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Abstract—In recent years, electronic glasses, including augmented reality (AR), virtual reality (VR), and mixed reality (MR) devices that
connect the natural world and virtual world seamlessly, have significantly developed. Ocular images are inherently acquired during the
immersion experiences from such devices, and can enable the verification of privileged identities during a live broadcast or meetings
in virtual spaces. Lack of any such public database, and any specialized framework, is one of the key challenges in advancing iris
recognition capability in metaverse or such virtual spaces. We introduce first or a new public iris images database, from 384 different
subjects, to advance iris recognition using a generalized AR/VR device. Conventional iris recognition methods can only offer limited
performance on such challenging iris images. This paper introduces an accurate and generalizable framework for iris recognition using
AR/VR devices. The proposed framework is based on a convolutional network that uses a specifically designed shifted and extended
quadlet loss function, enabling the network to accurately learn the discriminant iris features preserved in close-range and off-angle iris
images. The framework introduced in this work can also adaptively consolidate the spatially corresponding features and abstract features
from the other ocular details for more accurate matching. Thorough experimental results presented in this paper, using several classical
and state-of-art iris recognition methods, are consistently outperforming and validate the effectiveness of the proposed approach with
improvement of 96.30%, 30.58% and 27.23% for true accept rate (at false accept rate =0.0001), and 85.65%, 49.91% and 76.56% for
equal error rate respectively.

Index Terms—Metaverse security, egocentric vision, iris recognition, periocular recognition, person authentication in virtual spaces,
biometrics.
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1 INTRODUCTION

A CCURATE personal identification using egocentric bio-
metric images is one of the most critical and challeng-

ing tasks to meet the growing demand for stringent security.
Iris recognition has emerged as one of the most accurate,
low-cost, convenient methods for personal identification
that also enables better hygiene due to contactless imaging.
Iris patterns are unique among different subjects, even be-
tween identical twins, and they can be easily acquired using
low-cost cameras. Iris images from billions of citizens have
been acquired worldwide and incorporated into national ID
programs to benefit citizens and effective e-governance. In
recent years, electronic glasses, including augmented reality
(AR), virtual reality (VR), and mixed reality (MR) devices
that connect the natural world and virtual world seamlessly,
have significantly developed and offer tremendous potential
to augment human capabilities. Those wearable devices
are a trend of electronic devices evolution, and they are
potential substitutes for our smartphones if they are more
portable [1]. However, significant algorithmic advances are
required to achieve highly accurate user identification ca-
pabilities from such egocentric vision [2]. Foveated ren-
dering [3] is one of the core technologies that enable a
high-quality immersive experience with low computational
cost and acquire egocentric iris images for gaze estimation.
Eye interaction play vital important role in metaverse, and
iris recognition is therefore the most feasible and accurate
biometric for human identification in various metaverse
applications, as shown in Figure. 1. This paper proposes
to advance currently available iris recognition capabilities
to meet ever-growing demand of stringent security during
immersion experience from such AR/VR devices, with a

multitude of applications in sectors such as online educa-
tion, e-business, healthcare, and entertainment.

Fig. 1: Iris recognition for reliable human identification in
various metaverse applications.

1.1 Related Work
Classical iris recognition methods use rubber-sheet model to
normalize the conventional iris images and 2D Gabor filter-
based phase encoding to generate the (feature) templates



2

TABLE 1: Summary of comparative performance from our work and state-of-the-art algorithms on three databases.

Reference Egocentric Iris Performance Evaluation Comparative Results
Recognition Recognition Open-Set Evaluation Databases TAR (FAR=0.0001) EER

IrisCode(2D) [4] No No No
(a)
(b)
(c)

22.16%
40.01%
22.86%

9.45%
12.66%
17.12%

IrisCode(1D) [5] No No No
(a)
(b)
(c)

18.90%
39.52%
28.92%

12.57%
17.04%
12.58%

Ordinal Filter [6] No No No
(a)
(b)
(c)

22.21%
39.80%
35.90%

8.80%
10.98%
12.65%

UniNet.v2 [7], [8] No No No
(a)
(b)
(c)

43.78%
48.25%
43.01%

8.40%
10.04%
11.93%

DRFNet [9] No No No
(a)
(b)
(c)

36.55%
53.80%
40.15%

6.27%
5.75%
11.05%

Maxout CNN [10] No No No
(a)
(b)
(c)

31.87%
46.31%
17.19%

7.50%
10.56%
25.05%

Ours Yes Yes Yes
(a)
(b)
(c)

85.94%
70.25%
54.72%

0.90%
2.88%
2.59%

(a) PolyU AR/VR Iris Images database (b) QFIRE database (c) CASIA-Iris-Degradation-V1 database.

