Mechanistic Insight Into the Photoredox Catalysis of AntiMarkovnikov Alkene Hydrofunctionalization Reactions

Nathan A. Romero and David A. Nicewicz*
Department of Chemistry, University of North Carolina at Chapel Hill, New Venable
Laboratories, Chapel Hill, NC 27599-3290, USA
E-mail:nicewicz@unc.edu

Table of Contents
I. General Information: Methods and Materials S2-S4
II. Spectroelectrochemical Measurements S5
III. Electrochemical Measurements S5-S6
IV. Photophysical Measurements: General. S7
V. Emission Studies S7-S10
VI. Stern-Volmer Analyses S10-S12
VII. Laser Flash Photolysis Studies S13-S24
A. Mes-Acr ${ }^{+}$ S13-S14
B. Mes-Acr ${ }^{+} /$alkenes (alkene Cation Radical detection) S15-S19
C. Studies involving Mes-Acr•
i. Chemical reduction of Mes-Acr ${ }^{+}$using CoCp_{2} S20
ii. Mes-Acr• consumption by LFP-generated PhS• S21-S24
VIII. Disulfide Exchange Experiments S25-S27
IX. Reaction Progress Monitoring (preparative scale kinetic experiments) S28-S29
A. Substrate $/ \mathrm{PhSH} /(\mathrm{PhS})_{2}$ conversion S28
B. UV-Vis Mes-Acr ${ }^{+} / \mathrm{Mes}-\mathrm{Acr} \cdot$ conversion S29
X. Determination of Equilibrium Constant for DA complex formation S30-S31
X. Determination of Quantum Yield of Reaction S31
XI. Computational Details S32-S35
XII. References S36

I. General Information

General Methods. All synthetic manipulations were carried out as reported by our laboratory previously, ${ }^{1}$ using air-free techniques when appropriate. The purity of all synthesized materials was verified by ${ }^{1} \mathrm{H}$ NMR to be $>97 \%$ (Bruker model DRX-400, 500, or 600 spectrometer). Chemical shifts are referenced to residual $\mathrm{CHCl}_{3}(7.26 \mathrm{ppm})$ in the solvent for proton signals and to the carbon resonance (77.16 ppm) of the solvent for ${ }^{13} \mathrm{C}$ signals as parts per million downfield from tetramethylsilane. Unless otherwise noted, all solutions used in spectroscopic measurements were prepared in a dry, nitrogen filled glovebox in which O_{2} levels were kept below 2.0 ppm at all times. Preparative photolysis experiments utilized a single Par38 Royal Blue Aquarium LED lamp (Model \# 6851) fabricated with high-power Cree LEDs as purchased from Ecoxotic (www.ecoxotic.com). For all photolyses, reactions were stirred using a PTFE coated magnetic stir bar on a magnetic stir plate. The lamp was positioned approximately 10 cm from the reaction vial.

Materials. Spectrophotometric grade acetonitrile (MeCN) and 1,2-dichloroethane (DCE) were purchased from EMD Millipore and were distilled from $\mathrm{P}_{2} \mathrm{O}_{5}$, sparged with dry Nitrogen or Argon gas for at least 1 hour, and immediately transferred to the glovebox. Solid samples were purified by recrystallization unless otherwise specified. Authentic 9-mesityl-10methylacridinium tetrafluoroborate $\left(\mathrm{Mes}-\mathrm{AcrBF}_{4}\right)$ was synthesized as reported previously, ${ }^{2}$ and highly pure samples were obtained after three successive recrystallizations using an acetonitrile/methanol mixture $(\mathrm{MeCN} / \mathrm{MeOH}=\sim 5: 1)$ to dissolve the acridinium at room temperature, followed by careful layering with an equal volume of diethyl ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$. After an initial period of crystallization, an excess of $\mathrm{Et}_{2} \mathrm{O}$ was further layered in order to promote additional crystallization. The solid was collected by vacuum filtration and dried under vacuum for 24 hours. $\operatorname{Bis}\left(\eta^{5}\right.$-cyclopentadienyl)cobalt (cobaltocene $=\mathbf{C o C p} \mathbf{p}_{2}$) was purchased from Strem and used without further purification. Diphenyl disulfide $(\mathbf{P h S})_{2}$ was recrystallized from ethanol/hexanes and dried under vacuum for 24 hours for all studies except crossover experiments. In crossover studies, diphenyl disulfide $(\mathbf{P h S})_{2}$ and di- p-tolyl disulfide (4-Me-PhS $)_{2}$ were used as received from Sigma-Aldrich ($>98 \%$ pure). Thiophenol (PhSH), Anethole ($(E)-1-$ methoxy-4-(prop-1-en-1-yl)benzene, An) and β-methylstyrene ((E)-prop-1-en-1-ylbenzene, $\boldsymbol{\beta M S})$ were purchased from Sigma-Aldrich and purified by distillation. Other materials used in Stern-Volmer experiments (5-methyl-2,2-diphenylhex-4-enoic acid, 5-methyl-2,2-diphenylhex-4-en-1-ol, 2-phenylmalononitrile (PMN)) were authentic samples used in a previous report from our laboratory. ${ }^{1}$

Synthesized Materials:

9-Xylyl-10-methylacridinium tetrafluoroborate ($\mathbf{X y l}-\mathrm{AcrBF}_{4}$) was synthesized according to the previously specified method for 9-mesityl-10-methylacridinium tetrafluoroborate, ${ }^{2}$ with 2-bromo-1,3-dimethylbenzene used in place of 2-bromo-1,3,5-trimethylbenzene. Xyl-
$\mathbf{A c r}^{+}$was recrystallized from $\mathrm{MeCN} / \mathrm{MeOH}$ in the same way as Mes-Acr ${ }^{+}$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chemical shifts are consistent with those reported for the iodide salt in DMSO- d_{6}. ${ }^{3}$
${ }^{1} \mathrm{H}$ NMR (600 MHz , Chloroform-d) $\delta 8.84(\mathrm{dd}, J=9.4,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.46-8.40(\mathrm{~m}, 2 \mathrm{H}), 7.84-7.77(\mathrm{~m}, 4 \mathrm{H})$, $7.51(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.11(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $162.14,141.78,139.62,136.19,132.47,130.45,128.79,128.64,128.43,125.80,119.63,39.28,20.27$.
(\boldsymbol{E})-5-Phenylpent-4-en-1-ol ($\mathbf{R - O H}$) was synthesized from benzaldehyde according to the procedure reported previously for the synthesis of 5-aryl-2,2-dimethylpent-4-en-1-ols. ${ }^{1}$ The ${ }^{1} \mathrm{H}$ NMR chemical shifts match those reported in the literature. ${ }^{4}$
${ }^{1} \mathrm{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.39-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{dd}, J=8.6,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.45(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{dt}, J=15.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $1.79(\mathrm{p}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.32(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H})$.

Tert-Butyldimethyl-(E)-(5-phenylpent-4-enyloxy)silane (R-OTBDMS) was synthesized from the corresponding alkenol as reported previously, ${ }^{4}$ and the ${ }^{1} \mathrm{H}$ NMR matches the reported chemical shifts. ${ }^{4}$
${ }^{1} \mathrm{H}$ NMR (600 MHz, Chloroform- d) $\delta 7.35(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.41(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{dt}, J=15.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.72$ (p, J=6.3 Hz, 2H), $0.93(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H})$.

10-Methylacridinium tetrafluoroborate $\left(\mathrm{AcrBF}_{4}\right)$ was synthesized by addition of acridine to trimethyloxonium tetrafluoroborate $\left(\mathrm{Me}_{3} \mathrm{OBF}_{4}\right)$ in DCE. The salt was precipitated with $\mathrm{Et}_{2} \mathrm{O}$ and recrystallized repeatedly from $\mathrm{MeCN} / \mathrm{MeOH}$ and $\mathrm{Et}_{2} \mathrm{O}$. The ${ }^{1} \mathrm{H}$ NMR is consistent with the literature report in DMSO- $d_{6} .{ }^{5}$
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.95(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.22-8.14(\mathrm{~m}, 2 \mathrm{H}), 8.07(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H})$, 7.92 (br s, 1H), 7.73 (t, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$), 4.47 ($\mathrm{s}, 3 \mathrm{H}$).

10-Methylacridinium Chloride ($\mathbf{A c r C l}$) was employed in the determination of fluorescence quantum yield of Mes-AcrBF4. AcrCl was obtained by dissolving $\mathbf{A c r B F}_{4}$ in concentrated aqueous HCl , and crystals were collected after addition of ethanol/diethyl ether (1:1). After recrystallizing twice from ethanol, analytically pure material was used in subsequent photophysical studies. The absolute fluorescence quantum yield of $\mathbf{A c r C l}$ in $\mathrm{H}_{2} \mathrm{O}$ is widely accepted to be $1.0,{ }^{6}$ and the quantum yield of $\mathbf{M e s}-\mathbf{A c r B F}_{4}$ in DCE reported herein is measured relative to the quantum yield of AcrCl.

