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ABSTRACT
◥

The FDA has recently approved a high tumor mutational burden
(TMB-high) biomarker, defined by ≥10 mutations/Mb, for the treat-
ment of solid tumors with pembrolizumab, an immune checkpoint
inhibitor (ICI) that targets PD1. However, recent studies have shown
that this TMB-high biomarker is only able to stratify ICI responders
in a subset of cancer types, and the mechanisms underlying this
observation have remained unknown. The tumor immune microen-
vironment (TME) may modulate the stratification power of TMB
(termed TMB power), determining if it will be predictive of ICI
response in a given cancer type. To systematically study this hypoth-
esis, we inferred the levels of 31 immune-related factors characteristic
of the TME of different cancer types in The Cancer Genome Atlas.
Integration of this information with TMB and response data of 2,277
patients treated with anti-PD1 identified key immune factors that
determine TMB power across 14 different cancer types. We find

that high levels of M1 macrophages and low resting dendritic cells in
the TME characterized cancer types with high TMB power. A model
based on these two immune factors strongly predicted TMB power in
a given cancer type during cross-validation and testing (Spearman
Rho ¼ 0.76 and 1, respectively). Using this model, we predicted the
TMBpower innineadditional cancer types, including rare cancers, for
which TMB and ICI response data are not yet publicly available. Our
analysis indicates that TMB-high may be highly predictive of ICI
response in cervical squamous cell carcinoma, suggesting that such a
study should be prioritized.

Significance: This study uncovers immune-related factors that
may modulate the relationship between high tumor mutational
burden and ICI response, which can help prioritize cancer types for
clinical trials.

Introduction
Immunotherapy has shown remarkable clinical benefits in many

cancers. However, its benefit is limited to a subset of patients, raising a
need for response biomarkers (1). A frequently used biomarker is the
tumor mutational burden (TMB), a measure of the total number of
mutations in the coding regions of the genome (1, 2). The FDA has
recently approved pembrolizumab, an immune checkpoint inhibitor
(ICI) targeting PD1, for individuals with TMB-high (defined as ≥ 10
mutations/Mb) solid tumors (3). Despite this approval, the effective-
ness of TMB-high as a biomarker for stratifying responders to immu-

notherapy, termed here TMBpower, differs considerably across cancer
types (4, 5), the mechanisms underlying these differences have
remained unknown. Aiming to explain this clinically important
finding, a previous report (6) has suggested that TMB-high may
stratify IC blockade (ICB) responders in cancer types where TMB
correlates with CD8 T-cell infiltration levels. This has pointed towards
the potentially central role of the tumor microenvironment (TME) in
determining this stratification power of TMB-high (termed TMB
power). The TME, including CD8þ T cells, dendritic cells, macro-
phages, B cells, T-cell receptor (TCR) repertoire, and major histo-
compatibility (MHC) locus status, has also been previously associated
with the extent of immunotherapy response (1). Taking these studies
into account, we hypothesized that differences in the immune activities
in the TME of different cancer types may explain the variability
observed in the TMB power across cancer types.

Materials and Methods
Data and preprocessing

All patients provided informed consent to an MSK Institutional
Review Board–approved protocol, permitting the return of results
from sequencing analyses for research. We collated: (i) a publicly
available cohort of ICI-treated (anti–PD-1/PD-L1) patients’ responses
with TMB and demographic information, comprising 1,959 patients,
and (ii) the data from an additional 318 patients, yielding a total of
2,277 patients across 14 cancer types. The clinical data do not
distinguish whether a patient received anti–PD-1 or anti–PD-L1, so
we analyzed these treatments together. The cancer types where all the
patients have TMB < 10 Mutations/MB were excluded from our
analysis. Sex is not used as a biological factor. No randomization
or blinding is performed in this study. The Cancer Genome Atlas
(TCGA; ref. 7) and MSKCC cohorts are publicly available cohorts