[11]. These binarized templates are referred to as IrisCodes
and efficiently matched using the Hamming distance. Varia-
tions of such an approach have used 1D log-Gabor filters
to generate IrisCodes [5]. There are several other feature
extraction approaches in the literature, e.g., using ordinal
filters [6], sparse representation [12], phase correlation [13],
etc., that have also shown exciting results to accurately
match iris images that are acquired using conventional iris
sensors. The stop-and-stare mode of the conventional iris
recognition systems [14] limits its usage for other real-world
applications. Therefore the literature has also reported no-
table efforts to accurately segment and match iris images
that are acquired under-less constrained environment [15].
Daugman [16] introduced elliptical segmentation of iris
images using active contours while reference [17] incorpo-
rated perspective transformation to recover frontal view iris
image. Some recent efforts [18] using a trained network to
match off-angle iris images are primitive, i.e., using manual
or ground truth masks for segmentation, while such [19]
learned features fail to preserve spatial correspondences.

More recent and promising efforts in the literature use
deep neural networks and present exciting results in ad-
vancing the matching accuracy for iris recognition. Ganwar
et al. [20] proposed an approach called DeepIrisNet using
deep convolutional neural network (DCNN) technique for
general iris recognition. This work is a direct application of
classic CNN on iris recognition problem without any iris-
specific optimization. Nguyen et al. [21] investigated the
off-the-shelf iris features extracted from pretrained open-
source CNNs, and the final decision is made using support
vector machine (SVM). Reference [8] introduced a UniNet
that included two branches of fully convolutional network
(FCN) [22] to generate spatial corresponding IrisCode-like
features and iris masks, to compute Hamming distances.
Later in [7], this work employed the Mask R-CNN [23]
to optimize the iris mask generation and further enhance
the performance of proposed work. Another dense iris

feature learning framework using dilated residual kernel is
investigated in [9]. In [24], Boutros et al. investigated the
iris recognition on an eye-gazing database [25] with state-
of-the-art pretrained CNN models including ResNet [26],
DenseNet [27] and MobileNetV3 [28].

Periocular information is inherently available in the raw
iris images and therefore a range of methods have been
incorporated for such periocular recognition. Reference [29]
provides related summary of such references and meth-
ods in the literature. Attention-based deep networks in
[30] can adaptively consider the importance of different
ocular features and offer highly accurate results on multi-
ple databases. Therefore such an approach can serve as a
promising baseline in developing more effective periocular
image matching techniques. Simultaneous use of iris and
periocular features have advanced iris recognition accuracy
and has been extensively studied in the literature [31], [32].
More recently, Zhang et al. [10] provided a promising frame-
work from the maxout CNNs to enhance mobile-based iris
recognition performance.

Despite exciting results and from the less-constrained
iris recognition, there has been a lack of any attention
for close-range iris recognition using off-angle iris images
often acquired in wearable AR or VR devices. Some eye
gaze tracking databases developed in the past, such as the
OpenEDS dataset [25], are no longer in the public domain,
do not provide user identity information for recognition
task, were acquired from a small number of subjects and
therefore not useful for iris recognition research.

1.2 Our Work and Contributions

This paper focuses on addressing critical limitations of
currently available technologies for off-angle iris recogni-
tion from closer distances using head mounted devices, by
developing a framework for accurately matching discrim-
inative iris features from such images. We summarize the
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main differences between our work and other related work
in Table. 1 in the context of generalized iris recognition.

Foveated rendering [3] is a core technology that enables a
high-quality immersion experience, with low computational
cost, in head-mounted AR/VR sensors using gaze estima-
tion. Images acquired for such gaze interaction provide a
tremendous potential of seamless iris recognition, and we
introduce the first such public database. We develop and
incorporate a specific protocol that enables the acquisition
of off-angle iris images from nine different viewpoints in such
an AR device to ensure significant intra-class variability
in this database (more details in Section 5). Therefore, a
new database from this work is more realistic and provides
challenging images for egocentric iris recognition.

Key contributions can be summarized as follows:
(a) Conventional methods for the iris recognition are not

adequate to accommodate significant intra-class variations
that are frequently observed in the iris images acquired
from closer distances using head mounted AR/VR devices,
and therefore can only offer limited performance. This pa-
per introduces a new framework to accurately match such
off-angle iris image. Our comparative experimental results
detailed in Section 6 of this paper indicate outperforming
results, over the state-of-the-art baselines, e.g.,improvement
of 96.30% for true accept rate (at FAR=0.0001) and 85.65%
in EER for egocentric iris recognition. We also present such
comparative performance on other databases with off-angle
images, e.g., improvement of 30.58% and 27.23% in TAR
(at FAR=0.0001), 49.91% and 76.56% in EER respectively, to
validate the effectiveness of our approach.

(b) Lack of any publicly available database for iris recog-
nition using AR/VR devices is one of the critical limitations
for much needed further research in this area. Therefore,
this paper develops a two-session egocentric iris images
database that includes images from 384 different subjects. To
the best of our knowledge, this is the first two-session off-
angle egocentric iris images database from AR/VR devices
in the public domain. Each of the subjects contributed to 360
samples acquired from nine different viewpoints and is a large
database for further research on egocentric iris recognition.

(c) Egocentric iris images that are acquired during the
immersion experience using AR/VR sensor often present
varying regions of effective iris pixels according to the
gaze changes. Our framework adaptively consolidates such
abstract features and spatially corresponding features for
more accurate matching (more details in Section 4). Our
comparative experimental results presented in Section 6 of
this paper, using challenging protocols and other state-of-
the-art methods, validate merit of the proposed approach.