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for Xyl-AcrBF $4\left(\mathrm{CDCl}_{3}\right)$:

II. Spectroelectrochemical Measurements

Spectroelectrochemical measurements were performed in a N_{2} filled glovebox with the use of a Pine Instruments honeycomb spectroelectrochemical cell in combination with the Wavenow potentiostat from the same manufacturer. Absorption spectra were collected using an Agilent Cary 60 spectrophotometer equipped with optical fiber manufactured by Ocean Optics. The spectrum for neutral Mes-Acr• was recorded by performing bulk electrolysis on a solution of Mes-AcrBF $4(93 \mu \mathrm{M})$ in DCE with 0.1 M tetrabutylammonium tetrafluoroborate $\left(\mathrm{TBABF}_{4}\right)$ as a supporting electrolyte. When the potential was fixed at -1.0 V (nominal) using a platinum working electrode, complete conversion of Mes-Acr ${ }^{+}$to Mes-Acr• occurred within 30 seconds. The absorbance spectrum of Mes-Acr• at complete conversion was converted to molar absorptivity (ε) using a reference value of $6340 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$ at 430 nm for Mes-Acr ${ }^{+}$in DCE. The calculated molar absorptivity at 520 nm is $6610 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$. The difference spectrum for Mes-Acr• (Figure S10, red) was obtained by subtraction of the absorption spectrum prior to electrolysis from the spectrum after complete conversion to Mes-Acr•

Figure S1. UV-Vis absorbance spectra collected before (red) and after (blue) bulk electrolysis at a fixed potential of -1.0 V (nominal) on a $93 \mu \mathrm{M}$ solution of Mes-AcrBF ${ }_{4}$ in DCE with 0.1 M TBABF_{4} as a supporting electrolyte.

III. Electrochemical Measurements

Cyclic Voltammetry was performed using a Pine Instruments Wavenow potentiostat with a standard three electrode setup (working: glassy carbon, reference: $\mathrm{Ag} / \mathrm{AgCl}$ in 3 M NaCl , counter: platinum). All measurements were taken in N_{2}-sparged MeCN with 0.1 M tetrabutylammonium hexafluorophosphate $\left(\mathrm{TBAPF}_{6}\right)$ as a supporting electrolyte where the analyte concentration was $5-10 \mathrm{mM}$. The potential was scanned from 1.0 V to a vertex potential
of 2.5 V in the forward direction at a sweep rate of $100 \mathrm{mV} / \mathrm{s}$, and the reverse sweep showed no indication of a reversible electrochemical event in all cases. The voltammograms shown below have been corrected by subtracting the background current of the electrolyte solution. The halfwave potential for irreversible oxidation is estimated at $E_{\mathrm{p} / 2}$ the potential where the current is equal to one-half the peak current of the oxidation event. The values for $E_{\mathrm{p} / 2}$ are referenced to SCE (Saturated Calomel Electrode) by adding ${ }^{+} 30 \mathrm{mV}$ to the potential measured against $\mathrm{Ag} / \mathrm{AgCl}(3 \mathrm{M} \mathrm{NaCl})$.

$$
\begin{aligned}
& E_{\mathrm{p} / 2}(\mathrm{v} . \mathrm{Ag} / \mathrm{AgCl}): \text { potential at }[(\text { peak current }) / 2] \\
& \left.E_{\mathrm{p} / 2} \mathrm{v} . \mathrm{SCE}\right)=E_{\mathrm{p} / 2}(\mathrm{v} . \mathrm{Ag} / \mathrm{AgCl})+0.030 \mathrm{~V}
\end{aligned}
$$

Figure S2. Cyclic voltammograms for the species examined in this study. The $E_{\mathrm{p} / 2}$ values shown on each plot referenced to $\mathrm{Ag} / \mathrm{AgCl}$ in 3 M NaCl . Addition of 30 mV to this value gives the potential v. SCE.

IV. Photophysical Measurements: General Information.

All photophysical measurements were taken in 4 ml (nominal volume) quartz cells sealed with a silicone rubber- or PTFE-lined screw cap purchased from Starna Cells, Inc. Solutions were made by dilution and thorough mixing of freshly prepared stock solutions of each component to a total volume of 4.0 mL unless otherwise stated. Background absorbance of the solvent is subtracted from the reported spectra. Duplicate experiments were performed to ensure the reproducibility of all results, and the reported data is the composite of all trials. In most cases, error is estimated from multiple trials and is represented as the maximum deviation from the average of multiple measurements.

Prior to laser flash photolysis or fluorescence experiments, each sample was evaluated by UVVis absorption to verify Mes-Acr ${ }^{+}$concentration. Where relevant, UV-Vis absorption spectra were measured during or after analysis to determine sample degradation. Steady state UV-Vis absorption spectra were recorded on a Varian Cary 50 spectrophotometer or a Hewlett-Packard 8453 Chemstation spectrophotometer. Molar extinction coefficients for Mes-AcrBF 4 in DCE were determined by concentration studies ($\varepsilon=6340 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$ at 430 nm), and all subsequent optical measurements employed sample concentrations in the region where the detector response was found to be linear with respect to absorbance at 430 nm .

V. Emission Studies

Time-resolved and steady state emission spectra were recorded using an Edinburgh FLS920 spectrometer. The temperature of the cell was controlled with a Quantum Northwest TLC 504 position cell holder where the temperature was modulated by a Peltier device. Unless otherwise specified, measurements were taken under ambient conditions. Each sample was stirred continuously with a magnetic stir bar. For collection of steady state fluorescence spectra, the excitation wavelength was set to 450 nm , and a 435 nm low pass optical filter was used to remove extraneous wavelengths from the excitation light. All spectra (1 nm step size, 5 nm bandwidth) are fully corrected for the spectral response of the instrument. Time resolved emission measurements (including Stern-Volmer quenching studies) were made by the timecorrelate single photon counting (TCSPC) capability of the same instrument (FLS920) with pulsed excitation light (444.2 nm , typical pulse width $=95 \mathrm{ps}$) generated by a Edinburgh EPL445 ps pulsed laser diode operating at a repetition rate of 5 MHz for $\mathbf{M e s}-\mathbf{A c r}^{+}$or 2 MHz for $\mathbf{X y l}-\mathbf{A c r}^{+}$and $\mathbf{A c r}^{+}$. The maximum emission channel count rate was less than 5\% of the laser channel count rate, and each data set collected greater than 7500 counts on the maximum channel. The fluorescence lifetime of Mes-AcrBF 4 was found not to depend on stirring, exposure to air, or repetition rate of the laser diode with detection at 500 or 515 nm (20 nm bandwidth). The lifetime of fluorescence was determined by reconvolution fit with the instrument response function using the Edinburgh FS900 software. In all cases, after reconvolution, fluorescence decay was satisfactorily fit with a monoexponential function of the form:

$$
\begin{equation*}
I_{t}=I_{0} e^{-t / \tau} \tag{eq.S1}
\end{equation*}
$$

where I is the intensity (counts), and τ is the mean lifetime of fluorescence. Fluorescence lifetimes for Mes-Acr ${ }^{+}$, Xyl-Acr ${ }^{+}$, and $\mathbf{A c r}^{+}$were measured with detection at 500 nm with solutions in 4.0 mL DCE at concentrations of $1.60 \times 10^{-5} \mathrm{M}$ in each. Repetition rate was 5 MHz for Mes-Acr ${ }^{+}$and $2 \mathbf{M H z}$ for $\mathbf{X y l}-$ Acr $^{+}$and $\mathbf{A c r}^{+}$.

NOTE: While both LE^{S} and CT^{S} (for Mes-Acr ${ }^{+}$) are reported to decay with a common lifetime of $\sim 6 \mathrm{~ns}$, we observe minor differences in the fluorescence lifetimes when the time resolved emission spectra are measured with the LP920 instrument (Figure S4, see Section VII below). Though CT^{S} appears to decay slightly faster than LE^{S} (Figure S 4), the difference is evidently minimal at 500 and 515 nm , such that the fluorescence decay at these wavelengths follows single exponential kinetics when measured by TCSPC. Nonetheless, we use this difference in fluorescence lifetime to approximate the contribution of CT^{S} to the steady state fluorescence. The red trace in Figure S 3 below is produced by normalizing the raw transient emission spectra at 20 ns and 60 ns at to 475 nm , and subtracting the spectrum at 60 ns from the spectrum at 20 ns. Thus, at 60 ns , the emission is almost entirely due LE fluorescence.

Figure S3. Steady state absorbance spectrum (red, measured on HP 8453 spectrophotometer) and emission spectra for Mes-Acr ${ }^{+}$(measured on LP920) where locally excited (LE, blue) and charge-transfer (CT, red) fluorescence contributions are separated. Excitation energy $E_{0,0}$ is determined to be 2.67 eV at the intersection of absorption and LE fluorescence spectra normalized to 1 . The calculated $E_{0,0}$ is identical to the value obtained by Verhoeven, et. al. ${ }^{7}$ Accordingly, the excited state reduction potential is calculated to be +2.12 V vs. SCE ($E_{\text {red }}^{\star}=$ $\left.E_{0,0}+E_{\text {red }}=(2.67-0.55) \mathrm{V}=+2.12 \mathrm{~V}\right)$.

Figure S4. Time resolved emission spectra for Mes-Acr ${ }^{+}$($50 \mu \mathrm{M}$, measured on LP920) normalized at 510 nm to show both LE and CT. Contribution of CT^{S} fluorescence (Figure S3) estimated by subtracting the emission spectrum at 60 ns from the emission spectrum at 20 ns .

Figure S5. Fluorescence lifetime of several 10-methyl-acridinium tetrafluoroborate salts measured at 515 nm by Time-Correlated Single Photon Counting (TCSPC). The decays are fit to a monoexponential (black traces) after reconvolution with the instrument response profile.

Figure S6. Raw variable temperature fluorescence spectra of XyI-Acr ${ }^{+}$in DCE.

