3 Misassignment of unidentifiable peptides included in the constructed ground truth HLA-I immunopeptidome datasets. (A–C)
Number of PSMs corresponding to unidentifiable peptides in the constructed ground truth dataset, which were wrongly identified as non-spliced
and cis-spliced peptides by the various search engine strategies. The constructed ground truth datasets had 496, 539 and 463 unidentifiable
peptides for K562-B*07:02 (A), K562-A*02:01 (B) and 721.221-A*02:01 (C), respectively

cis-spliced peptides and all cis-spliced peptide candidates for both

MBS and AP methods. These figures are specific for the dataset and

the target database generated by MBS and AP methods, and are

independent to the final search engine strategies. True cis-spliced pep-

tide candidates are cis-spliced peptide sequences present in a target

database, and in a constructed ground truth HLA-I immunopeptidome

dataset. True cis-spliced peptides are cis-spliced peptides present as

such in a constructed ground truth HLA-I immunopeptidome dataset.

All cis-spliced peptide candidates are all cis-spliced peptide candidates

present in a target database (Figure 5A). As a first analysis, we com-

puted the ratio of true cis-spliced peptide candidates over all cis-spliced

peptide candidates included in each method’s target database for all

three constructed ground truth HLA-I immunopeptidome datasets.

The higher this ratio, the more informed is the target database and,

therefore, the easier it is to reach high precision, that is, the easier it is

to identify true cis-splicedpeptide sequences (Figure5B). Furthermore,

we computed the ratio of true cis-spliced peptide candidates included

in each method’s target database over all true cis-spliced peptides in a

constructed ground truthHLA-I immunopeptidome dataset. The lower

this ratio is, the more of the true target sequences are missing in a tar-

get database, which hinders their identification and, hence, results in

low recall (Figure 5C). Finally, we analyse the size of the spliced peptide

target databases for both, AP andMBSmethod (Figure 5D). The target

database size is here defined as the number ofDe novo candidates that

have been included as spliced peptide candidates in the final database

search. According to our analysis, the number of true cis-spliced

peptide candidates in a target database represented a sizeable portion

of the cis-spliced peptide candidate in the same target database. MBS

method, however, consistently showed a higher ratio of true cis-spliced

peptide candidates over all cis-spliced peptide candidates in the target
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F IGURE 4 Performance of the three database search engine strategies in association with features of peptides and theirMS2 in constructed
ground truth HLA-I immunopeptidome datasets. (A–D) The analysis was done bymerging the results obtained by applying eitherMascot,
Mascot+Percolator or PEAKSDBwithin the framework of AP andMBSmethods to the ground truth HLA-I immunopeptidome datasets derived
fromwhole HLA-I immunopeptidomes of K562-B*07:02, K562-A*02:01 and 721.221-A*02:01 cell lines. To have a dataset large enough to
investigate peptides andMS2 features, peptides of all three constructed ground truth HLA-I immunopeptidome datasets were analysed together.
The analysed features are peptide hydrophobicity (A), peptide length (B), MS2 coverage (C) andMS2 signal-to-noise ratio (D). Peptides have been
grouped based on their type – i.e., non-spliced (A) and cis-spliced peptides (B-D) – andwhether they were assignedwith the correct sequence,
misassigned or not assigned at all. Violin plots describe the value distribution. Median is depicted with a longitudinal line

databases (Figure 5B). In addition, many true cis-spliced peptides

present in the constructed ground truth HLA-I immunopeptidome

datasets were overlooked by AP and, even more pronounced, by

MBS methods (Figure 5C). Furthermore, the target databases for AP

methods consist of approximately six times as many spliced peptides

compared to the target database of MBS method (Figure 5D). These

features of the target databases generatedbybothmethods correlated

well with the performance in the identification of cis-spliced peptides

in the constructed ground truth HLA-I immunopeptidome datasets.