In addition, we also develop and incorporate a special-
ized iris image quality detector and a more effective ellip-
tical segmentation and normalization approach to address
such egocentric iris recognition challenges. The rest of this
paper is organized as follows. Section 2 presents our ellipti-
cal iris segmentation and normalization. Section 3 details
our iris recognition network and proposed loss function.
Section 4 provides the details of our periocular-assisted
iris recognition framework. We introduce our new collected
database in Section 5 and present the experimental results
and discussion in Section 6. Finally, Section 7 presents a
summary of key conclusions and future work in this area.

2 IRIS SEGMENTATION AND NORMALIZATION

Accurate recognition of human identities using head
mounted AR/VR sensors requires specialized preprocessing
steps and they are introduced Figure. 2. These key steps in
our iris recognition framework, to recover the normalized
iris texture from such close distance and off-angle images,
are briefly described in the following.

2.1 Pupil and Iris Boundary Detection

Our first step is the iris detection which involves pixel-
level identification of iris and non-iris regions, i.e. excluding
sclera, eyelash and source reflections to locate region of
interest (ROI) and predict the binary iris mask. We use
SOLOv2 [33] for such instance segmentation which is fine-
tuned using 150 images manually segmented egocentric iris
images [34]. Earlier references [16], [35] have shown that
the boundary of off-angle iris images cannot be fitted using
circles that are widely used in conventional methods [6], [8],
[10], [36]. We therefore choose a non-conventional approach
using an arc-support ellipse detector [37] to detect the pupil
boundary and iris boundary on the ROI from the instance
segmentation. In order to suppress the adverse effect from
the eyelashes, we use bilateral filter on the images for the
pupil ellipse detection. One can directly use the arc-support
ellipse detector to locate the pupil boundaries without any
parameter finetuning if the image quality is sufficient, i.e.,
adequate contrast, occlusion, etc. However, the iris bound-
ary may not appear as a sharp edge due to the limbus
effect [38]; therefore, detecting such boundaries in the ROI
is difficult. To address such challenges, we use the mask
segmentation results generated from the instance segmenta-
tion to assist in the accurate detection of iris boundaries. We
use vertical Sobel operators with three different thresholds
on the binary mask images to generate iris boundary candi-
dates. Only the vertical one is deployed in our experiments
to eliminate the eyelid’s effect. The final ellipse for the iris
boundary is selected from the three candidates using the
following heuristics: (a) The pupil should be totally inside
the predicted iris ellipse; (b) The predicted iris ellipse should
include 90% of predicted iris pixels; (c) If two or more
candidates satisfy both (a) and (b) mentioned above, we
select the ellipse more similar to the pupil ellipse as the iris
or limbus boundaries. The similarity is computed by their
respective semi-major axis length over the semi-minor axis
length.

The boundary information is represented with a ten
elements vector [xp, yp, lp, sp, θp, xi, yi, li, si, θi, ], where
(xp, yp) and (xi, yi) are pupil ellipse center and iris ellipse
center; lp and li are the length of the corresponding semi-
major axis; sp and si are the length of the corresponding
semi-minor axis: θp and θi are orientation angle of the
corresponding semi-major axis. The pupil radius rp and iris
radius ri changes with the rotation angle ϕ (0 < ϕ ≤ 2π).
Such radius of detected pupil and iris ellipse can be com-
puted as follows:

r2p =(lp ∗ cos(θp) ∗ cos(ϕ)− sp ∗ sin(θp) ∗ sin(ϕ))2

+(lp ∗ cos(θp) ∗ sin(ϕ) + sp ∗ sin(θp) ∗ cos(ϕ))2

r2i =(li ∗ cos(θi) ∗ cos(ϕ)− si ∗ sin(θi) ∗ sin(ϕ))2

+(li ∗ cos(θi) ∗ sin(ϕ) + si ∗ sin(θi) ∗ cos(ϕ))2

(1)
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Fig. 2: Our key steps for egocentric iris segmentation and normalization.

Figure. 3 presents our database images with detected el-
lipses.

Fig. 3: Sample images with the orientations of two detected
ellipses.

2.2 Iris Normalization

Similar to the conventional normalization [5], we achieve
such normalization of iris images by replacing the cir-
cles using respective ellipses detected from pupil and iris
boundaries shown in Figure. 4. Different from the circles,
the radius of such ROI region changes with the angle in
the ellipse. The center of the detected pupil ellipse is the
reference point to sample the pixels along the radial axis
with a specific angle. Each of the iris region pixels, from the
intersection point (xp(θ), yp(θ)) of the pupil boundary to
the intersection point (xi(θ), yi(θ)) of the iris boundary, are
scanned along the radial axis which is oriented at angle θ,
and then in the anti-clockwise direction for all other angles.
The r is the radial distance between the pupil boundary
and iris boundary. The locations of intersection points are
computed using the respective slope from the pupil center.
The mapping of every pixel in the off-angle iris image from
the polar coordinate (r, θ) to the Cartesian coordinate (x, y)
in the unwrapped iris image can be summarized as follows.

x(r, θ) = (1− r)xp(θ) + rxi(θ)

y(r, θ) = (1− r)yp(θ) + ryi(θ)
(2)

Fig. 4: Elliptical unwrapping model for off-angle iris images.