Figure S7. Absorbance corrected fluorescence spectra for Mes-AcrBF \mathbf{H}_{4} and $\mathbf{A c r C I}$ for the determination of the relative quantum yield of fluorescence (Φ_{F}) for Mes-Acr ${ }^{+}$in DCE. The absolute quantum yield of fluorescence for $\mathbf{A c r C I}$ in $\mathrm{H}_{2} \mathrm{O}$ is $1.0,{ }^{6}$ and Φ_{F} for Mes-Acr ${ }^{+}$is calculated by dividing the integrated area beneath the blue curve by the integrated area beneath the red curve. Φ_{F} is calculated to be 0.08 or 8% for Mes-Acr ${ }^{+}$in DCE.

VI. Stern-Volmer Analyses

Stern-Volmer experiments were conducted with detection at 515 nm , where the solutions in DCE contained Mes- $\mathrm{AcrBF}_{4}\left(1.60 \times 10^{-5} \mathrm{M}\right)$ and a quencher ranging from 3.0×10^{-4} to $1.7 \times 10^{-2} \mathrm{M}$ in concentration. Comparison of UV-Vis absorption spectra taken before and after lifetime quenching studies verified that Mes-Acr ${ }^{+}$was unchanged. Stern-Volmer analysis was conducted according to the following relationship:

$$
\begin{equation*}
\frac{\tau_{o}}{\tau}=1+K_{S V}[Q]=1+k_{q} \tau_{o}[Q] \tag{eq.S2}
\end{equation*}
$$

where τ_{0} and τ are the fluorescence lifetime in the absence and presence of quencher Q, K_{SV} is the Stern-Volmer constant, k_{q} is the bimolecular quenching constant, and $[Q]$ is the concentration of quencher. An example of the fluorescence lifetime with increasing $[Q]$ is shown in Figure S 8 (Q $=$ anethole = An).

Calculation of Gibbs Energy for Photoinduced electron transfer:

$$
\begin{gathered}
\Delta G_{\mathrm{ET}}=f\left[E_{\mathrm{p} / 2}\left(\mathrm{Q} / \mathrm{Q}^{+\bullet}\right)-E_{\mathrm{p} / 2}(\text { Mes-Acr }+/ \text { Mes-Acr• })-E_{0,0}\right] \quad \text { (eq. S3) } \\
f=23.061 \mathrm{kcal} \mathrm{~mol}^{-1} \mathrm{eV}^{-1} \\
E_{\mathrm{p} / 2}(\text { Mes-Acr } / \text { Mes-Acr• })=-0.55 \mathrm{~V} \\
E_{0,0}=2.67 \mathrm{eV} \text { (see Figure S3) }
\end{gathered}
$$

Figure S8. Fluorescence lifetime of Mes-Acr ${ }^{+}$($16 \mu \mathrm{M}$ in DCE) measured at 515 nm at the concentrations of anethole (An) given.

Figure S9. Stern-Volmer plots of quenching of Mes-Acr ${ }^{+}(16 \mu \mathrm{M})$ fluorescence lifetime for each quencher studied. Fluorescence lifetime was measured by TCSPC with detection at $515 \mathrm{~nm}(20 \mathrm{~nm}$ bandwidth). The Stern-Volmer quenching constant, K_{sv}, was determined by the slope of the linear regression ($R^{2}>0.99$), where the bimolecular quenching constant, k_{q}, is equal to $K_{\mathrm{sv}} / \tau_{\mathrm{o}}$.

VII. Laser Flash Photolysis/Transient Absorption experiments

Laser Flash Photolysis/Transient Absorption was performed using the commercially available LP920 system by Edinburgh Instruments, Inc., and the identical system used has been described elsewhere. ${ }^{8}$ Laser excitation was provided by a pulsed Nd:YAG laser in combination with an optical parametric oscillator (OPO) for wavelength selection. Probe light was generated by a 450 W Xe lamp, which was pulsed at a rate of 1 Hz . Typical experiments employed laser excitation at $430 \mathrm{~nm}(3.5 \pm 0.1 \mathrm{~mJ}, 5-7 \mathrm{~ns}$ fwhm) with single wavelength transient absorption monitored at the indicated wavelengths (0.3-2.0 nm bandwidths) with a photomultiplier tube (PMT) and transient spectra recorded using a gated CCD at the indicated time delays (10 ns gate width) unless otherwise indicated. The probe light was passed through a 380 nm long-pass filter before reaching the sample to minimize higher energy excitation. A 435 nm long pass filter was placed between the sample and detector for single-wavelength measurements to suppress laser scatter. When collecting transient absorption spectra, only a 380 nm long-pass filter was applied to the probe light. For all records, the probe background was collected between laser shots and subtracted from the signal, and fluorescence background was subtracted where relevant. Transient absorption kinetics were fit with the equations described below using the Levenberg-Marquardt algorithm as implemented in Matlab.

A. With Mes-Acr ${ }^{+}$

Laser flash photolysis was performed on a $50 \mu \mathrm{M}$ solution of Mes-AcrBF ${ }_{4}$ in DCE. Transient absorption spectra were collected at time delays ranging from 20 ns to $200 \mu \mathrm{~s}$. Verhoeven reports first order (mono-exponential) decay ${ }^{7}$ of the microsecond transient for Mes- AcrPF_{6} in MeCN , while Fukuzumi reports second-order behavior of the transient. ${ }^{9}$ In our hands, wide variation was seen when applying a mono-exponential kinetic model to fit the decay of the microsecond transient at wavelengths ranging from 460 to 600 nm . Transient absorption studies conducted immediately after sample preparation in a rigorously oxygen-free glovebox yielded a first-order decay constant of $\tau=38 \mu \mathrm{~s}$ for the signal at 480 nm (Figure S11a). Yet, analysis of the residuals indicates that the mono-exponential model does not adequately describe the signal decay. Considering that Fukuzumi reports second order behavior due to formation of a triplet-triplet dimer, ${ }^{10}$ we attempted to fit the transient absorption at 480 nm with a second order kinetic model; however, a satisfactory fit could not be obtained (Figure S11b). Intriguingly, the best fit is obtained when the signal is fit to a kinetic model with both mono-exponential and secondorder terms (Figure S11c), possibly indicating that the triplet \mathbf{T} decays from both the triplettriplet dimer and the free triplet simultaneously. Importantly, decay of \mathbf{T} at longer wavelengths (i.e., wavelengths greater than $\sim 570 \mathrm{~nm}$) consistently follows monoexponential decay with $\tau_{\mathrm{T}}=$ $45 \mu \mathrm{~s}$, even while higher-order decay components are detected at 480 nm . Parallel studies with samples allowed to stand for greater than 1 hour saw in increasingly diminished lifetimes at all wavelengths, due to the difficulty in completely excluding O_{2} from screw-cap sealed cuvettes. With the cuvette open to air, measured lifetimes dropped below $\tau=5 \mu \mathrm{~s}$, consistent with the notion that the microsecond transient is a triplet.

Figure S10. Transient absorption spectrum (blue) for Mes-Acr ${ }^{+} \mathbf{T}(50 \mu \mathrm{M}$ in DCE) taken at 20 ns with laser excitation at 430 nm . Difference spectrum for Mes-Acr- shown as calculated from spectroelectrochemical records (dashed red).

Figure S11. Transient absorption kinetics for Mes-Acr ${ }^{+}$($50 \mu \mathrm{M}$ in DCE) measured at 480 nm with laser excitation at 430 nm . Fit to (a) monoexponential decay: $\Delta \mathbf{O D}_{\mathbf{4 8 0}}(\boldsymbol{t})=\boldsymbol{\alpha} e^{-\frac{t}{\tau_{\mathrm{T}}}}$, (b) second order decay: $\Delta \mathbf{0} \mathbf{D}_{\mathbf{4 8 0}}(\boldsymbol{t})=\frac{1}{\frac{1}{\alpha_{0}-2 \frac{t}{\tau}}}$ (second order fit: α_{0} fixed at 0.023 in order to obtain a reasonable fit), and (c) a mixed order kinetic model with exponential and second-order decay terms: $\Delta \mathbf{O D}_{480}(t)=\alpha_{1} e^{-\frac{t}{\tau_{1}}}+$ $\frac{1}{\frac{1}{\alpha_{2}}+2 \frac{t}{\tau_{2}}}$.

B. With Mes-Acr ${ }^{+} /$Alkene Cation Radicals:

Mes-Acr ${ }^{+}$concentration in DCE was $5.0 \times 10^{-5} \mathrm{M}$ (in all cases, absorbance at 430 nm was less than 0.5) for detection of styrenyl cation radicals, with a typical alkene concentration of 5 to $10 \times$ $10^{-3} \mathrm{M}$. Transient absorption spectra are corrected to subtract fluorescence at time delays where significant (i.e., $t<100 \mathrm{~ns}$). Transient emission spectra were recorded for Mes-Acr ${ }^{+}$using the same system with excitation at 430 nm (see above Figure S4).

