Supporting Information for:

Site-Specific Characterization of D-Amino Acid-Containing Peptide Epimers by Ion Mobility Spectrometry

Chenxi Jia, Christopher B. Lietz, Qing Yu, and Lingjun Li*

School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, WI

Correspondence: Professor Lingjun Li, School of Pharmacy and Department of Chemistry, University of Wisconsin–Madison, 777 Highland Avenue, Madison, Wisconsin 53705-2222 E-mail: lli@pharmacy.wisc.edu Fax: +1-608-262-5345

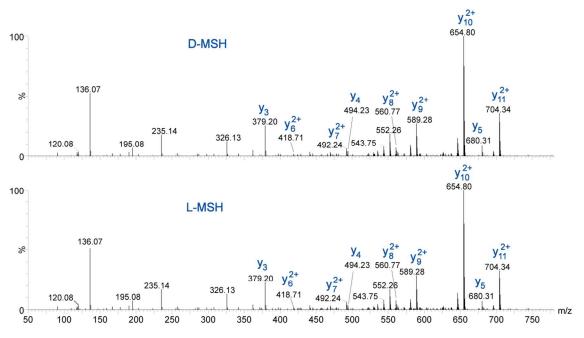
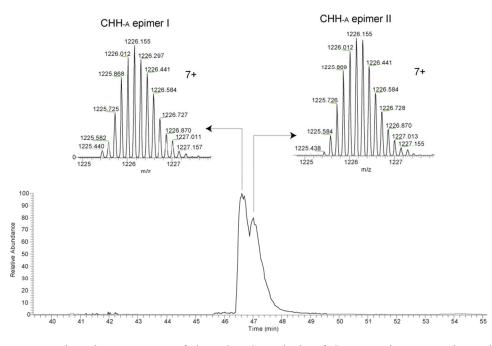
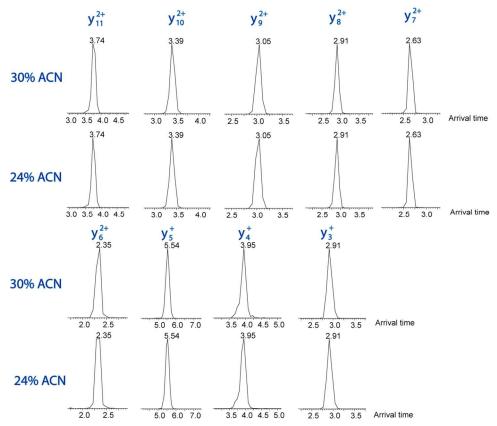




Figure S-1. CID MS/MS spectra of the D- and L-MSH peptides acquired from LC-MS/MS.

Figure S-2. Extract ion chromatogram of the LC-MS analysis of CHH_A epimers I and II. The two inset panels show the isotopic distributions of the two epimers. They show the same mass, but are eluted at different retention times.

Figure S-3. Arrival time distributions of fragment ions of L-MSH in 30% and 24% acetonitrile/water (0.1% formic acid). The arrival times of these fragment ions are identical under the two solvent conditions.

	D-MSH	L-MSH
$[M+3H]^{3+}$	340.3 ± 0.4	347.2 ± 0.4
y11 ²⁺	294.1 ± 0.2	294.7 ± 0.1
$y_{10}^{2^+}$	277.4 ± 0.2	277.2 ± 0.1
y9 ²⁺	260.2 ± 0.2	<mark>259.0± 0.1</mark>
$y_8^{2^+}$	252.7 ± 0.2	<mark>252.9 ± 0.1</mark>
y ₇ ²⁺	236.8 ± 0.1	<mark>237.5 ± 0.3</mark>
y_{6}^{2+}	216.7 ± 0.3	<mark>217.6± 0.0</mark>
y5 ⁺	173.5 ± 0.1	<mark>177.8 ± 0.3</mark>
y_4^+	<mark>143.7 ± 0.0</mark>	<mark>143.4 ±0.0</mark>
y ₃ ⁺	$\frac{118.9 \pm 0.0}{118.9 \pm 0.0}$	118.8 ± 0.0

Table S1. Measured CCS_{He} of precursor and fragment ions of D/L-MSH. Standard deviations reflect measurement variation. Absolute errors are approximately 3.5%.

		<i>a</i>
Table S2. Tryptic peptides of CHHs iden	ntified by bottom-up sequ	encing approaches."

CHH_{-A}

Tryptic peptides	Position	-10logP	mass	m/z	ppm	Elution time /min
<i>p</i> QVFDQAC*K	CHH _{-A} [1-8]	84.06	977.43	489.71	-23.7	21.42, 26.69
pQVFDQAC*KGVYDRNLFK	CHH _{-A} [1-17]	108.94	2069.99	690.99	-22.3	33.21,35.70
GVYDRNLFK	CHH _{-A} [9-17]	86.12	1110.58	556.28	-24.9	21.82
KLDRVC*EDC*YNLYR	CHH _{-A} [18-31]	124.97	1902.87	635.28	-27.2	20.12
VC*EDC*YNLYR	CHH _{-A} [22-31]	115.62	1390.56	696.27	-25.8	20.99
VC*EDC*YNLYRKPFVATTC*R	CHH _{-A} [22-40]	103.51	2451.11	613.77	-28.1	24.77
KPFVATTC*RENC*YSNWVFR	CHH _{-A} [32-50]	124.26	2434.13	609.52	-27.2	29.83
ENC*YSNWVFR	CHH _{-A} [41-50]	134.61	1373.58	687.78	-22.0	32.14
CHH _{-B} Tryptic peptides	Position	-10logP	mass	m/z	ppm	Elution time /min
<i>p</i> QVFDQAC*K	CHH _{-B} [1-8]	84.06	977.43	489.71	-23.7	21.42, 26.69
pQVFDQAC*KGVYDRNLFK	CHH _{-A} [1-17]	108.94	2069.99	690.99	-22.3	33.21, 35.70
GVYDRNLFK	CHH _{-B} [9-17]	86.12	1110.58	556.28	-24.9	21.82
LNRVC*EDC*YNLYR	CHH _{-B} [19-31]	135.91	1773.79	592.25	-27.0	20.99
VC*EDC*YNLYRKPFIVTTC*R	CHH _{-B} [22-40]	115.93	2493.16	624.28	-26.0	27.94
KPFIVTTC*R	CHH _{-B} [32-40]	111.98	1120.60	561.29	-23.6	17.61
KPFIVTTC*RENC*YSNRVFR	CHH _{-B} [32-50]	35.36	2446.19	612.54	-29.8	22.48
ENC*YSNRVFR	CHH _{-B} [41-50]	45.18	1343.60	448.86	-27.8	16.78