3 EGOCENTRIC IRIS RECOGNITION NETWORK

Each segmented and normalized iris image is matched using
a deep neural network that also uses respective iris mask.
We consider a FCN [22] architecture to preserve spatial
feature correspondences in the generated templates. Such
a FCN-based architecture UniNet.v2 [7] can aggregate fea-
tures from three different scales and be also employed in
this work. The genuine or within-class distances in close

Fig. 5: Limitations of conventional triplet architecture for
egocentric iris recognition.
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Fig. 6: Adaptive iris recognition framework for egocentric images acquired using AR/VR devices.

distance off-angle iris images are considerably higher than
those for the conventional iris recognition [19], [39], [40], and
can significantly degrade the matching accuracy. Therefore,
we use a quad-based network architecture and a newly
introduced loss function to accurately match iris images.

The motivation for using a quad architecture, instead
of triplet architecture, is that the triplet architecture only
considers the gap or distance between the genuine and
impostor scores for the same anchor images. This problem
can be observed from the conventional triplet loss Ltrip i.e.

Ltrip =
1

M

M∑
i=1

[DA,P −DA,N + α]+ (3)

where M is the batch size, DA,P is the distance between
the anchor image and genuine image, DA,N is the distance
between the anchor and imposter images, α is a hyperpa-
rameter controlling the margin between the anchor-positive
and anchor-negative distances, [.]+ means truncation to zero
if the value is negative.

It should be noted that during the actual application, i.e.
verification or identification, a global threshold will be set
for all match scores instead of a unique threshold for each
of the iris-class or the subject. This can be observed from
an example case in Figure. 5 which shows five samples
from three different subjects or classes when two triplets
have already satisfied Eq. (3). We can however find that
the genuine distance between A2 and P2 is larger than the
imposter distance between A1 and N . If we deploy this
system in our application, it will consider that A1 and N
are from the same subject whereas A2 and P2 are from
different subjects. Therefore, inspired by quadruplet [41],
one more constrains is added to mitigate this effect and
ensure the distance DA2,P2

is less than DA1,N . This can
be achieved by adding one more branch for the negative
sample from a different class regarding both the anchor
and negative sample. The new sample N ′ is from a third
subject which is different from other samples, i.e., A,P,N .
Therefore, we can compute one more imposter score DN,N ′

between the negative sample N and N ′. The quadlet loss

Lquad is defined as follows.

Lquad =
1

M

M∑
i=1

([DA,P −DA,N + α]+ + [DA,P −DN,N′ + α]+)

(4)
Similar to the IrisCode Hamming distance calculation, we
perform the horizontal and vertical bit shift in our training
process. Also, the mask information is utilized to filter out
the noisy pixels in our loss calculation. The overall quadlet
loss with bits shift and mask is our new proposed shifted
and extended quadlet loss.

4 ADAPTIVE EGOCENTRIC IRIS RECOGNITION

Raw images acquired from the AR/VR sensors are essen-
tially periocular images with discriminative ocular features.
Therefore, we can also match such images to generate match
scores that can be adaptively consolidated with iris match
scores. Such an approach is illustrated in Figure. 6 and
discussed in following.

We incorporate a powerful feature extractor (ResNeSt)
[42] pre-trained with ImageNet [43], and ArcLoss [44] func-
tion to learn ocular features from the input images. Any
effective mechanism to simultaneously utilize the varying
cues from the iris and periocular matching should carefully
consider their image quality. A varying number of valid
(ROI) iris pixels, incorporated to generate respective iris
match scores, indicates the reliability of such match scores
and can serve as an important cue to adaptively consolidate
the match score. We define the number of valid pixels as the
mask rate and is computed as the fraction of occluded iris
pixels, using the iris masks, in two matched iris templates.
The differences in mask rates can be utilized to adaptively
reinforce the periocular information. Therefore, we incorpo-
rate a multilayer perceptron network (MLP) to consolidate
such multiple pieces of discriminative details and generate
a more reliable match score.

Our MLP is composed of three fully connected layers.
It will receive a seven-element feature vector as an input,
including the iris match score, periocular match score, mask
rate, two eye image quality score from our quality checking
network, and two eye orientation information from the
segmentation steps. The eye orientation is the direction of
the detected ellipse during iris segmentation. The network
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is trained offline using the genuine and impostor pairs
from the respective training dataset. The trained network
generates consolidated match scores, from the softmax value
in the final output layer, in the 0-1 range.