Electron transfer from anethole to singlet Mes-Acr ${ }^{+*}$ is efficient; thus, the transient absorption spectrum at 500 ns contains little contribution from \mathbf{T}. The differential absorption spectrum for anethole-cation radical is calculated by normalizing the difference spectrum of Mes-Acr• at 520 nm to the observed transient absorption at 500 ns , then subtracting Mes-Acr• from the 500 ns spectrum. When LFP is conducted with Mes-Acr ${ }^{+}$and β-methylstyrene ($\boldsymbol{\beta M S}$), (E)-5-Phenylpent-4-en-1-ol (R-OH), and tert-Butyldimethyl-(E)-(5-phenylpent-4-enyloxy)silane (ROTBDMS), the transient absorption spectrum at 20 ns contains significant contribution from the T in addition to the feature on the low energy side corresponding to the styrenyl cation radical. The spectrum for \mathbf{T} (Figure S10, blue) was normalized to the observed absorbance at 460 nm (isosbestic point for Mes-Acr• difference spectrum), and this normalized \mathbf{T} spectrum was subtracted. The difference spectrum for Mes-Acr• was then normalized to the absorbance at 520 nm (under the assumption that the alkene cation radical does not possess a significant absorbance at 520 nm). Subtraction of the normalized Mes-Acr• spectrum yields the absorbance of the $\boldsymbol{\beta M S}$, R-OH, and R-OTBDMS cation radicals.

The lifetime of each cation radical was determined by analysis of the single wavelength kinetic decay at 590 nm . In all cases, the signal at 590 nm contains a contribution from \mathbf{T}, which decays with a time constant $\tau_{\mathrm{T}}=45 \mu \mathrm{~s}$, relatively unchanged from records where alkenes are absent. For $\boldsymbol{\beta M S}$ and alkene R-OTBDMS the decay is fit with a biexponential function:

$$
\begin{equation*}
\Delta \mathrm{OD}_{590}(t)=\alpha_{\mathrm{T}} e^{-\frac{t}{\tau_{\mathrm{T}}}}+\alpha_{\mathrm{CR}} e^{-\frac{t}{\tau_{\mathrm{CR}}}} \tag{eq.S4}
\end{equation*}
$$

where τ_{T} corresponds to decay of \mathbf{T} and τ_{CR} corresponds to decay of the respective cation radical. Alkene $\mathbf{R - O H}$, however, is fit with a single exponential function corresponding to \mathbf{T} decay, confirming that cation radical absorption for $\mathbf{R - O H}$ is essentially completely quenched before the first time point (40 ns). A lower boundary for the rate of cyclization k_{2} can be estimated as $2.5 \times 10^{7} \mathrm{~s}^{-1}$ (i.e., $1 / \tau=1 /(40 \mathrm{~ns})$ or $\left.1 / 4.0 \times 10^{-8} \mathrm{~s}\right)$.

Previous studies examining quenching of the triplet \mathbf{T} have demonstrated quenching of the decay lifetime (at 480-520 nm) of \mathbf{T} at increasing quencher concentrations. The best kinetic model describing the native decay of \mathbf{T} in DCE contains 2 terms (Figure S11c), and an additional term would be necessary to describe the contribution from Mes-Acr•. Additionally, the native decay of \mathbf{T} is likely to be perturbed when Mes-Acr• is present, as \mathbf{T} is capable of oxidizing Mes-Acr• . Thus, we recognized that we could not obtain reliable rate quenching information, because multiple species absorb at the wavelengths of interest. We do, however, show this signal decay at 520 nm for three concentrations of $\boldsymbol{\beta M S}$ (Figure S15). The decay is approximately monoexponential with a residual signal at $t=400 \mu \mathrm{~s}$ attributed to the persistent radical Mes-Acr• . After subtracting the residual signal at $t=400 \mu \mathrm{~s}$ for each decay, it is clear that the signal
intensity is diminished at increasing quencher concentration. Although the lifetime of the decay is relatively unchanged, that the magnitude of the transient is diminished can be rationalized by fast reductive quenching of either a singlet state or the triplet by $\boldsymbol{\beta} \mathbf{M S}$.

Figure S12. Detection of the β-methylstyrene cation radical by LFP of a DCE solution containing Mes-AcrBF $4_{4}(50 \mu \mathrm{M}$) and β-methylstyrene ($\beta \mathrm{MS}, 6 \mathrm{mM}$). (a) Transient absorption spectra showing the contributions of Mes-Acr ${ }^{+}$(orange), Mes-Acr• (dashed red), and $\beta \mathrm{MS}^{+} \cdot$ (red). Subtraction of the combined contributions of T and Mes-Acr• (gray) give the absorption spectrum for $\beta \mathrm{MS}^{+}$. (b) Transient absorption kinetics at 590 nm showing the observed signal (blue) fit to a biexponential (solid red) where one decay constant is identical to that of Mes-Acr ${ }^{+} \mathbf{T}$, while the other corresponds to the decay of the cation radical $\beta \mathrm{MS}^{+} \cdot$ at $\tau=6.6 \mu \mathrm{~s}$.

(B)

Figure S13. Detection of the cation radical R-OTBDMS ${ }^{+}$• by LFP of a DCE solution containing Mes-AcrBF 4 (50 $\mu \mathrm{M}$) and R-OTBDMS (6 mM). (a) Transient absorption spectra showing the contributions of Mes-Acr ${ }^{+}$T (orange), Mes-Acr• (dashed red), and R-OTBDMS ${ }^{+}$(red) are shown. Subtraction of the combined contributions of T and Mes-Acr• (gray) give the absorption spectrum for R-OTBDMS ${ }^{+}$• (red, smoothed with Savitsky-Golay filter with a $3^{\text {rd }}$ order polynomial and a frame size of 11). (b) Transient absorption kinetics at 590 nm showing the observed signal (blue) fit to a biexponential (solid red) where one decay constant is identical to that of Mes-Acr ${ }^{+}$, while the other corresponds to the decay of the cation radical R-OTBDMS ${ }^{+}$• at $\boldsymbol{\tau}$ $=5.9 \mu \mathrm{~s}$.

Figure S14. Detection of the cation radical $\mathbf{R O H}^{+} \cdot$ by laser flash photolysis of a DCE solution containing Mes$\mathrm{AcrBF}_{4}(50 \mu \mathrm{M})$ and alkenol ROH (6 mM). (a) Transient absorption spectra showing the contributions of MesAcr ${ }^{+} \mathbf{T}$ (orange), Mes-Acr• (dashed red), and $\mathbf{R O H}^{+} \bullet$ (red) are shown. Subtraction of the combined contributions of T and Mes-Acr• (dashed gray) give the absorption spectrum for $\mathbf{R O H}^{+} \bullet$ (red, smoothed with Savitsky-Golay filter with a $3^{\text {rd }}$ order polynomial and a frame size of 11). (b) Transient absorption kinetics at 590 nm showing the observed signal (blue) fit to a monoexponential (solid red). The decay constant is identical to that of Mes-Acr ${ }^{+} \mathbf{T}$, confirming that the cation radical $\mathbf{R O H}^{+} \bullet$ is consumed before the response time of the instrument (40 ns) in this experiment.

Figure S15. Dependence of transient absorption kinetics for Mes-Acr ${ }^{+}$($75 \mu \mathrm{M}$ in DCE) with $\boldsymbol{\beta M S}$ (6 to 24 mM) measured at 520 nm with laser excitation at 430 nm . In all cases, the residual signal at longer time delays after T has decayed ($t>350 \mu \mathrm{~s}$) has been subtracted and is attributed to Mes-Acr. This subtraction of the MesAcr. contribution is an approximation assuming that the concentration of Mes-Acr- is invariant with time, although, based on the redox potentials of \mathbf{T} and Mes-Acr•, electron transfer is feasible, if not likely. the contribution of Mes-Acr- to the signal at 520 nm is determined by the residual signal at $t=400 \mu \mathrm{~s}$. After subtraction of this constant, the transient signals are modeled by monoexponential decay: $\Delta \mathbf{0 D}_{520 \mathrm{~nm}}(\boldsymbol{t})=$ $\alpha e^{-\frac{t}{\tau}}$.

C. Studies involving Mes-Acr•

i. Chemical Reduction of Mes-Acr ${ }^{+}$to Mes-Acr• using CoCp_{2}

A $50 \mu \mathrm{M}$ solution of 9-mesityl-10-methyl-acridinyl radical (Mes-Acr*) and bis-cyclopentadiene Cobalt (III) tetrafluoroborate $\left(\mathbf{C o C p}_{2}{ }^{+}\right)$in DCE was prepared as follows: in a dry, nitrogen filled glovebox, stock solutions of both Mes- $\mathrm{AcrBF}_{4}(10 \mathrm{mM})$ and $\mathbf{C o C p}_{2}(20 \mathrm{mM})$ were prepared by dissolving 20.0 mg Mes- $\mathrm{AcrBF}_{4}\left(5.01 \times 10^{-5} \mathrm{~mol}\right)$ and $\mathbf{C o C p} 2\left(1.00 \times 10^{-4} \mathrm{~mol}\right)$ separately in 5.00 mL DCE each. In a 4 mL quartz cell (nominal volume, StarnaCells), $20.0 \mu \mathrm{~L}$ of the Mes-AcrBF 4 stock solution was diluted to a total volume of 4.00 mL for a concentration of $\left[\mathbf{M e s}-\mathrm{Acr}^{+}\right]=50 \mu \mathrm{M}$. To this solution was slowly added $10.0 \mathrm{uL} \mathbf{C o C p} 2$ stock solution while swirling. Upon addition of $\mathbf{C o C p} \mathbf{p}_{2}$, the pale yellow Mes-Acr ${ }^{+}$solution immediately became light pink in color. Following complete addition of $\mathbf{C o C p} 2$, the cell was sealed with a Teflon lined screw cap and the solution swirled excessively to ensure complete mixing. The cell was removed from the glovebox and immediately analyzed by UV-Vis absorption spectroscopy. Complete conversion of Mes-Acr ${ }^{+}$to the corresponding acridinyl radical was confirmed by comparison of the absorption spectrum to that of Mes-Acr• generated electrochemically (see above). The extinction coefficient of the chemically generated Mes-Acr• $\left(\sim 7000 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$ matches the value calculated from spectroelectrochemistry. Contribution from the oxidized cobaltocene $\left(\mathbf{C o C p}_{2}{ }^{+}\right)$to this absorption spectrum was assumed to be very small in the wavelength range of interest. This assumption is supported by literature precedent indicating that the molar extinction coefficient of the cobaltocenium species ($\varepsilon_{400-600 \mathrm{~nm}}<300 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$) is $<5 \%$ compared to Mes-Acr• in the visible. ${ }^{11,12}$