1Cancer Data Science Lab, Center for Cancer Research, National Cancer Institute,
National Institute of Health, Bethesda, Maryland. 2Department of Surgery,
Memorial Sloan Kettering Cancer Center, New York, New York. 3Immunoge-
nomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer
Center, New York, New York. 4Laboratory of Pathology, NCI, NIH, Bethesda,
Maryland. 5Cancer Evolution and Genome Instability Laboratory, The Francis
Crick Institute, London, United Kingdom. 6Center for Immunotherapy and
Precision Immuno-Oncology, Cleveland Clinic, Lerner Research Institute, Cleve-
land Clinic, Cleveland, National Center for Regenerative Medicine, Cleveland
Clinic, Cleveland, Ohio.

Note: Supplementary data for this article are available at Cancer Research
Online (http://cancerres.aacrjournals.org/).

N. Sinha and S. Sinha contributed equally as co-first authors of this article.

Corresponding Author: Eytan Ruppin, NIH, 9000 Rockville Pike, Building 15C1,
Bethesda, MD 20892. Phone: 240-858-3169; E-mail: eyruppin@gmail.com

Cancer Res 2022;82:2076–83

doi: 10.1158/0008-5472.CAN-21-2542

This open access article is distributed under Creative Commons Attribution-
NonCommercial-NoDerivatives License 4.0 International (CC BY-NC-ND).

�2022 TheAuthors; Publishedby theAmericanAssociation for CancerResearch

AACRJournals.org | 2076

D
ow

nloaded from
 http://aacrjournals.org/cancerres/article-pdf/82/11/2076/3152648/2076.pdf by Francis C

rick Institute, is@
crick.ac.uk on 09 June 2022

http://crossmark.crossref.org/dialog/?doi=10.1158/0008-5472.CAN-21-2542&domain=pdf&date_stamp=2022-5-5
http://crossmark.crossref.org/dialog/?doi=10.1158/0008-5472.CAN-21-2542&domain=pdf&date_stamp=2022-5-5


used in this study. We downloaded the mutation calls for the MSKCC
from https://www.cbioportal.org/. We downloaded the omics data
to compute immune-related factors levels in the TCGA (7) cohort
from https://xenabrowser.net/datapages/?cohort¼TCGA%20Pan-
Cancer%20(PANCAN)&removeHub¼https%3A%2F%2Fxena.treehouse.
gi.ucsc.edu%3A443.

Computing TMB power for each cancer type
TMB power denotes the ability of TMB biomarkers to stratify

responders versus nonresponders to anti–PD-1. We computed TMB
power separately for three different forms of therapy response infor-
mation: objective response rate (ORR), overall survival (OS), and
progression-free survival (PFS). In the case of ORR, TMB power is
defined as the odds ratio (OR) of response rate between TMB-high
versus low group. If OS or PFS is available, we defined the TMB power
as the ratio of death rate between TMB-high versus low group
(1/hazard ratio (HR) of survival). Throughout the study, we report
FDR-corrected P values.

Mean levels of immune factors across samples of a cancer type
These levels were mined from our previous publication (8) where a

detailedmethodology is provided. Please refer to themethod section of
ref. 8. To summarize, we classified immune-related factors into the
following three types: (i) tumor neoantigen, (ii) tumor immune
microenvironment, (iii) checkpoint target.

Tumor neoantigen
TMBwas determined based onwhole-exome sequencing (WES) data

of TCGA samples. downloaded from UCSC Xena browser (https://
xenabrowser.net/datapages/?dataset=GDC-PANCAN.somaticsniper_
snv.tsv&host=https%3A%2F%2Fgdc.xenahubs.net&removeHub=
https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443). TMB is defined
as the total number of nonsynonymous single-nucleotide variants in
each patient tumor. Intertumor heterogeneity was calculated using
ABSOLUTE and the neoantigens were identified based on the neo-
peptides predicted to bind to MHC-I (https://gdc.cancer.gov/about-
data/publications/panimmune).