Indeed, on the one hand, the method that had the highest ratio of true

cis-spliced peptide candidates over all peptide candidates in the target

databases (Figure 5B) – that is, MBS method – had also the highest

precision of the identification of cis-spliced peptides in the constructed

ground truth HLA-I immunopeptidome datasets (Figure 2A–C). On the

other, themethod that had the highest ratio of true peptide candidates

in a target database over all true peptides present in the constructed

ground truth HLA-I immunopeptidome datasets (Figure 5C) – that is,

AP method – had the highest recall of the identification of cis-spliced

peptides in the constructed ground truth HLA-I immunopeptidome

datasets (Figure 2A–C).

The different features of the target databases containing both

non-spliced and cis-spliced peptide candidates, and generated by the

applied methods, might strongly influence the ability to distinguish

true from false positive peptide sequence assignments and, hence,

the FDR estimation by Mascot, Mascot+Percolator and PEAKS DB.

This may impinge upon their performance as final search engine

strategies both in constructed ground truth HLA-I immunopep-

tidome datasets and in whole HLA-I immunopeptidomes. To test this
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F IGURE 5 Features of target databases in constructed ground
truth HLA-I immunopeptidome datasets. (A) Definition of true
cis-spliced peptide candidates in target databases, all peptide
candidates in target databases and all true cis-spliced peptides in the
three constructed ground truth HLA-I immunopeptidome datasets. (B
and C) Ratios of true cis-spliced peptide candidates in target databases
over all peptide candidates in target databases (B), and true cis-spliced
peptide candidates in target databases over all true cis-spliced
peptides in the three constructed ground truth HLA-I
immunopeptidome datasets (C). Target databases were generated via
Peaks De novo byMBS and APmethods based on constructed
reference human proteome database. (D) Number of De novo
candidate sequences included in the target databases for eachmethod
and dataset

hypothesis, we analysed the association between assigned PSMs

(which consisted of both true and false PSMs) and FDRs estimated

by Mascot, Mascot+Percolator and PEAKS DB as final search engine

strategies in whole HLA-I immunopeptidome datasets eluted from

K562-B*07:02 and K562-A*02:01 cancer cell lines and measured

through an Orbitrap Fusion Lumos. We analysed these datasets

through the application of AP and MBS methods by using either Mas-

cot,Mascot+Percolator or PEAKSDB as final search engine strategies.

In the analysis, we used a custom human proteome database based

on K562-B*07:02 and K562-A*02:01 cell line RNA sequencing data

(seeMaterials andMethods section). For a range of scoring thresholds,

we extracted the number of all assigned PSMs and the corresponding

F IGURE 6 Association between identified non-spliced PSMs and
FDR estimation by applying different database search engine
strategies to whole HLA-I immunopeptidome datasets. PSMs
identified for a range of estimated FDRs computed by applying either
Mascot, Mascot+Percolator or PEAKSDB in a standard pipeline to
K562-B*07:02 and K562-A*02:01HLA-I immunopeptidomes. The
results have been obtained by applying the search engine strategies
with target databases accounting only for non-spliced peptides. The
identified PSMs accounted for both true and false assignments

estimated FDRs. A well-performing search engine would assign a high

number of PSMs at very low FDRs. The higher the number of assigned

PSMs for low set and estimated FDR, the better is the search engine

in discriminating true from false PSMs and the more sensitive is the

search engine. We initially applied a standard pipeline using Mascot,

Mascot+Percolator and PEAKS DB as final search engine strategies

and the target databases including only non-spliced peptides.

When applying PEAKS DB as final search engine the FDR-PSMs

curves were flat until a certain scoring threshold was reached, after

which the estimated FDRs increased strongly (Figure 6). This allowed

to determine a reliable scoring threshold for 1% FDR. On the contrary,

when applying either Mascot or Mascot+Percolator as final search

engine, the estimated FDRs increased steeply with increasing number

of assigned PSMs, which hindered a reliable FDR estimation (Figure 6).

Mascot+Percolator had a better FDR computation thanMascot alone.