5 DATABASE ACQUISITION AND ORGANIZATION

A general-purpose sensor is employed to acquire the iris
images for gaze estimation that also enable immersion ex-
perience in AR/VR environment. Therefore, the acquired
images reflect real-world and dual-use for the subject iden-
tification using close-range and off-angle iris patterns. The
subjects who provided images in this database were vol-
unteers from different ethnic communities, including Chi-
nese, Indian and European. These volunteers consented to
support our research, were not paid any honorariums, and
we did not record their personal details. They wore our
head-mounted AR device and observed a 3D rectangular
pattern with a green point displayed on the glasses. All
the volunteers were requested to gaze sequentially at nine
different locations as illustrated in Figure. 7, while the cam-
era captured their iris images. Sample iris images acquired
from different gaze points from a volunteer are shown in
Figure. 8. We acquired 20 different image samples from one
eye at each of the gaze points, and therefore a total of 360
image samples were acquired from one subject during one
session.

Fig. 7: Gaze points displayed on head-mounted display
during the egocentric iris database acquisition.

Fig. 8: Sample iris images from a user in the acquired
database.

We acquired first session image samples from 384 differ-
ent subjects while only 114 were available for the second
session data acquisition. The minimum interval between

two image sessions was four months. Therefore, the entire
database consists of 138,240 image samples from the first
session and 41,040 image samples from the second session.
This entire database is publicly available [34] to advance
further research in this area. Among potential iris image
quality degradation listed in [45], Table. 2 provides list
of these problems in the context of AR/VR iris images
database acquired during this research. Figure. 9 illustrates
the distribution of estimated iris image orientations from the
egocentric views in the acquired database. Average number
of effective iris pixels and equivalent iris diameter in this
database is 18,434.39 and 116.26 pixels respectively.

TABLE 2: Common image quality degradation during ego-
centric iris acquisition.

Possible Acquisition Problem Egocentric Iris Database

Occlusion by Finger No
Motion Blur Yes

Mislabeled Eyes No
Eye Rotation No

Closed or Squinting Eye Yes
Specular Highlights from Glasses No

Off-axis Gaze Yes
Highly Dilated or Constricted Pupil Yes

Focus Blur Yes
Iris Absent from Image No

Poor Illumination and Low Contrast Yes

(a)

(b)

Fig. 9: Estimated distribution of (a) iris and (b) pupil ellipse
orientations, from egocentric view, in the database images.

We then train a quality checker using MobileNetV3 [28]
to automatically discard very low-quality samples while
considering the NIST guidelines except for the off-angle
requirement [45]. This quality checker can discard the closed
eye, serious off-axis gaze, motion blur and very low con-
trast, while such samples are shown in Figure. 10. Table. 3
summarizes the statistics of acquired egocentric iris images
database and the number in brackets represent images after
the quality check.
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(a) (b)

(c) (d)

Fig. 10: Sample images from egocentric iris image database
with image quality degradation including (a) closed eye (b)
off-axis gaze (c) motion blur (d) very low contrast.

TABLE 3: Summary of statistics from images in PolyU
AR/VR Iris Images database.

Session 1 Session2
Left Right Left Right

Number of Subjects 384 384 114 114

Number of Samples 69,120
(52,563)

69,120
(53,393)

20,070
(18,107)

20,070
(17,942)

Resolution 640*480 640*480 640*480 640*480

6 EXPERIMENTS AND RESULTS

We performed extensive experiments to evaluate the perfor-
mance of the proposed approach for AR/VR sensor-based
egocentric iris recognition. The details on the exact match
protocols and the corresponding reproducible [34] results
are provided in the following section. We use the elliptical
segmentation approach proposed in Section 2 for the iris
segmentation on all the databases used in this paper. The
thresholds of the vertical Sobel operator were empirically
fixed as 0.35, 0.4, and 0.45 for all our experiments. Our iris
normalization generated unwrapped iris images of 512 ∗ 64
pixels in Figure. 4 for all the experiments and databases used
in this paper. In our quadlet training, we set the horizontal
shift u as 32, stepsize t as 2, vertical shift v as 5 and margin
α as 0.15. The network is trained using SGD with learning
rate of 0.001 and momentum of 0.9. The batch size is fixed
as 8 for the 80,000 iterations.

6.1 Databases and Protocols
6.1.1 PolyU AR/VR Iris Images Database
We perform experiments using the two-session and one-
session (all-to-all) protocol. Two session experiments use
1,967 images from 202 different eyes in the second session
to compose a probe set and 1,879 samples in the first
session to compose a gallery dataset. Such a two-session
match protocol will generate 1,967 genuine and 395,367
imposter match scores. One-session experiments selected
samples from 242 subjects that are stated in a text file made
available from [34]. We use image samples from the first

60 subjects for the training, whereas ten samples from the
rest of 182 subjects are used for the performance evaluation.
Test samples are evenly selected from the five different
directions while considering the gaze points at the same
corner as the same direction. Therefore, there will be 3,640
samples in the performance evaluation test dataset, and
16,380 genuine and 6,606,600 imposter match scores will
be generated. The reason for such selection in one-session
experiment is to ensure that there are at least two good-
quality image samples at each gazing direction from both
the eyes of each of the subjects. Similarly, we also attempt
to select at least two good-quality images from each subject
at each gaze direction for the two-session experiments. We
can therefore only use images from 101 different subjects in
two-session experiments.