Tumor immune microenvironment
Immune cell abundance was determined by applying a CIBER-

SORT (9). The cytolytic score is a measure of local immune cytolytic
activity calculated by the geometric mean of gene expression of
granzyme A (GZMA) and perforin (PRF1). TCR diversity was esti-
mated from RNA sequencing (RNA-seq) using Shannon entropy and
downloaded from the GDC pan-immune data portal (https://gdc.
cancer.gov/about-data/publications/panimmune).

Checkpoint targets: PD-L1 expression
PD-L1 protein expression in each patient tumor was downloaded

from the UCSC Xena browser (https://pancanatlas.xenahubs.net/
download/TCGARPPA-pancan-clean.xena.gz).

We removed three immune factors, “active dendritic cells,” “resting
NK cells,” and “active mast cell,” from our initial set of 33 immune
factors, due to low variance (0 in more than 50% of cancer types). In
addition to these immune-related factors, we added sex ratio (Male to
Female ratio) as a factor, to check the association between sex andTMB
power (Total Immune Factors ¼ 31).

Finding the immuno-modulators of TMB power
The correlation between TMB power and the mean level of 31

immune-related factors was calculated. We ranked the modulators by

the correlation between their mean levels and TMB power across
cancer types in three different analyses: (i) We considered three
different measures of outcomes (OS, PFS, ORR) to compute TMB
power, (ii) We considered the correlations obtained both across all
cancer types and those obtained considering only cancer types with
significant HR/OR ratios, and finally, (iii) We measured both Pearson
and Spearman correlations.We computed an average rank across these
analyses and decided to focus and highlight the top and bottom two
ranked modulators based on the correlation strength. We considered
both Pearson and Spearman correlations, as both methods have
limitations. The former is susceptible to outliers and the latter does
not take into account the effect size.

Multivariate regression model to predict TMB power
We next built a multivariate linear regression model based on the

above four modulators, using a standard leave-one-out cross-
validation method. Here, we built a model using all possible combina-
tions of features exhaustively and the performance of the prediction
was evaluated based on Spearman rank correlation (rho). Using the
best model, we next predicted TMB power for 17 additional cancer
types where it is unknown. Among these, we noted that feature values
are in the interpolation range, i.e., the range on which our model was
trained, for only 9 of 17 cancer types and thus we restricted our
prediction for these cancer types.

Data availability
The study’s scripts and data are provided to replicate each step of

results and plots in GitHub repository: https://github.com/ruppinlab/
Immune_determinant_for_power_of_TMB. We also generated and
provided a standard and executable research package at the codeocean:
https://codeocean.com/capsule/7166680. Genomic and clinical data
from theMSK-IMPACT cohort used for these analyses are available as
Supplementary Table S1. Requests for additional data from this cohort
should be directed to either the corresponding author or Luc Morris
per MSK’s clinical and genomic data sharing policies.

Results
To study this hypothesis, we first collated the largest publicly

available cohort of ICI-treated (anti-PD1/anti-PDL1) patient’s
responses with TMB and demographic information (Supplementary
Table S2), comprising 1,959 patients (4, 5, 10, 11) together with an
additional new cohort of 318 patients, comprising a total of 2,277
patients across 14 cancer types (Supplementary Table S1, includes
patient ages). Analyzing this combined cohort, we first aimed to depict
the association between TMB-high and patients’ response to ICI in
each cancer type. To this end, we computed the difference in OS
between patients with high TMB versus low TMB, i.e., the HR of
survival, in each cancer type (Fig. 1A). TheHR is significantly < 1 for 8
of 14 cancer types (using FDR < 0.1 as a significance threshold),
testifying to overall higher survival in patients with TMB-high, how-
ever, its magnitude varies considerably across cancer types. In pan-
creatic adenocarcinoma (PAAD), theHR is significantly greater than 1
(FDR < 0.1) presenting evidence against the usage of the TMB-high
biomarker to select patients. A similar trend and variability are
observed for PFS (Supplementary Fig. S1). Repeating this analysis
using the tumor response status and computing the OR of ORR, the
radiological assessment of the tumor burden after treatment, between
TMB-high versus low TMB patients, 5 of 11 cancer types have a
significant OR > 1 (FDR < 0.1; Fig. 1B), testifying to a higher response
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rate in patients with TMB-high, but not in all cancer types. These
observations are in line with previous findings (4, 5), showing that the
TMB-high biomarker based on a universal FDA-approved cutoff is
predictive of response only in a subset of cancer types, with variable
predictive power. We quantify the stratification power of TMB in
identifying immunotherapy responders (termed TMB power) in each
cancer type as 1/HR in terms of OS or PFS and OR in terms of tumor
response.

