Organometallic titanocene-gold compounds as potential chemotherapeutics in renal cancer. Study of their protein kinase inhibitory properties.

Jacob Fernández-Gallardo,^a Benelita T. Elie,^a Florian J. Sulzmaier,^{b,†} Mercedes Sanaú,^c Joe W. Ramos,^{*b} and María Contel^{*a,b}

Supporting Information

Contents:

1. Crystallographic Data for Compound 3	2		
2 . ¹ H, ³¹ P{ ¹ H} and ¹³ C{ ¹ H} NMR spectra for compounds 4 , 5 , and 7	4		
3 . Stability of compounds 3 and 5 in d ⁶ -DMSO and in d ⁶ -DMSO:D ₂ O (50:50) solution overtime assessed by			
³¹ P{ ¹ H}and ¹ H NMR spectroscopy	9		
4 . UV-Vis spectra of compounds 3 and 5 in CH_2Cl_2 , in DMSO and in 1%DMSO-PBS solution overtime	12		
5. Mass spectra (ESI+) of compounds 3 and 5 in in 1%DMSO-PBS solution overtime (24 h)	15		
6. Cell death experiments (Annexin V/PI assay) for compound 3 at 1 and 12 h and compound 5 at			
12 and 24 h	20		

1. Crystallographic Data for Compound 3

formula	$C_{40}H_{36}Au_2Cl_8O_4P_2Ti$
fw	1368.06
T [K]	293 (2)
$\lambda \left(Mo_{K\alpha} ight) [m \AA]$	0.71073
crystal system	Triclinic
space group	P-1
<i>a</i> [Å]	10.298(2)
<i>b</i> [Å]	14.924(3)
<i>c</i> [Å]	15.579(3)
α [°]	84.15(3)
β [°]	80.48(3)
γ [^o]	79.55(3)
V [Å] ³	2315.7(8)
Ζ	2
D_{calcd} (g cm ⁻³)	1.962
μ (mm ⁻¹)	7.057
GOF	1.067
$\mathbf{R}_1[I > 2\sigma]$	0.0599
wR ₂ (all data)	0.1593

Table S1. Crystal Data and Structure Refinement for compound 3

Figure S1. ORTEP views of the molecular structure of **3** showing the labelling scheme. Labelling for hydrogen atoms is omitted for clarity.

2. $^{1}H,\,^{31}P\{^{1}H\}$ and $^{13}C\{^{1}H\}$ NMR spectra for compounds 4, 5, and 7 in CDCl_3

Figure S3. ${}^{31}P{}^{1}H$ NMR spectrum of compound 4 in CDCl₃.

Figure S5. ¹H NMR spectrum of compound 5 in CDCl₃.

Figure S8. ¹³C{¹H} NMR spectrum of compound 5 in CDCl₃.

Figure S10. ${}^{31}P{}^{1}H$ NMR spectrum of compound 7 in CDCl₃.

Figure S11. ¹³C{¹H} NMR spectrum of compound 7 in CDCl₃.

3. Stability of compounds 3 and 5 in d⁶-DMSO and in d⁶-DMSO:D₂O (50:50) solution overtime assessed by ${}^{31}P{}^{1}H{}$ and ${}^{1}H$ NMR spectroscopy.

Figure S12. ¹H NMR spectrum in DMSO-d⁶. Decomposition of compound **3** over time. $t_{1/2}=10^{\circ}$.

Figure S13. ³¹P{¹H} NMR spectrum in DMSO-d⁶. Decomposition of compound 3 over time. $t_{\frac{1}{2}}=5^{\circ}$.

Figure S14. ¹H NMR spectrum in DMSO-d⁶. Decomposition of compound 5 over time. $t_{1/2}=5^{\circ}$.

Figure S15. ³¹P{¹H} NMR spectrum in DMSO-d⁶. Decomposition of compound 5 over time. $t_{1/2} < 5^{\circ}$.

Figure S16. ¹H NMR spectrum in 50:50 DMSO-d⁶/D₂O. Decomposition of compound **3** over time. $t_{\frac{1}{2}}=24h$.

Figure S17. ³¹P{¹H} NMR spectrum in 50:50 DMSO-d⁶/D₂O. Decomposition of compound 3 over time. $t_{\frac{1}{2}}=48h$.