6.1.2 Quality Face and Iris Research Ensemble Database

The Quality in Face and Iris Research Ensemble (Q-FIRE)
database [46] is publicly available, providing off-angle iris
images acquired using the OKI IRISPASS EQ5016A sensor.
Although this database is not acquired from any AR/VR
sensor that commonly generates close-range off-angle iris
images, the iris images available in this database can help us
ascertain the proposed approach’s effectiveness for off-angle
iris recognition. We select a subset of images acquired from
a 5-feet distance under higher illumination. The original
image samples illustrate the upper part of the face, and
we automatically segment the periocular region with a Fast-
RCNN based detector [47]. The samples in our experiments
are chosen from the front, up, down, left, right, as illustrated
in Figure. 11. We selected iris samples from 44 subjects (88
classes) as our training set, 2,640 iris samples from the last
132 subjects (264 classes) as our testing set. Therefore, this
database in our experiments generates 11,880 genuine and
3,471,600 imposter match scores.

Fig. 11: Sample off-angle iris images from QFIRE database.

6.1.3 CASIA-Iris-Degradation-V1 Database

The CASIA-Iris-Degradation-V1 database [48] consists of
36,539 images from 255 subjects. The challenging samples
are divided into 15 categories: illumination, off-angle, occlu-
sion, etc. We use the off-angle subset composed of iris sam-
ples from frontal, top-left, down-right, down-left and down-
right views, as shown in Figure. 12. We selected iris samples
from 60 subjects (120 classes) as our training set, 2,088 iris
samples from the last 95 subjects (190 classes) as our testing
set. Therefore, this testing set in our experiments generates
13,277 genuine scores and 2,165,551 imposter scores.

6.2 Experimental Results

We performed a range of experiments to validate the ef-
fectiveness of the proposed framework. These experimental
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Fig. 12: Sample off-angle iris images from CASIA ID-V1
database.

(a)

(b)

(c)

Fig. 13: Comparative results for two-session verification
performance on PolyU AR/VR Iris Images database. ROC
plots from (a) iris, (b) periocular and (c) the combined
performance.

results are presented using the receiver operating character-
istic (ROC) curves to evaluate the performance for the verifi-
cation. We also evaluate the generalization capability of our
model using the cross-database performance evaluation.

6.2.1 Two-Session Matching Performance

Matching AR/VR sensor-based iris images from the second
session with those from the first session acquired during the
registration can provide most realistic performance evalu-
ation under the popular deployment scenario. Therefore,
this performance evaluation is firstly presented using the
PolyU AR/VR Iris Images database. We also present com-
parative performance with many other classical and deep

TABLE 4: Comparative summary from two-session egocen-
tric iris recognition performance evaluation.

Category Methods Two Session
TAR(%) EER(%)

Iris

IrisCode (2D) [4] 20.37 5.65
IrisCode (1D) [5] 15.53 5.50

Ordinal [6] 35.54 5.56
DRFNet [9] 41.38 6.31

UniNet.v2 [7] 54.75 6.39
Ours 65.89 5.43

Peri. AttenNet [30] 9.80 22.04
Peri ArcLoss (Ours) 14.38 14.05

Fusion

Wighted Sum Fusion 74.50 3.61
Minimum Fusion 32.28 4.77
Product Fusion 65.57 4.28

Nonlinear Fusion [49] 56.33 5.43
Maxout CNN [10] 36.26 6.07

Adaptive Fusion (Ours) 84.46 1.88

network-based competing benchmark methods. The origi-
nal IrisCode (2D) introduced by Daugman [11] has been
implemented in OSIRIS [4] and is an important baseline
for the conventional iris recognition. IrisCode (1D) [5] is
also a popular and widely used benchmark for iris recog-
nition performance and uses 1D log-Gabor filter to generate
IrisCodes. Another classical algorithm that can provide or-
dinal measurements using multi-lobe ordinal filters [6] was
also considered during our evaluation. In order to ensure
fairness, we use same test samples to evaluate all baseline
methods under the same protocol as stated in Section 6.1.
We also compared with competing deep neural network-
based methods that were proposed for the conventional
iris recognition. The UniNet.v2 [7] employs the fully con-
volutional network to generate binarized feature templates
while DRFNet [9] generates consolidates features from the
residual network using dilated kernels. It is important to
note that only the iris encoding algorithms from these base-
line methods are employed, and we use our segmentation
(Section 2) to ensure fairness in such evaluation as the
segmentation methods used in those baseline algorithms are
not designed for our problem i.e. close-range and off-angle
iris recognition. Since the method proposed for matching
off-angle periocular images in this work is new or not
explored in the literatures, we also provide comparison
of our periocular matching model with the state-of-the-art
AttenNet [30] method. Our adaptive fusion results are also
comparatively evaluated with the maxout CNNs [10] and
some other classical fusion algorithms, including weighted-
sum, minimum, product, and non-linear fusion [49]. Com-
parative ROC plots for this evaluation are presented in
Figure. 13. Table. 4 presents comparative summary of equal
error rates (EER) and genuine or true accept rate (TAR) at
low (10−4) false accept rate (FAR).