We next quantified the mean levels of various immune-related
factors in the TME of a given cancer type. To this end, we mined
WES and RNA-seq data of pretreated samples for the above 14
cancer types from TCGA. In each cancer type, we estimated the
mean levels of 31 different immune-related factors (Supplementary
Table S3) which have been previously reported to be associated with
ICI response (8). Those include (i) tumor neoantigen character-

istics, including neoantigen hydrophobicity, intratumor heteroge-
neity, and neoantigen burden; (ii) TME characteristics, including
the abundance of different immune cells, the cytolytic score, T-cell
exhaustion, and IFNg signatures, and TCR diversity, and finally,
(iii) checkpoint target–related variables, including PD-L1 protein
expression, the combined positive score (defined as the ratio of the
number of PD-L1 staining cells (tumor cells, lymphocytes, macro-
phages) out of the total number of viable cells) and fPD1 (the
fraction of high PD1 staining tumors in a given cancer type).

To identify the immune-related modulators of TMB power, we
computed the correlation between the mean levels of each immune
factor described above and the threemeasures of TMB power based on
OS, ORR, and PFS, across the 14 cancer types we studied (Fig. 2A
and B; Supplementary Fig. S2A leftmost, in respective order). Four
immune factors emerge as being correlated with the TMB power

Figure 1.

ICI response of TMB-high versus TMB
low groups for different cancer types.
A, HR of OS (x-axis) between patients
with high versus low TMB computed
using a Cox regression model. Cancer
types having a significant HR are col-
ored blue versus red, denoting cancer
types for which the HR is not signifi-
cant. Error bars represent the 95% con-
fidence interval (CI) and P values were
computed using a log-rank test. Cancer
type abbreviations follow those used in
TCGA (7). The number of patients with
each cancer type is provided in the
second column. Thenumber of patients
in the High TMB group (for each cancer
type) is provided in the third column.
B, The results of a similar analysis using
response status and the OR. Renal cell
carcinoma (KIRC) is not reported in A,
as its HR cannot be computed confi-
dently. FDR corrected P value is pro-
vided in the 5th column; the 6th and 7th
columns represent the CI range.
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for all three outcomes measures (Fig. 2C). Two modulators are
positively correlated with the TMB power, including M1 macrophage
levels (correlation strength with TMB power based on OS is Spearman
r¼ 0.61,P¼ 0.02;Fig. 2D, top left) and tumor purity levels (Spearman
r ¼ 0.44, P ¼ 0.13; Fig. 2D, top right). We termed them positive
modulators. Two other modulators are negatively correlated with the
TMB power (negative modulators), including the PDL1 combined
positive score (Spearman r ¼ �0.39, P ¼ 0.19; Fig. 2D-bottom-left)
and resting dendritic cells (Spearman Rho¼�0.38, P¼ 0.21; Fig. 2D-
bottom right). We note that the overall level of lymphocytes is not
significantly associated with TMB power.

Repeating the above analysis using only cancer types with statis-
tically significant HRs or ORs (Materials and Methods) yielded
concordant findings, where the same four modulators are the top-
ranked (Supplementary Fig. S2B and S2C). We next aimed to validate

our top modulators in independent ICB cohorts. The largest publicly
available cohort (12) has three cancer types (HNSC, head and neck
squamous cell carcinoma; NSCLC; non-small cell lung cancer; SKCM,
skin cutaneous melanoma) that can be analyzed to further test and
validate the robustness of the top modulators identified on the basis of
the MSKCC data (Supplementary Table S4). To perform this analysis,
we merged the suitable data, overall comprising 341 patients (treated
with anti–PD-1), with our initial MSKCC dataset and repeated with
analysis. Reassuringly, we find that each of our top four modulators
remains robustly top-ranked (Supplementary Fig. S3).