Figure S16. UV-Vis absorbance spectra for species relevant to Laser Flash Photolysis experiments involving Mes-Acr• oxidation.

ii. Mes-Acr• consumption by LFP-generated PhS•

Solutions of Mes-Acr• $/ \mathbf{C o C p} \mathbf{p}_{2} \mathrm{BF}_{4}$ containing phenyl disulfide $(\mathbf{P h S})_{2}$ were prepared as described above, with the additional step of adding a microliter quantity of $(\mathbf{P h S})_{2}$ stock solution to the cell prior to mixing with $\mathbf{C o C} \mathbf{p}_{2}\left(\left[(\mathbf{P h S})_{2}\right]=30 \mathrm{mM}\right)$. This solution was kept in the dark until analysis by UV-vis. The resulting UV-vis absorption spectrum closely resembles that of Mes-Acro/ $\mathbf{C o C p} \mathbf{2 F F}_{4}(50 \mu \mathrm{M})$ with the additional feature of the broad absorption extending into the far UV due to $(\mathbf{P h S})_{2}$. Comparison to the individual spectra of $(\mathbf{P h S})_{2}$ and Mes- $\mathbf{A c r} \cdot / \mathbf{C o C p}_{2} \mathrm{BF}_{4}$ precludes the existence of any additional species resulting from a possible background reaction between $(\mathbf{P h S})_{2}$ and Mes-Acr• or $\mathbf{C o C p}_{2} \mathrm{BF}_{4}$. Laser flash photolysis with excitation at 410 nm was performed on this solution in the quartz cell with an average laser pulse energy of 7.0 mJ . A 380 nm long pass optical filter was placed between the probe source and the sample, and a 435 nm long pass filter was placed between the sample and detector. Kinetic absorption at wavelengths 445 nm and 520 nm were collected with 3-5 laser shots, after which point the net photochemical outcome became nonnegligible. New solutions were used for each kinetic measurement, as well as for measurement of the transient difference spectrum taken at $30 \mu \mathrm{~s}$. Control experiments where $(\mathbf{P h S})_{2}$ is excluded reveal no transient signal differing from baseline absorbance. Laser Flash photolysis with a solution of $(\mathbf{P h S})_{2}\left(3.0 \times 10^{-2} \mathbf{M}\right)$ confirmed that $\mathbf{P h S} \cdot$ could be generated with laser pulses at this wavelength.

Figure S17. Laser flash photolysis ($\lambda_{\text {ex }}=410 \mathrm{~nm}, 8.0 \mathrm{~mJ}$) of Mes-Acr•/ $\mathrm{CoCp}_{2} \mathrm{BF}_{4}(50 \mu \mathrm{M})$ containing no $(\mathbf{P h S})_{2}$. The absence of an appreciable $\Delta \mathrm{OD}$ at either wavelength supports the conclusion that bleaching at 520 nm and appearance of a signal at 445 nm is due to electron transfer to PhS•

Kinetic fitting for the 520 nm transient was fit to a single exponential function of the form

$$
\begin{gather*}
\Delta O D_{520}(t)=\alpha_{1}\left(1-e^{-k_{\mathrm{obs}} t}\right) \tag{eq.S5}\\
\text { where } k_{\mathrm{obs}}=2.5 \times 10^{5} \mathrm{~s}^{-1} \\
\alpha_{1}=-0.0096
\end{gather*}
$$

This corresponds to a final resting concentration [Mes-Acr•$]_{\infty}$ (i.e., at time delays greater than 50 $\mu \mathrm{s}$) of:

$$
\begin{align*}
{\left[\text { Mes-Acr }{ }^{\bullet}\right]_{\infty} } & \left.=\alpha_{1} /_{\Delta} \varepsilon_{(\text {Mes-Acro, }} \text { 520 nm }\right) \times \ell \tag{eq.S6}\\
& =-\mathbf{0 . 0 0 9 5} /-6610 \mathrm{M}^{-1} \mathrm{~cm}^{-1} \times 1.00 \mathrm{~cm} \\
& =1.4 \times 10^{-6} \mathbf{M}
\end{align*}
$$

The signal at 445 nm is fit to an equation of the form

$$
\begin{align*}
& \Delta \mathrm{OD}_{445}(t)=\alpha_{2}\left(1-e^{-k_{\mathrm{obs}} t}\right)+\alpha_{3} e^{-k_{\mathrm{obs}} t}+\frac{1}{\frac{1}{\alpha_{4}+2 k_{r} t}} \tag{eq.S7}\\
& k_{\text {obs }}=2.5 \times 10^{5} \mathrm{~s}^{-1} \\
& 2 k_{\mathrm{r}}=3.5 \times 10^{6} \mathrm{M}^{-1} \mathrm{~s}^{-1} \\
& \alpha_{2}=0.0022 \\
& \alpha_{3}=0.0020 \\
& \alpha_{4}=0.0003
\end{align*}
$$

Discussion of eq. S7: The pseudo-first order rate constant $k_{\text {obs }}$ describes both the appearance of Mes-Acr ${ }^{+}$and the decay of $\mathbf{P h S} \bullet$ in the bimolecular electron transfer reaction. This rate constant is identical to that obtained by fitting the signal bleach at 520 nm . The second order rate constant $2 k_{\mathrm{r}}$ describes decay of $\mathbf{P h S} \bullet$ by a competing bimolecular recombination pathway, which is confirmed to follow second order kinetics in separate experiments (Figure S18a).

The pre-exponential factor α_{2} corresponds to the concentration of Mes-Acr ${ }^{+}$reached after $\mathbf{P h S}{ }^{\bullet}$ is completely consumed $\left(\Delta \varepsilon_{(\text {Mes-Acr }+, 445 \mathrm{~nm})} \times \ell=2200 \mathrm{M}^{-1}\right.$, $\left[\text { Mes-Acr }{ }^{+}\right]_{\infty}=\sim 1.0 \times 10^{-6} \mathrm{M}$). The sum of the pre-exponential factors α_{3} and $\alpha_{4}\left(\alpha_{3}+\alpha_{4}=0.0023\right)$ corresponds to the concentration of $\mathbf{P h S} \cdot$ formed upon irradiation with the laser pulse $\left.\left(\Delta_{(\text {PhS }}, 445 \mathrm{~nm}\right) \times \ell=2000 \mathrm{M}^{-1},{ }^{13}[\mathbf{P h S} \cdot]_{\mathrm{o}}=\sim 1.2 \times 10^{-6} \mathrm{M}\right)$. Although this scenario requires a more sophisticated model to truly describe the mixed order kinetics of PhS• decay, we make the simplification that the pseudo-first order and second order decay modes are separate, where the initial concentration of $\mathbf{P h S} \bullet$ in each decay term is specified by α_{3} and α_{4}, respectively, and the molar extinction coefficient of $\mathbf{P h S} \cdot$. Under this assumption, approximately 85% of the initially formed $\mathbf{P h S} \cdot$ is consumed in the pseudo-first order reaction $\left([\mathbf{P h S} \cdot]_{0}\left(1^{\text {st }}\right)=\sim 1.0 \times 10^{-6} \mathrm{M}\right)$ and 15% is consumed through bimolecular recombination $\left([\mathbf{P h S} \cdot]_{0}\left(2^{\text {nd }}\right)=\sim 0.2 \times 10^{-6} \mathrm{M}\right)$.

It should be noted that $\left[\mathbf{M e s}-\mathbf{A c r}{ }^{\bullet}\right]_{\infty}$ and $\left[\mathbf{M e s}-\mathbf{A c r}^{+}\right]_{\infty}$ as calculated from α_{1} and α_{2}, respectively, are expected to be identical, however, some discrepancy is noted. Monitoring at 520 and 445 nm were performed with different samples, and due to the fact that each measurement is the average of only 3-5 laser shots, even small variation in laser pulse energy is expected to give rise to differences in the quantity of $\mathbf{P h S} \cdot$ generated between experiments. Variation in $\left[\mathbf{P h S}{ }^{\bullet}\right]_{o}$ is expected to only affect the final concentration $\left[\mathbf{M e s}-\mathbf{A c r}^{+}\right]_{\infty}$ and not the observed rate of Mes-Acr ${ }^{+}$appearance since $\left[\text { Mes-Acr }{ }^{\bullet}\right]_{\mathrm{o}}(50 \mu \mathrm{M})$ is in large excess of $\left[\mathbf{P h S}{ }^{\bullet}\right]_{\mathrm{o}}(0.9-1.3 \mu \mathrm{M})$ under these conditions.

Figure S18. Laser flash photolysis with in DCE: (a) Transient decay of signal at 460 nm by second order kinetics, corresponding to recombination of PhS•; $\left[(\mathrm{PhS})_{2}\right]=30 \mathrm{mM}, \lambda_{\text {pump }}=355$ nm (b) Transient absorption spectra measured at a 20 ns time delay; green: $\left[(\mathbf{P h S})_{2}\right]=3 \mathrm{mM}$; blue: $\left[(\mathrm{PhS})_{2}\right]=30 \mathrm{mM}$.