^{*a*} The two CHHs share parts of sequences, so some tryptic peptides are the same in the two tables.

n	mass (Da)	charge	m/z	Ω_{He} (Å ²)
11	799.42	2	400.72	197
12	870.46	2	436.24	208
13	941.49	2	471.75	220
14	1012.53	2	507.27	232
15	1083.57	2	542.79	243
16	1154.60	2	578.31	255
17	1225.64	2	613.83	265
18	1296.68	2	649.35	276
19	1367.72	2	684.87	287
20	1438.75	2	720.38	297
21	1509.79	2	755.90	308
22	1580.83	2	791.42	317
23	1651.86	2	826.94	327
24	1722.90	2	862.46	337
25	1793.94	2	897.98	348
26	1864.98	2	933.50	358
21*	1509.79	3	504.27	361
22	1580.83	3	527.95	373
23	1651.86	3	551.63	386
24	1722.90	3	575.31	399
25	1793.94	3	598.99	412
26	1864.98	3	622.67	425
27	1936.01	3	646.35	438
28	2007.05	3	670.02	452
29	2078.09	3	693.70	465
30	2149.12	3	717.38	479
31	2220.16	3	741.06	490
32	2291.20	3	764.74	502
33	2362.24	3	788.42	516

Table S3. The ions used for collision cross section calibration.

* The ion was not detected at all wave velocities.

EXPERIMENTALS

Collision Cross Section Measurement

Gas-phase helium collision cross section values (CCS_{He}) for all of the ions described in the manuscript were measured on the Synapt G2 travelling-wave ion mobility mass spectrometer with nitrogen buffer gas. CCS_{He} calibration was performed using combined methods from Bush et al.¹ and Ruotolo et al.² to obtain accurate measurements. Polyalanine peptides (Sigma Aldrich) were dissolved in 49.5/49.5/1 water/ACN/formic acid at a concentration of 10 μ g/mL. A separate calibration spectrum was acquired for each of the following wave velocities (m/s): 600, 700, and 800. The wave height was kept constant at 40 V. Following acquisitions, the log of the arrival times (t_D) were plotted against the log of the reduced CCS todetermine the constants needed to calculate unknown Ω_{He} . The equations in the following paragraph were obtained from previously published sources.²⁻³ In travelling wave ion mobility, t_D and CCS_{He} (Ω_{He}) are non-linearly related by Equation 1:

$$\Omega_{He} = \frac{ze}{16} \left[\frac{18\pi}{k_b T} \left(\frac{1}{m} + \frac{1}{M_{He}} \right) \right]^{1/2} \frac{760}{P} \frac{T}{273.2} \frac{1}{NL} A t_D^B$$
(1)

The variables z and e make up the charge of the analyte, T is the temperature of the drift gas, M_{He} is the mass of the helium drift gas, m is the mass of the analyte, P is the pressure inside the drift cell, N is the number density of drift gas molecules, L is the length of the drift cell, and k_b is Boltzmann's constant. A and B are constants that arise from the non-uniformity of the travelling-wave electric field and must be empirically determined by calibration.

The t_D for each calibration standard was converted to corrected arrival time (t_D') by Equation 2 to account for the m/z-dependent travel time through the Synapt G2's ion optics:

$$t_D' = t_D - \left(\frac{C\sqrt{m/z}}{1000}\right) \tag{2}$$

C is the delay constant set by the MS control software. The reduced collision cross section (Ω ') was normalized for mass and charge contributions and calculated by Equation 3:

$$\Omega' = \frac{\Omega_{He}}{z \left(\frac{1}{m} + \frac{1}{M_{He}}\right)^{1/2}}$$
(3)

Plotting the natural log of Ω ' versus the natural log of t_D ' yielded a linear best-fit line, the slope of which is B from Equation 1. From here, the doubly corrected arrival time (t_D '') was calculated by Equation 4:

$$t_{D}'' = z \left(t_{D}' \right)^{B} \left(\frac{1}{m} + \frac{1}{M_{He}} \right)^{1/2}$$
(4)

A final plot was constructed with t_D " on the x-axis and Ω_{He} on the y-axis. The equation of the best-fit line was then used to calculate the Ω_{He} of the unknown peptides and peptide fragments.

References

- (1) Bush, M. F.; Campuzano, I. D.; Robinson, C. V. Anal Chem 2012, 84, 7124.
- (2) Ruotolo, B. T.; Benesch, J. L.; Sandercock, A. M.; Hyung, S. J.; Robinson, C. V. *Nat Protoc* **2008**, *3*, 1139.
- (3) Smith, D. P.; Knapman, T. W.; Campuzano, I.; Malham, R. W.; Berryman, J. T.; Radford, S.
- E.; Ashcroft, A. E. Eur J Mass Spectrom (Chichester, Eng) 2009, 15, 113.