Additional performance comparisons using off-the-shelf
CNN features, a COTS matching, and related compulsory
analysis are provided in the attached Appendix A-C.

6.2.2 One-Session Matching Performance
Matching one-session iris images can generate large number
of match scores [8] and such performance evaluation is
also presented in this section. The comparative experimental
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(a)

(b)

(c)

Fig. 14: Comparative results for one-session performance on
PolyU AR/VR Iris Images database. ROC curves of (a) iris,
(b) periocular, and (c) the combined performance.

results from our approach and the respective benchmark
methods are presented in Figure. 14 for PolyU AR/VR Iris
Images database. We also present respective ROC results
in Figure. 15 using the QFIRE database protocol detailed
in Section 6.1.2 and ROC results in Figure. 16 using the
CASIA ID-V1 database protocol detailed in Section 6.1.3.
Table. 5 presents comparative summary of EER and TAR at
low (10−4) FAR constantly improved on the performance.

6.2.3 Cross-Database Performance

Although there is no other publicly accessible close-range
and off-angle egocentric iris database to the best of our
knowledge, we still attempted to ascertain cross-database
performance using the model trained on PolyU AR/VR
Iris Images database and evaluated on the CASIA ID-
V1 database. Such cross-database evaluation can help to
ascertain the generalization capability from the proposed
model. Here we employ the directly trained model using
PolyU AR/VR Iris Images database and use it to ascertain
the matching performance for the CASIA ID-V1 database
(Section 6.1) without any finetuning. We compare the per-
formance with the other competing deep network-based

(a)

(b)

(c)

Fig. 15: Comparative results for one-session performance on
QFIRE database. ROC curves of (a) iris, (b) periocular, and
(c) the combined performance.

algorithms. The number of test images is the same as respec-
tive database in the previous experiments. The comparative
performance from the cross-databases experiment is shown
in Figure. 17 while Table. 6 summarizes respective EER and
TAR at low FAR (10−4).

6.3 Discussion
In order to ascertain the effectiveness of the proposed loss
function for the iris recognition using AR/VR sensors, we
also performed comparisons with popular CNN models
using other loss functions. We performed comparisons using
the quadlet loss with the same UniNetv2 architecture and
additional comparison using the triplet loss. We also com-
pare another popular baseline method, DeepIrisNet [20],
which has shown promising results for conventional iris
recognition. The hyperparameters for the effective training
of respective network architectures were carefully investi-
gated to achieve the best possible performance. All these
comparisons were performed PolyU AR/VR Iris Images
database in this work (Section 5) and the resulting perfor-
mance is shown from the ROCs in Figure. 18. The poor per-
formance from the quadlet loss function strongly suggests



10

TABLE 5: Comparative summary from one-session matching performance.

Category Methods Egocentric Iris Database QFIRE Database CASIA ID-V1 Database
TAR(%) EER(%) TAR(%) EER(%) TAR(%) EER(%)

Iris

IrisCode (2D) [4] 22.16 9.45 40.01 12.66 22.86 17.12
IrisCode (1D) [5] 18.90 12.57 39.52 17.04 28.92 12.58

Ordinal [6] 22.21 8.80 39.80 10.98 35.90 12.65
DRFNet [9] 36.55 6.27 53.80 5.75 40.15 11.05

UniNet.v2 [7] 43.78 8.40 48.25 10.04 43.01 11.93
Ours 46.53 7.19 59.96 6.49 48.14 10.69

Periocular AttenNet [30] 42.48 6.79 47.17 6.25 20.17 7.53
Peri ArcLoss (Ours) 66.89 1.87 46.22 6.18 25.31 4.75

Fusion

Weighted Sum Fusion 78.90 1.37 53.08 4.66 45.72 2.62
Minimum Fusion 72.25 1.44 54.11 4.75 33.93 3.68
Product Fusion 67.11 1.39 46.39 3.74 25.83 2.77

Nonlinear Fusion [49] 81.33 0.95 60.41 3.70 42.22 2.80
Maxout CNN [10] 31.87 7.50 46.31 10.56 17.19 25.05

Adaptive Fusion (Ours) 85.94 0.90 70.25 2.88 54.72 2.59

(a)

(b)

(c)

Fig. 16: Comparative results for one-session performance on
CASIA ID-V1 database. ROC curves of (a) iris, (b) periocu-
lar, and (c) the combined performance.

that it is necessary to account for the spatial bit translation
to accurately learn the spatially corresponding features from
the close-range and off-angle iris images.

Although our results from the proposed framework to

Fig. 17: Comparative ROC from the cross-database perfor-
mance evaluation.

TABLE 6: Performance summary from cross-database eval-
uation.