This is in line with previous studies investigating the impact of Percola-

tor onMascot performance in trypsin digestion samples. The FDRcom-

putation difference between Mascot and Mascot+Percolator in our

HLA-I immunopeptidomes seemed less striking than reported by other

in trypsin digestions (Kall et al., 2007).

After this preliminary analysis, we applied MBS and AP methods

using the generated target databases, which included both non-spliced

and cis-spliced peptides, and either Mascot, Mascot+Percolator or

PEAKS DB as final search engine strategy. In agreement with that

shown in Figure 6, when applying PEAKS DB as final search engine

the FDR-PSMs curves were flat until a certain scoring threshold was

reached, after which the estimated FDRs increased strongly (Figure 7),

which allowed to determine a reliable scoring threshold for 1%FDR.By

contrast, when applying either Mascot or Mascot+Percolator as final

search engine strategies, the estimated FDR-PSM curves showed simi-

lar behaviours towhat was observed for the standard non-spliced pep-

tide identification pipeline (see Figure 6), which hindered a reliable 1%

FDR estimation (Figure 7). Such a phenomenon could also indicate that
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F IGURE 7 Association between identified non-spliced and cis-spliced PSMs and FDR estimation by applying different database search engine
strategies to whole HLA-I immunopeptidome datasets. PSMs identified for a range of estimated FDRs computed by applying eitherMascot,
Mascot+Percolator or PEAKSDB as final search engine of AP andMBSmethods to K562-B*07:02 and K562-A*02:01HLA-I immunopeptidomes.
The identified PSMs accounted for both true and false assignments. The results have been obtained by applying themethods and search engines
with target databases accounting for both non-spliced and cis-spliced peptides

Mascot and Mascot+Percolator may be less able to distinguish true

from false PSM assignments in these kinds of samples combined with

larger, non-specific sequence search spaces.

For both MBS and AP methods, keeping a small estimated FDR,

we have identified more PSMs by applying PEAKS DB as final search

engine rather than eitherMascot orMascot+Percolator (Figure 7).

3.3 Identification of non-spliced and cis-spliced
peptide through Mascot, Mascot+Percolator and
PEAKS DB in whole HLA-I immunopeptidomes

Since we estimated the performance of Mascot, Mascot+Percolator

andPEAKSDB in identifying cis-splicedpeptides in constructed ground

truth HLA-I immunopeptidome datasets and the correlation of PSMs

and FDRs in whole HLA-I immunopeptidomes, we completed our

study by applying the three database search engine strategies in

AP and MBS method frameworks on the K562-B*07:02 and K562-

A*02:01 HLA-I immunopeptidome datasets. Because of the differ-

ent FDR behaviour of Mascot, Mascot+Percolator and PEAKS DB

(Figure 7), we applied the search engines by using 5% FDR for Mascot

andMascot+Percolator, and 1% FDR for PEAKSDB (Figure 8).

Within the framework of MBS method, the number of cis-spliced

peptides identified by applying the three final search engine strate-

gieswas similar. The frequency of cis-spliced peptides (with intervening

sequence smaller than 26 amino acids) varied between 0.5% and 1.6%

(Figure 8A; Table S2–S4).

By contrast, within the framework of AP method, which showed

higher recall and lower precision of cis-spliced peptides in constructed

ground truth HLA-I immunopeptidome datasets than MBS method

(Figure 2), the number of cis-spliced peptides identified by applying

PEAKS DB was larger than that identified by applying either Mascot

or Mascot+Percolator as final search engines. The frequency of cis-

spliced peptides (with intervening sequence smaller than 26 amino

acids) varied between 4.6% to 15.0% (Figure 8B; Table S2–S4). These

frequencies of cis-spliced peptides identified by the different imple-

mentations of MBS and AP methods were consistent with that pub-

lished by the cognate research groups (Faridi et al., 2019, 2018, 2020;

Mylonas et al., 2018).