Solutions used in the pseudo-first order study on the rate of Mes-Acr• oxidation were prepared in a glovebox as described above, wherein the total volume of the solution was 10 mL . MesAcr concentrations in DCE ranged from 2.5×10^{-5} to $2.5 \times 10^{-4} \mathrm{M}$, and the concentration of $(\mathbf{P h S})_{2}$ was $3.0 \times 10^{-3} \mathrm{M}$. This disulfide concentration was found to give optimal photolytic yield of $\mathbf{P h S} \cdot=$ ca. $5 \mu \mathrm{M}$ at a laser excitation wavelength of 355 nm . Solutions were prepared in flame-dried 20 mL vials sealed with a rubber septum and PTFE tape. Upon removal from the glovebox, the rubber septa were not punctured until introduced into a quartz flow cell through a stainless steel needle connected to the flow cell by FEP tubing. The flow rate through the cell
was controlled by positive pressure from a dry, rigorously oxygen free Argon stream, such that each laser pulse irradiated a fresh solution. The average laser pulse energy was 8.0 mJ at 355 nm . For all trials, a 380 nm long pass filter was placed between the probe source and the sample and also between the sample and detector. The reported transient signals with detection at 520 nm are the average of 3-5 laser shots and are fit to a single exponential function as described above (eq. S5).

Based on the molar extinction coefficient reported for $\mathbf{P h S} \cdot$ at $460 \mathrm{~nm}\left(\sim 2000 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$, the observed transient absorption at $460 \mathrm{~nm}(\triangle \mathrm{OD}=0.010)$ for LFP on a solution of $(\mathbf{P h S})_{2}$ in DCE was used in estimating the maximum concentration of $\mathbf{P h S} \cdot$ to be roughly $5 \mu \mathrm{M}$ upon disulfide photolysis. This is in good agreement with the observation that the $\Delta \mathrm{OD}$ reaches a minimum of 0.040 over the range of Mes-Acr• concentration (see Figure S19 below), corresponding to the consumption of approximately 5-6 $\mu \mathrm{M}$ Mes-Acr• Thus, under these conditions, Mes-Acr• is in large excess of $\mathbf{P h S}{ }^{\bullet}$.

Figure S19. Transient absorption signals at 520 nm showing consumption of Mes-Acr• at increasing rate when [Mes-Acr•] is increased. The rate of decay $k_{\text {obs }}$ is found by fitting the decay curves to eq. S5 (dashed black trace).

VIII. Disulfide Exchange Experiments

Stock solutions of phenyl disulfide and 4-methylphenyl disulfide were prepared by dissolving $27.3 \mathrm{mg}(0.13 \mathrm{mmol})$ and $30.8 \mathrm{mg}(0.13 \mathrm{mmol})$ of each disulfide (respectively) in 5.0 mL DCE , such that the concentration of each stock solution was $2.5 \times 10^{-2} \mathrm{M}$. To study the kinetics of exchange, 0.5 mL of each disulfide stock solution were mixed in a flame-dried 1 dram vial containing a Teflon-coated magnetic stir bar and sealed with a Teflon coated septum cap. The total concentration of disulfide was $2.5 \times 10^{-2} \mathrm{M}$. For experiments where Mes-AcrBF 4 was included, solutions were prepared by mixing 0.5 mL of each disulfide stock solution with 5.0 mg Mes-AcrBF 4 (0.013 mmol), such that the concentration of Mes- AcrBF_{4} was $1.3 \times 10^{-2} \mathrm{M}$. After sealing each vial with PTFE tape, the vials were removed from the glovebox and the Teflon septum cap was punctured with a needle supplying positive pressure of dry N_{2} for the duration of the experiment to exclude oxygen from the reactions. The solutions were stirred on a magnetic stir plate and irradiated using the setup described above. Aliquots (volume $<5 \mu \mathrm{~L}$) were removed at the time points listed below without ceasing irradiation, quenched by addition to excess diethyl ether and immediately analyzed on an Agilent 5973 GC-MS system. Prior to experimental analysis, calibration curves for $(\mathbf{P h S})_{2}$ and $(\mathbf{4}-\mathbf{M e}-\mathbf{P h S})_{2}$ were constructed, and it was determined that the detector response was linear for both disulfides in the range of concentrations relevant in this experiment. Calibration experiments also showed that the detector response factor for $(\mathbf{4} \mathbf{- M e - P h S})_{2}$ was 1.3 times that of $(\mathbf{P h S})_{2}$. In the absence of a calibration standard for 4-Me-PhSSPh, it was assumed that the detector response factor is likewise 1.3 for 4-Me-PhSSPh. Thus, the integrated areas of $(\mathbf{4 - M e - P h S})_{2}$ and $\mathbf{4 - M e - P h S S P h}$ are scaled by a factor of $1 / 1.3$. The theoretical mole fraction of $\mathbf{4 - M e - P h S S P h}$ when $1: 1(\mathbf{P h S})_{2}:(\mathbf{4}-\mathbf{M e}-\mathbf{P h S})_{2}$ fully exchange to $1: 1: 2(\mathbf{P h S})_{2}:(\mathbf{4}-\mathbf{M e}-\mathbf{P h S})_{2}: \mathbf{4}-\mathbf{M e}-\mathbf{P h S S P h}$ is

$$
\begin{equation*}
\text { mol fraction at equilibrium }=\frac{[4-\mathrm{Me}-\mathrm{PhSSPh}]}{\left[(\mathrm{PhS})_{2}\right]+\left[(4-\mathrm{Me}-\mathrm{PhS})_{2}\right]+[4-\mathrm{Me}-\mathrm{PhSSPh}]}=0.5 \tag{eq.S8}
\end{equation*}
$$

Thus, the ratio of mixed to total unmixed disulfide is $1: 1$. Therefore, conversion to an equilibrium amount of $50 \mathrm{~mol} \% \mathbf{4}-\mathrm{Me}-\mathbf{P h S S P h}$ was determined by the expression

$$
\begin{equation*}
\text { conversion }=\frac{[4-\mathrm{Me}-\mathrm{PhSSPh}]}{\left[(\mathrm{PhS})_{2}\right]+\left[(4-\mathrm{Me}-\mathrm{PhS})_{2}\right]}=\frac{[\text { area 4-Me-PhSSPh }] / 1.3}{\left[\text { area }(\mathrm{PhS})_{2}\right]+\left[\text { area }(4-\mathrm{Me}-\mathrm{PhS})_{2}\right] / 1.3} \tag{eq.S9}
\end{equation*}
$$

where the area was found by baseline-to-baseline integration of each peak using ChemStation software. Control experiments were performed where (a) light was excluded by wrapping the vial in aluminum foil and placed side-by-side with the irradiated vials or (b) light was excluded and the vial heated to $50{ }^{\circ} \mathrm{C}$ in an oil bath. Both control experiments (a) and (b) contained 0.013 $\mathrm{M}(\mathbf{P h S})_{2}+0.013 \mathrm{M}(\mathbf{4}-\mathbf{M e}-\mathbf{P h S})_{2}$ and the total volume of the solution was 1.0 mL (as above). In both cases, a negligible amount of (4-Me-PhS) ${ }_{2}$ (mol fraction <0.004) was formed by 400 minutes; therefore, we consider these background reactions to be of negligible consequence.

Table S1. Disulfide exchange amounts as determined by GC-MS

No Mes-AcrBF		w/ 0.013 M Mes-AcrBF	
time $/ \mathrm{min}$	$\frac{[p-\mathrm{Me}-\mathrm{PhSSPh}]}{\left[(p-\mathrm{Me-PhS})_{2}\right]+\left[(\mathrm{PhS})_{2}\right]}$	time $/ \mathrm{min}$	$\frac{[p-\mathrm{Me}-\mathrm{PhSSPh}]}{\left[(p-\mathrm{Me-PhS})_{2}\right]+\left[(\mathrm{PhS})_{2}\right]}$
0	0.00	0	0.00
5	0.04	5	0.14
10	0.11	10	0.30
25	0.30	25	0.55
45	0.56	45	0.69
75	0.95	75	0.85
115	1.00	115	1.03
240	1.06	240	0.99

Figure S20. Plot showing formation of mixed disulfide (4-Me-PhSSPh) under the photolytic conditions: $(\mathrm{A})\left[\mathrm{Mes}-\mathrm{AcrBF}_{4}\right]=0.013 \mathrm{M}(\mathrm{B})$ no ${\mathrm{Mes}-\mathrm{AcrBF}_{4} \text {. The rate to equilibrium }}^{2}$ concentration of (4-Me-PhSSPh) is zero-order when Mes-Acr ${ }^{+}$is excluded, indicating a direct homolytic mechanism for generation of $\mathrm{PhS} \cdot$ from $(\mathrm{PhS})_{2}$.
(A)

(B)

Figure S21. (a) Example Gas Chromatogram of an aliquot after $t=240$ min showing $(\mathbf{P h S})_{2}$ (retention time $=8.44 \mathrm{~min})$, ($4-\mathrm{Me}-\mathrm{PhSSPh}$) (retention time $=9.04 \mathrm{~min}$), and ($4-\mathrm{Me}-\mathrm{PhS})_{2}$ (retention time $=9.60 \mathrm{~min}$). (b) Example mass spectrum corresponding to 4-Me-PhSSPh (peak with retention time $=9.04 \mathrm{~min}$) showing $\mathrm{m} / \mathrm{z}=232$ for the parent mixed disulfide, and fragments at $\mathrm{m} / \mathrm{z}=109$ and 123 for the fragments PhS and 4-Me-PhS, respectively.