We next built a multivariate linear model predicting TMB power at
a given cancer type based on the levels of the four top modulators
identified above, assessing their aggregate predictive power in a leave-
one-out cross-validation procedure.We built this model separately for
all three measures of TMB power (OS, PFS, ORR). The models

Figure 2.

Immune modulators of TMB power.
A, Correlation strength between TMB
power based on OS and levels of
immune-related factors across 14 can-
cer types, computed using Spearman
Rho (x-axis). Green and red bars
denote positive and negative modula-
tors, respectively, and the intensity of
the color denotes the strength of
correlation. Significant correlations,
� , P < 0.05, and four highly correlated
modulators are shown in bold. B, This
analysis is repeated to identify modu-
lators of TMB power based on tumor
response status (ORR).C, The strength
of correlation with TMB power using
ORR (x-axis) and OS/PFS (y-axis) is
provided for each modulator, where
the top four are highlighted and
labeled. The y-axis is the mean corre-
lation strength of each modulator level
with TMB power when OS and PFS are
used across two cases—when all
cancer types are used and when only
cancer types with significant TMB
power are used. D, Scatter plots show
the relationship between the mean
levels of each of the four top modifiers
in a cancer type (x-axis) and the TMB
power (in terms of OS). The best fit line
is provided in blue, where the shaded
region denotes a 95% confidence
interval. Renal cell carcinoma (KIRC) is
not reported in D, as its HR cannot be
computed confidently.

Determining the Ability of TMB to Predict ICB Response

AACRJournals.org Cancer Res; 82(11) June 1, 2022 2079

D
ow

nloaded from
 http://aacrjournals.org/cancerres/article-pdf/82/11/2076/3152648/2076.pdf by Francis C

rick Institute, is@
crick.ac.uk on 09 June 2022



performing best TMB power computed using durable survival only
used two features, M1 macrophage and resting dendritic cells levels
predicting TMB power based on OS with a Spearman r ¼ 0.76,
P ¼ 0.0036 (Fig. 3A; Supplementary Table S5). Adding the two
remaining modulators does significantly not improve model perfor-
mance. We note that liver hepatocellular carcinoma (LIHC) and
SKCM are the cancer types where the immune modulators are not
well able to predict the TMB power compared with the rest of the
cancer types.

Using this two-feature linearmodel, we predicted theTMBpower in
17 additional cancer types. These cancer types do not have publicly
available TMB and ICI response data but their mean levels of M1
macrophage and resting dendritic cells could still of course be esti-
mated from the TCGA cohort. We could confidently predict TMB
power for 9 of these cancer types, where the two modulators’ levels
were within the interpolation range of the regression (Materials and
Methods). Notably, in 8 of these, the predicted TMBpower was greater
than that observed for lung cancer, where TMB-high patients have
been shown to have a higher response rate andmedian survival in large
clinical trials (Fig. 3B; Supplementary Table S6; ref. 13). The top-
ranked cancer types are TGCT (testicular germ cell tumors, TMB
power¼ 2.95, two times higher than the TMB power observed in lung
cancer), DLBC (lymphoid neoplasm diffuse large B-cell lymphoma,
TMB power¼ 2.30, 1.6 times higher than the TMBpower observed for
lung cancer) and CESC (cervical squamous cell carcinoma, TMB
power ¼ 2.26, 1.6 times higher than the TMB power observed for
lung cancer). Among those, we think that cervical squamous cell

carcinoma is probably the most interesting cancer type to further
test the utility of TMB-high as a biomarker, as it has the highest overall
immunotherapy response rate [20%, mined from (8)]. The distribu-
tions of the most significant modulators are plotted in Supplementary
Fig. S4.