For bothMBS andAPmethods, the overlap in identified non-spliced

peptides by applying either Mascot, Mascot+Percolator or PEAKS

DB as the final search engine strategy was large, thereby suggesting

that Mascot+Percolator and PEAKS DB confirmed the pool of non-

spliced peptides identified by Mascot and added to it a vast num-

ber of peptides (Figure 8A and B; Table S2–S4). A similar behaviour

was observed for cis-spliced peptides within the framework of AP

method (Figure 8B). The low number of identified cis-spliced pep-

tides by MBS method did not allow any conclusion with that method

(Figure 8A). This hypothesis was confirmed at PSM level. For exam-

ple, around 70% of the PSMs assigned as cis-spliced peptides by AP

method using Mascot–Percolator were assigned as such using PEAKS

DB. In addition,most of thePSMsassignedas cis-splicedpeptidesbyAP

method using PEAKS DB were not assigned to any peptide sequence

using Mascot–Percolator as final search engine. Similarly, most of the

PSMs assigned as non-spliced peptides by AP method using Mascot–

Percolator were assigned as such using PEAKS DB. In addition, half

of the PSMs assigned as non-spliced peptides by AP method using

PEAKS DB were not assigned to any peptide sequence using Mascot–

Percolator as final search engine (Table S5).

4 DISCUSSION

The analysis of constructed ground truth HLA-I immunopeptidome

datasets has unmasked the struggle of Mascot in identifying cis-

spliced peptides when applied as final search engine. The larger the
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F IGURE 8 The computed frequency of non-spliced and cis-spliced peptides in K562-B*07:02 and -A*02:01HLA-I immunopeptidomes
depends on the database search engine strategy used. Number of unique 8–15mer long non-spliced and cis-spliced peptides identified by applying
eitherMascot, Mascot+Percolator or PEAKSDB as final search engine of eitherMBS (A) or AP (B) methods to K562-B*07:02 and K562-A*02:01
HLA-I immunopeptidomes. The number of unique peptides identified through the different strategies is reported. The figures correspond to an
analysis done by applying a 5% FDR forMascot, 5% forMascot+Percolator and 1% FDR for PEAKSDB

reference database size, the lower the performance with Mascot. This

emerged when we compared the performance of Mascot – and in

part Mascot+Percolator – and PEAKS DB as final search engines of

methods that have different overall performance and target database

features for cis-spliced peptides (Figures 2 and 5). The different perfor-

mance between these three final search engine strategies did not seem

to depend on either peptide and MS2 features or mass spectrometer

(Figures 2 and 4). Rather, the analysis of the association between num-

ber of assigned PSMs and FDR in whole HLA-I immunopeptidomes,

hinted towards a more efficient FDR estimation algorithm of PEAKS

DB compared to Mascot, which was only partially improved by adding

Percolator toMascot (Figures 6 and 7).

The outcome of this analysis might impinge upon the identification

of other unconventional peptides in immunopeptidomics. Indeed, post-

translationally spliced peptides might be the vaster pool of unconven-

tional peptides bound to HLA complexes but they are not the only one.

Other PTMs are frequent in immunopeptidomes aswell as cryptic pep-

tides derived from, for example, putative non-coding regions of the

genome (Erhard et al., 2020; Laumont et al., 2018; Ruiz Cuevas et al.,

2021). All unconventional peptide pools have the same inherent char-

acteristic of enlarging the sequence search space compared to canon-

ical non-spliced peptides. Inevitably, this required search engines to

accurately distinguish true PSMs from false PSMs due to potentially

very high sequence similarity between true and false hits. Additionally,

the larger a target database was, the lower the ratio of true peptide

sequences over all entries in a target database, and hence it would be

harder to identify true PSMs.

PEAKS DB reduced this issue through its de novo assisted decoy-

fusion strategy. PEAKS DB prefiltered the user-provided reference

database keeping only the top 8000 entries, which have a required

number of de novo sequencing-based sequence-tags. This made not

only the actual database search (PEAKSDB) efficient, but also reduced

the final search space. Furthermore, PEAKS DB employed a decoy-

fusion strategy, whereby decoy sequences (inverted target sequences)

were appended to each target entry in the database, thereby allowing

for FDR estimation despite a two-round search.
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