Methods CASIA ID-V1 Database
TAR(%) EER(%)

DRFNet [9] 21.65 14.91
UniNet.v2 [7] 17.90 15.31

Ours 28.58 12.26

Fig. 18: Comparative ROC from different loss functions.

adaptively match iris images have shown promising results,
significant work is required to improve the performance for
large-scale matching and deployment. Egocentric iris im-
ages from wearable AR/VR sensors can exhibit significantly
high intra-class variations, and accurate localization of iris
boundaries in many such degraded quality images is quite
challenging.
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7 CONCLUSIONS AND FURTHER WORK

This paper has developed a new framework to accurately
match off-angle iris images acquired from closer distances
using head-mounted AR/VR devices. We also designed a
shifted and extended quadlet loss function to provide effec-
tive supervision in learning discriminative features for the
convolutional neural network considered in this work. Our
extensive and reproducible experimental results presented
in Section 6 achieve outperforming results and validate the
merit of the proposed framework for iris recognition from
the popular AR/VR devices that inherently acquire ocular
images under near-infrared illumination for gaze estima-
tion. We also developed and introduce a new database in
the public domain [34] to advance further research and
development in this area. The focus of this work is on
egocentric iris recognition, instead of iris segmentation [50],
which would require generation of a number of manually
annotated iris and pupil regions in egocentric iris images.
Therefore, further extension of this work should focus on
more accurate localization of iris boundaries, or more robust
iris features from egocentric iris images with significantly
high intra-class variations.

APPENDIX A
COMPARISON WITH OFF-THE-SHELF CNN FEA-
TURES

We also perform two-session experiments using the same
matching protocol to compare with the off-the-shelf features
approaches [21]. There are five different feature extractors
pretrained with ImageNet [43] employed to provide off-
the-shelf features using normalized iris images, including
AlexNet [51], VGGNet [52], InceptionNetV3 [53], ResNet152
[26] and DenseNet201 [27]. The feature vectors fed into
the support vector machine (SVM) are selected from the
peak layers for performance, including layer 7 for AlexNet,
layer 9 for VGGNet, layer 10 for InceptionNetV3, layer 12
for ResNet152 and layer 5 for DenseNet201 respectively.
According to the description in origin paper, all the CNN
models are not finetuned and only one-over-all multiclass
SVMs are trained with corresponding training data. We
use the predicted probability as the matching score, and
plot the ROC in Figure. 19 while EER results are shown in
Table. 7. We can find that our approaches provide superior
performance than the off-the-shelf approaches. The off-the-
shelf features cannot effectively address the iris recognition
problem under such challenging scenario without any iris-
specific design, and one-over-all learning strategy cannot
minimize the intra-class difference.

APPENDIX B
THE MODEL COMPLEXITY ANALYSIS

We also evaluate the complexity of the iris recognition
framework to ascertain its feasibility for the deployment. Ta-
ble. 8 presents comparative summary of the computational
time for the feature extraction and storage requirements.
We use a Ubuntu 18.04 machine with i9-7900X CPU, 32GB
RAM, and 11GB 1080ti GPU. These results indicate that
the space and time complexity of our trained model is not

Fig. 19: Comparative ROC results from off-the-shelf features
and our approach using two-session matching protocol.

TABLE 7: Comparative EER results from off-the-shelf fea-
tures and our approach using two-session matching proto-
col.

Algorithm EER

AlexNet and SVM 23.91%
VGGNet and SVM 19.30%

InceptionNetV3 and SVM 15.78%
ResNet152 and SVM 22.45%

DenseNet201 and SVM 17.27%
Ours 5.43%

large and quite suitable for the online iris recognition. The
run time requirement for the iris image quality checker, iris
and mask detection, ellipse detection with iris segmentation
and normalization, are respectively 11.3, 62.4 and 223.7
milliseconds (ms), which can be further reduced by the code
optimization and choice of more simplified model.

TABLE 8: Comparative summary of complexity analysis for
baseline models.

Parameters Extraction Time (ms)

DRFNet [9] 125K 8.1
Maxout CNN [10] 4,095K 10.5

DeepIrisNet [20], [53] 55,420K 13.8
DenseNet201 [27] 20,242K 24.6

Ours 129K 8.9

APPENDIX C
COMPARISON WITH COTS
Although we have already provided reproducible compar-
isons with widely cited baseline methods that have shown
competitive performance in the literature, it may also be
interesting to ascertain comparisons with the commercial-
off-the-shelf (COTS) which are believed to be widely used
and optimized for the real-world deployment. VeriEye is
one such popular iris recognition SDK developed by Neu-
rotechnology [54]. Its core functions are not open source so
we do not know its processing details. This SDK accepts
entire eye images as the input and can generate one match
score for each pair of inputs, just like for our one session all-
to-all matching. Therefore, we provide comparisons from
our method on PolyU AR/VR Iris Images dataset in this
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(a)

(b)

(c)

Fig. 20: Comparative ROC plots from the VeriEye SDK on
(a) PolyU dataset (b) QFIRE dataset and (c) CASIA dataset.

work and QFIRE dataset using the same one-session proto-
col. The ROC curves from such comparisons are shown in
Figure. 20.

The VeriEye SDK has built-in quality assessment func-
tion that does not generate match scores for low-quality
images and this can explain the nature of the above per-
formance curve. The ROC plots in Figure. 20 indicate out-
performing results on both datasets, except for the low
FAR side on QFIRE dataset. This COTS software is not an
open-source and therefore we can only present an indicative
performance as cannot ascertain its segmentation process.
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