Figure S22. Absorbance spectrum of $30 \mathrm{mM}(\mathrm{PhS})_{2}$ in DCE (red) overlaid with the spectral output for the Ecoxotic LED lamp used in photolysis (blue, arbitrary units). The overlap between the traces is highlighted in gray. An Ocean Optics HR4000 spectrometer (Dunedin, FL) was used to measure the emission spectrum of the LED lamp, which was directly oriented toward the aperture of the spectrometer unit at a distance of approximately 10 cm .

IX. Reaction Progress Monitoring

A. Gas Chromatography: Alkenol $\mathbf{R O H} /$ Product/PhSH/(PhS $)_{2}$

Time-monitored conversion was measured by analyzing aliquots with gas chromatography (Agilent 6850 Series II, flame ionization detector).

In a glovebox, two solutions of total volume 1.1 mL DCE were prepared in flame-dried 1 dram borosilicate glass vials with a PTFE coated magnetic stir bar and sealed with a PTFElined septum cap:
(A) 44.5 mg alkenol $\mathbf{R O H}[0.25 \mathrm{M}], 5.6 \mu \mathrm{~L} \mathbf{~ P h S H}[0.05 \mathrm{M}], 5.5 \mathrm{mg}$ Mes-AcrBF 4 [0.013 $\mathrm{M}], 61 \mu \mathrm{~L}$ dodecane [0.25 M] (internal standard)
(B) 44.5 mg alkenol ROH $[0.25 \mathrm{M}]$, $5.9 \mathrm{mg}(\mathbf{P h S})_{2}[0.025 \mathrm{M}]$, 5.5 mg Mes-AcrBF 4 [0.013 M], $61 \mu \mathrm{~L}$ dodecane [0.25 M] (internal standard)

After sealing each vial with PTFE tape, the vials were removed from the glovebox and the Teflon septum cap was punctured with a needle supplying positive N_{2} pressure to exclude oxygen from the reactions. The solutions were stirred on a magnetic stir plate and irradiated using a single LED lamp. Aliquots (volume $<5 \mu \mathrm{~L}$) were removed at the time points listed below without ceasing irradiation, and immediately quenched by dilution with 0.5 mL diethyl ether. Each sample was analyzed by GC within 18 hours, although the makeup of each sample was not found to change upon standing under ambient conditions for a greater period (i.e., 24 hours). Peak areas were found using the OpenLab Software, and were scaled according to the detector response factor for each analyte. The detector response was determined for alkenol $\mathbf{R O H}$, the corresponding tetrahydrofurane product, $\mathbf{P h S H}$, and $(\mathbf{P h S})_{2}$ as a burn ratio relative to dodecane (DD) as an internal standard. The burn ratio of dodecane to both $\mathbf{R O H}$ and product was found to be linear when $[\mathbf{D D}]:[\mathbf{R O H}]$ and [DD]:[pdt] ranged from 1 to 0 . The conversion was normalized by setting [DD]:[ROH] at time $=0$ to 100%.

B. UV-Vis Spectroscopy: Mes-Acr ${ }^{+} /$Mes-Acr• monitoring during photolysis

Time-evolution spectra were recorded on a Varian Cary 50 spectrophotometer with a scan rate of $1200 \mathrm{~nm} / \mathrm{min}$ (time resolution is estimated to be ca. 0.5 min).

In a glovebox, two solutions of total volume 2.0 mL DCE were prepared in quartz cells with a PTFE-coated magnetic stir bar and sealed with a PTFE-lined septum cap:
(A) 81.0 mg alkenol $\mathbf{R O H}[0.25 \mathrm{M}], 10.2 \mu \mathrm{~L} \mathbf{~ P h S H}[0.05 \mathrm{M}], 10.0 \mathrm{mg}$ Mes-AcrBF 4 [0.013 M]
(B) 81.0 mg alkenol $\mathbf{R O H}[0.25 \mathrm{M}], 10.7 \mathrm{mg}(\mathbf{P h S})_{2}[0.025 \mathrm{M}], 5.5 \mathrm{mg}$ Mes-AcrBF ${ }_{4}$ [0.013 M]

After sealing each cell with a Teflon coated screwcap, the vials were removed from the glovebox and analyzed by UV-Vis while irradiating with a blue LED lamp and continuous stirring. Spectra were collected from 300 to 800 nm with a 1 nm step size and a scan rate of 1200 nm per minute. A spectrum was collected prior to irradiation $(t=0)$ and at subsequent intervals following the start of irradiation (all intervals greater than 1 minute). The cell was irradiated with an incidence perpendicular to the light path of the instrument in order to minimize scatter. It should be noted that although the same lamp was employed in this photolysis as in the experiments described above, the intensity of the light reaching the solution is not likely to be identical to the preparative photolysis conditions, due to the differing materials and shapes of each vessel. However, since \mathbf{A} and \mathbf{B} were run under identical conditions (i.e., solution volume, stir rate, distance from lamp to cell are all unchanged), comparison between A and B is valid. Additional UV-Vis experiments were conducted in the same way as described above, with the exception that the photolysis lamp was turned off upon observation of complete consumption of both Mes-Acr ${ }^{+}$and MesAcr• (ca. 5 min). Spectra were recorded for an additional 8 hours after the lamp was removed and the cell shielded from ambient light.

X. Determination of Association Constant for Donor-Acceptor Complex

UV-VIS absorption spectra were collected for solutions of $455 \mu \mathrm{M} \mathrm{Mes-AcrBF} \mathbf{F}_{4}$ containing $\boldsymbol{\beta} \mathbf{M S}$ in the concentrations listed in Figure S23. The Donor-Acceptor complex is detected as a weak new feature on the low energy side of the Mes-Acr ${ }^{+}$absorption. The Δ Absorbance spectra (spectrum where $[\boldsymbol{\beta M S}]=0 \mathrm{M}$ subtracted from the spectrum for each sample) reveal that the new absorption is centered around 467 nm . The equilibrium constant K_{DA} is defined as $K_{\mathrm{DA}}=[\mathbf{D A}] /[\boldsymbol{\beta M S}]\left[\mathbf{M e s}-\mathbf{A c r}^{+}\right]$where $\mathbf{D A}$ is assumed to be a binary complex between $\boldsymbol{\beta}$ MS and Mes-Acr ${ }^{+}$. $K_{\text {DA }}$ is calculated by the Benesi-Hildebrand method ${ }^{14,15}$ according to the equation

$$
\begin{equation*}
\frac{[\text { Mes }-\mathrm{Acr}]_{\mathrm{o}}}{\Delta \mathrm{Abs}_{467 \mathrm{~nm}}}=\frac{1}{\varepsilon_{\mathrm{DA}} K_{\mathrm{DA}}} \cdot \frac{1}{[\beta \mathrm{MS}]}+\frac{1}{\varepsilon_{\mathrm{DA}}} \tag{eq.S10}
\end{equation*}
$$

where $\varepsilon_{\text {DA }}$ is the molar extinction coefficient of $\mathbf{D A}$. The best fit line to a plot of $\left[\mathbf{M e s}-\mathbf{A c r}^{+}\right] / \Delta \mathrm{Abs}_{467 \mathrm{~nm}} \mathrm{vs}$. $[\boldsymbol{\beta M S}]^{-1}$ (Figure S24) gives $\varepsilon_{\mathrm{DA}}$ as the reciprocal of the y-intercept, and K_{DA} is obtained as $0.96 \mathrm{M}^{-1}$.

It should be noted that the Benesi-Hildebrand method is typically calculated using Absorbance, not Δ Absorbance as we have done here. However, this method assumes that only the DA complex absorbs at the wavelength in question. As DA clearly overlaps with the absorption for Mes-Acr ${ }^{+}$in this case, using Abs $_{467}$ rather than $\Delta \mathrm{Abs}_{467}$ is unsuitable. ${ }^{15}$ In order to validate the above calculation, we also calculated K_{DA} by the method of Nash ${ }^{16}$ using Absorbance values, which accounts for Mes-Acr ${ }^{+}$absorbance. By the Nash method, we calculate $K_{\mathrm{DA}}=1.1$, which is within reason of the value calculated by the Benesi-Hildebrand method.

Figure S23. Absorption spectra for solutions of Mes-AcrBF $_{4}$ in DCE $(455 \mu \mathrm{M})$ with $\boldsymbol{\beta M S}$. Inset shows Δ Absorbance to emphasize the shape of the new absorption.

Figure S24. Benesi-Hildebrand plot for the calculation of K_{DA} by equation S 10 .