4. UV-Vis spectra of compounds 3 and 5 in CH₂Cl₂, in DMSO and in 1%DMSO-PBS solution overtime.

Figure S18. UV-visible spectrum of compound **3** $(3.2 \times 10^{-5} \text{ M})$ in dichloromethane.

Figure S19. UV-visible spectrum of compound 3 $(3.2 \times 10^{-5} \text{ M})$ in DMSO recorded over time.

Figure S20. UV-visible spectrum of compound **3** (3.2x10⁻⁵ M) in 1:99 DMSO/PBS-1X (pH 7.4) recorded over time, incubation at RT.

Figure S21. UV-visible spectrum of compound **5** $(5.6 \times 10^{-5} \text{ M})$ in dichloromethane.

Figure S22. UV-visible spectrum of compound 5 $(5.6 \times 10^{-5} \text{ M})$ in DMSO recorded over time.

Figure S23. UV-visible spectrum of compound **5** (5.6x10⁻⁵ M) in 1:99 DMSO/PBS-1X (pH 7.4) recorded over time, incubation at RT.

5. Mass spectra (ESI+) of compounds 3 and 5 in 1%DMSO-PBS solution overtime (24 h)

Figure S24. MS ESI+ of compound 3 in 1%DMSO-PBS solution at t=0.

Figure S25. MS ESI+ of compound 3 in 1%DMSO-PBS solution at t=24h.

Figure S26. Magnification of peak at [m/z]: 916.0 $[Ti \{AuL\} \{AuL'\} Cl_2]^{2+}$ (L= PPh₂-CH-CO; L'= PPh-CH-CO₂) in MS ESI+ of compound **3** in 1%DMSO-PBS solution at t=0. Insert: theoretical isotopic distribution.

Figure S27. Magnification of peak at [m/z]: 916.0 [Ti{AuL}{AuL}]²⁺ (L= PPh₂-CH-CO; L'= PPh-CH-CO₂) in MS ESI+ of compound **3 in** 1%DMSO-PBS solution at t=24h. Insert: theoretical isotopic distribution.

Figure S28. Magnification of peak at [m/z]: 519. 0 [Au{(CH₃)₂CHO}{PPh₃} + H]⁺ in MS ESI+ of compound **3** in 1%DMSO-PBS solution at t=0. Insert: theoretical isotopic distribution.

Figure S29. Magnification of peak at [m/z]: 519.0 [Au{(CH₃)₂CHO} {PPh₃} + H]⁺ in MS ESI+ of compound **3** 1%DMSO-PBS solution at t=24h. Insert: theoretical isotopic distribution.

Figure S30. ESI+ mass spectra of compound 5 in 1%DMSO-PBS solution at t=0.

Figure S31. ESI+ mass spectra of compound 5 in 1%DMSO-PBS solution at t=24h.

Figure S32. Magnification of peak at [m/z]: 916.0 $[Cp_2Ti{AuClL}{AuClL'}]^+$ (L= PHO-C₆H₄-CO₂; L'= PH(OH)-C₆H₄-CO₂) in MS ESI+ of compound **5** in 1%DMSO-PBS solution at t=0. Insert: theoretical isotopic distribution.

Figure S33. Magnification of peak at [m/z]: 916.0 [Cp₂Ti{AuClL}{AuClL'}]⁺ (L= PHO-C₆H₄-CO₂; L'= PH(OH)-C₆H₄-CO₂) in MS ESI+ of compound **5** in 1%DMSO-PBS solution at t=24h. Insert: theoretical isotopic distribution.

6. Cell death experiments (Annexin V/PI assay) for compound 3 at 1 and 12 h and compound 5 at 12 and 24 h

Figure S34. Cell death assays on Caki-1 cells induced by **3** (10 μM) measured by using two-colour flow cytometric analysis, after 1 h of incubation. 1%DMSO is vehicle alone control and Staurosporine is a known inducer of apoptosis as positive control.

Figure S35. Cell death assays on Caki-1 cells induced by **3** and **5** (10 μM) measured by using twocolour flow cytometric analysis, after 12 h of incubation. 1%DMSO is vehicle alone control and Staurosporine is a known inducer of apoptosis as positive control.

Figure S36. Cell death assays on Caki-1 cells induced by **5** (10 μM) measured by using two-colour flow cytometric analysis, after 24 h of incubation. 1%DMSO is vehicle alone control and Staurosporine is a known inducer of apoptosis as positive control.