Testing these TMB power predictions, we performed a literature
survey of all the immunotherapy clinical trials with TMB and response
data of these nine cancer types. We were able to find such trials for five
out of nine cancer types (MESO, CHOL, PRAD, STAD, CESC) and
computed their observed TMB power. The correlation between the
TMB power predicted via our model and the one observed in the
literature is significant (Spearman Correlation¼ 1, P¼ 0.017; Fig. 3C;
and Pearson correlation¼ 0.93, P¼ 0.02). This testifies to the model’s
ability to order cancer types by the extent to which the model can
predict their TMB power.

We next compared our model performance to the only previous
published attempt to predict the TMB power (6). Their model is based
on a single feature - the strength of correlation between theCD8T-cells
abundance and neoantigen burden in a cancer type (termed as the
Neoantigen-CD8 correlation strength in our analysis). We first
observed that the Neoantigen-CD8 correlation strength is not signif-
icantly correlated with TMB power computed using either OS, PFS, or
ORR (Supplementary Fig. S5A–S5C) and the rank of our four mod-
ulators is higher than the Neoantigen-CD8 correlation strength in
all these cases (Supplementary Fig. S5D). Testing their model on our
data, we observed that the predictive performance of McGrail and
colleagues’s model is markedly lower than that of our model (it

Figure 3.

Predicting TMB power across cancer
types. A, The correlation between
observed TMB power (y-axis) and its
predicted value is based on M1 mac-
rophage and resting dendritic cell
levels. The best fit line is provided in
blue, where the shaded region
denotes the 95% confidence interval.
The Spearman correlation and signif-
icance are provided at the left top
corner. B, Predicted TMB power using
this model (y-axis) in 9 additional can-
cer types (x-axis), the blue dotted
horizontal line shows the TMB power
observed for NSCLC. C, The correla-
tion between observed TMB power
from the literature (y-axis) and its pre-
dicted value. The Spearman correla-
tion and significance are provided at
the left top corner.
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achieves Spearman correlations between predicted and observed TMB
power based on OS, ORR, and PFS of 0.07, 0.18, and –0.09, respec-
tively, which are an order of magnitude lower than that of our model
Supplementary Fig. S5E and S5F).” Furthermore, our model also
showed better performance in a test set of five additional cancer types
that are not used to build our model (Performances of our model and
McGrail and colleague’s model in Spearman Rho are 1 versus 0.7,
respectively and Pearson correlation are 0.93 versus 0.6).

Testing the robustness of our top modulators
We next test the robustness of our top modulators by repeating the

identification process in a series of different contexts including (i)
removing outliers, (ii) a different high-TMB cutoff, and (iii) only
considering the same stage andpatient sex distribution in both cohorts.
We first repeated our analysis removing PAAD, an outlier in Fig. 2D,
and observed concordant findings (Fig. 4A; Supplementary Fig. S6),
We next repeated our analysis considering the top 20% percentile of
patients as high-TMB and found that 3 of 4 of our top modulators are
still among top-ranked (Fig. 4B; Supplementary Fig. S7). We next
repeated our analysis by only considering TCGA patients’ metastatic

disease with the same proportion as that reported for the MSKCC
cohort to consider comparable ICB-treated patients’ disease stage in
the two cohorts, MSKCC and TCGA (with same patients’ sex distri-
bution as well). We first note an overall consistent rank of all the
modulators compared to the initial ranking (Spearman Rho ¼ 0.44,
P < 0.08). Among the two of our initial top modulators that can be
computed in this cohort, our top negative modulator identified in the
original analysis, the resting dendritic cell is among the top ones
(rank ¼ 2nd; Fig. 4C; Supplementary Fig. S8).

Going beyond cancer types-levels, we next tested whether, within a
cancer type, our modulators can stratify subgroups of patients’ where
high-TMB would be predictive of ICB response in four different
cohorts (12, 14–17). We find that the predictive power of our mod-
ulators identified across cancer types does not translate to stratifying
subgroups of patients that have distinct TMB power within a cancer
type (Fig. 4D–F). Thus, the predictive power of the modulators of
TMB power is quite analogous to that of TMB-high levels themselves,
which while it is a strong determinant of response to immunotherapy
across different cancer types, it is a much weaker determinant of
response of individual patients within a given cancer type (18, 19).

Figure 4.

Testing the robustness of topmodulators in different contexts.A, The strength of correlationwith TMBpower using ORR (x-axis) and OS/PFS (y-axis) is provided for
each modulator, where the green text (highlighted and labeled) represent the positive modulators identified using our initial pipeline and the red text (highlighted
and labeled) represents the negativemodulatorswhenwe repeat the analysis after removing outliers (pancreatic cancer).B andC, Shows the resultswhen repeating
the analysis using different cut-off points of TMB-high (TMB-high ≥ 20 percentile) in each cancer type (B), and similarly, when the analysis is repeated after only
considering the same stage and patient’s sex distributions in both cohorts (C). D–F, The difference in TMB power between subgroups within a cancer type based on
high versus low levels (top vs. bottom 50% quantile) of the top modulators: M1 macrophage and resting dendritic cell, in melanoma, Liu and colleagues (D; ref. 14),
melanoma, Riaz and colleagues (E; ref. 15), and bladder cancer, Mariathasan and colleagues (F; ref. 16). The TMB power is not shown for a melanoma, Hugo and
colleagues (17), as the Cox regression did not converge.

Determining the Ability of TMB to Predict ICB Response

AACRJournals.org Cancer Res; 82(11) June 1, 2022 2081

D
ow

nloaded from
 http://aacrjournals.org/cancerres/article-pdf/82/11/2076/3152648/2076.pdf by Francis C

rick Institute, is@
crick.ac.uk on 09 June 2022



Discussion
We identified two key immune-related factors whose levels

are associated with the ability of TMB-high biomarkers to stratify
immunotherapy responders. Specifically, wefind that high levels ofM1
macrophages and low resting dendritic cells are predictive of cancer
types with high TMB power. Aligned with these findings, M1 macro-
phages have been reported to provide an antitumor environment by
fostering an inflammation response against tumor activating CD8 T
cells, and thus their higher levels would likely augment the response to
immunotherapy (20). In contrast, resting dendritic cells provide a pro-
tumor environment by inducing tolerance to tumor antigens via
inducing T cell death or an anergic state (long-term inactivated state)
or suboptimal priming, and thus their higher levels would likely
suppress the response to immunotherapy (21, 22). Our approach
leverages existing data to (i) prioritize cancer indications for trials
that investigate whether TMB is an effective biomarker in a new, yet
unexplored or under-explored, cancer types (ii) how TMB might be
combinedwith other variables to arrive at amore predictive biomarker
of this latter task.

One limitation of our study is that our analysis is based on immune
factors computed by deconvolution of bulk tumor data, which even
though nowbeing an accepted practice employed inmany studies, only
reflects estimations of different cell populations in the TME. Second,
we should note that our analysis combined data on patients receiving
different formulations of anti-PD1 and anti-PDL1 (aiming to increase
the statistical power of the analysis), whereas the FDA has approved to
date, only the usage of a high-TMB biomarker for the treatment of
pembrolizumab, a specific anti-PD1. Consequently, we expect that our
results would be further refined as single cell-based measurements of
immune cells abundance and activity in different cancer types are
computed, including the application of recently developed expression
deconvolution software tools to obtain a better estimation of TME
immune factors in each cancer type (9, 23).

We note that the three related measures of mutation counts, log10
(MB), mutational burden, and neoantigen burden are correlated.
While two of these pairs are strongly correlated but not entirely so

(Spearman correlation between log10 MB and Mutational Burden:
0.81, log10MB, andNeoantigenBurden: 0.79), the correlation between
Mutational Burden and Neoantigen Burden is indeed almost perfect
(Spearman Rho ¼ 0.99).
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