XI. Determination of Quantum Yield of Reaction Using Ferrioxalate Actinometry

Potassium ferrioxalate $\left(\mathbf{K}_{3} \mathbf{F e}\left(\mathbf{C}_{2} \mathbf{O}_{4}\right)_{3}\right)$ was prepared as the trihydrate by the known method ${ }^{17}$ and recrystallized three times from $\mathrm{H}_{2} \mathrm{O}$. A 0.15 M aqueous solution (1.0 mL) of $\mathbf{K}_{3} \mathbf{F e}\left(\mathbf{C}_{2} \mathbf{O}_{4}\right)_{3}$ was irradiated for 60 seconds using the identical photolysis setup described above. The number of $\mathrm{mol} \mathrm{Fe}^{2+}$ was determined from the absorbance at 510 nm of the tris-phenanthroline- Fe^{2+} after developing the photolyzed solution with a buffered solution of 1,10 -phenanthroline. ${ }^{18}$ Based on the molar extinction coefficient at $510\left(\varepsilon_{510}=11,110 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)^{19}$ and the absolute quantum yield for photolysis of $\mathbf{K}_{3} \mathbf{F e}\left(\mathbf{C}_{2} \mathbf{O}_{4}\right)_{3}$ at 457.9 nm $(\Phi=0.85),{ }^{19}$ the photon flux was determined to be 6.43×10^{-7} mol photon s^{-1}. Quantum yield of reaction Φ_{R} was calculated at a given time point using the kinetic data presented in Figure 8 of the text as $\Phi_{\mathrm{R}}=$ $\mathrm{mol} \mathrm{pdt} / \mathrm{mol}$ photon.

XII. Computational Details

All calculations were implemented in the Gaussian 09 software package, ${ }^{20}$ and were performed at the UB3LYP level of theory ${ }^{21,22}$ using the $6-311+G(d)$ basis $\operatorname{set}^{23,24}$ with solvation in DCE evaluated in a self-consistent reaction field (SCRF) with the PCM model. ${ }^{25}$ Geometry optimization for structures SM-a, SM-b, PDT-a and PDT-b yielded the geometries shown. Transition structures TS-a and TS-b were located by performing relaxed potential energy scans where the distance between atoms C-12 and H-26 was advanced in $0.1 \AA$ increments. The highest energy structure located from this scan was then submitted to a transition state optimization using the Berny algorithm. Vibrational analysis was performed for all stationary points, where each minimum was confirmed as having only positive vibrational frequencies, and each transition structure possessed a single imaginary frequency. Intrinsic Reaction Coordinate (IRC) calculations in both directions verified that TS structures TS-a and TS-b led to the minimized structures for the respective reactants and products. Thermochemical values (enthalpies and free energies) at 298.15 K were calculated using scaled vibrational frequencies. Images were generated using the CYLview program. ${ }^{26}$ Other possible geometries for HAT transfer were also explored, including the pathways where the HAT catalyst is rotated $\sim 180^{\circ}$ about the $\mathrm{X}-\mathrm{H}(\mathrm{X}=\mathrm{S}$ in PhSH or C in PMN) bond in the transition state. This pathway was found to be at least $1.5 \mathrm{kcal} \mathrm{mol}^{-1}$ higher in energy than the pathway explored herein.

Figure S25. Relative free energies of calculated structures for H -atom transfer.

SM-a
$\begin{array}{ll}H(298 ~ K) & =-1132.481289 \text { Hartree }\end{array} \quad \Delta H_{\text {rel }}=0 \mathrm{kcal} \mathrm{mol}^{-1}$

-2.9149231	-3.2754902	-0.5724997
-2.4914091	-2.0375362	-1.0236827
-2.1976641	-0.9730782	-0.1184807
-2.3602391	-1.2472462	1.2720133
-2.7850671	-2.4913412	1.7111293
-3.0673771	-3.5163292	0.7996813
-3.1292791	-4.0636752	-1.2874217
-2.3774501	-1.8611822	-2.0890787
-2.1465611	-0.4776212	2.0044273
-2.8970371	-2.6711612	2.7758013
-3.3987651	-4.4870332	1.1524413
-1.7749581	0.2733418	-0.6328847
-1.6736701	0.3640128	-1.7119957
-1.4520681	1.5054828	0.1351143
-1.4726121	1.3240848	1.2135053
-2.3380401	2.7222898	-0.1943247
-2.6393961	2.6932218	-1.2461577
-3.2424181	2.7382408	0.4163153
-1.3971831	3.9042558	0.0645543
-1.7000871	4.8163708	-0.4537137
-1.3410981	4.1244248	1.1346743
-0.0631681	3.3618448	-0.4442537
0.0562709	3.5292848	-1.5203247
0.8063279	3.7772758	0.0701203
-0.0929141	1.9376008	-0.1979567
1.3599319	1.2772238	1.0480533
3.4740979	-1.1009862	-1.5442687
2.7718049	-0.2924832	-0.6513977
3.2187389	-0.1583462	0.6689223
4.3703329	-0.8408732	1.0801283
5.0645849	-1.6464042	0.1794963
4.6215639	-1.7816482	-1.1367437
3.1176379	-1.1975802	-2.5650437
1.8809159	0.2321678	-0.9787377
4.7244609	-0.7446032	2.1017223
5.9554369	-2.1701862	0.5113543
5.1635189	-2.4100212	-1.8354637
2.3677599	0.8637008	1.8649743
182		

-3.5931702
-2.9724092
-2.5352242
-2.7690162
-3.3912222
-3.8100842
-3.9128732
-2.8103092
-2.4551702
-3.5525162
-4.2958512
-1.9118302
-1.7794102
-1.4186142
-1.4755702
-2.1179262
-2.4279652
-3.0061782
-1.0134012
-1.1833852
-0.9172502
0.2218908
0.3447088
1.1494558
-0.0057552
1.4542598
2.7511778
2.2573568
2.8406978
3.9146638
4.4039048
3.8229318
2.2962128
1.4235488
4.3718258
5.2380928
4.2060018
2.2825868
1.7298468
1.2778638
3.2891818
4.0789248

4.0789248
-2.8629193
-1. 7263963
-0.6821283
-0.8666333
-2.0097413
-3. 0174403
-3.6387153
-1.6161303
-0.1076783
$-2.1230703 \quad 2.7110606$
1.1477996
-0.7785804
-1.8577864
-0.0488134
1.0344386
-0.4331684
-1. 4822744
0.1763706
-0.2284654
-0.7885084
0.8302886
-0.7118024
-1. 7975094
-0.2317864
-0.3733354
0.7177706
-1.8763154
-0.9926204
0.2659126
0.6422296
-0.2433174
-1. 5037554
-2.8544964
-1. 2785174
1.6205956
0.0509216
-2.1920314
-2. 1920314
1.2218016
2.4502896
3.3969696

1. 5605596
1.7956596

TS-a

G (298 K) = - 1132.541164 Hartree	$\Delta \mathrm{G}$

C C C C \begin{tabular}{l}
C

C

\hline

 H

H

H

\hline
\end{tabular} H H C H C

H C H

H | C |
| :--- |
| H | H C $\stackrel{+}{\mathrm{H}}$ ○

-1.9390331	-3.3646772	-0.8389764
-1.2110081	-2.1786232	-0.8566844
-1.5420501	-1.1005492	0.0029046
-2.6306001	-1.2776112	0.8936086
-3.3564281	-2.4665942	0.9075146
-3.0180611	-3.5161842	0.0429336
-1.6691701	-4.1733452	-1.5132594
-0.3755611	-2.0665252	-1.5437904
-2.9055441	-0.4822912	1.5799296
-4.1893431	-2.5785392	1.5968686
-3.5870801	-4.4417732	0.0578406
-0.7410571	0.1095838	-0.0327204
-0.0417211	0.1839048	-0.8683124
-1.2791181	1.4430718	0.4158606
-1.6827761	1.3753798	1.4373546
-2.3586971	2.0394348	-0.5148334
-2.1286891	1.7970498	-1.5597824
-3.3569511	1.6569418	-0.2844254
-2.1974781	3.5434318	-0.2554694
-2.5858711	4.1640418	-1.0690974
-2.7144551	3.8284368	0.6684996
-0.6796461	3.6798108	-0.0898334
-0.1837211	3.8732648	-1.0502734
-0.3890551	4.4641368	0.6172036
-0.2101151	2.4105858	0.4171196
0.3522219	-0.1794162	1.0215706
4.6172599	0.6161898	-0.2750914
3.5194419	0.6518928	0.5889086
2.8199809	-0.5281692	0.8955766
3.2434839	-1.7432002	0.3296336
4.3444079	-1.7748802	-0.5310504
5.0331359	-0.5960922	-0.8369104
5.1491979	1.5356278	-0.5063864
3.1995329	1.5923438	1.0276736
2.7090119	-2.6585862	0.5670556
4.6630559	-2.7207822	-0.9618664
5.8894829	-0.6223142	-1.5056954
1.4330179	-0.4949772	2.0264026

TS-b

| $H(298 ~ K)$ | $=-958.065230$ Hartree |
| :--- | :--- |$\quad \Delta H^{\ddagger}=11.7 \mathrm{kcal} \mathrm{mol}^{-1}$

C	-3.2100582	-2.4916672	-1.1737931
C	-2.1071872	-1.6483182	-1.1924101
C	-1.9513592	-0.6278762	-0.2270431
C	-2.9463822	-0.5027982	0.7684189
C	-4.0477002	-1.3493692	0.7835909
C	-4.1865862	-2.3472522	-0.1848311
H	-3.3117262	-3.2632802	-1.9297211
H	-1.3531522	-1.7641262	-1.9648321
H	-2.8551642	0.2559418	1.5373999
H	-4.8010642	-1.2354712	1.5560399
H	-5.0473422	-3.0071972	-0.1675541
C	-0.7696762	0.2247378	-0.2736521
H	-0.1855302	0.1356978	-1.1911831
C	-0.7972252	1.6362468	0.2535689
H	-1.1946022	1.6634648	1.2768049
C	-1.5844552	2.6314258	-0.6190101
H	-1.4415852	2.3943608	-1.6778641
H	-2.6540832	2.6127818	-0.4052341
C	-0.9072212	3.9591418	-0.2581181
H	-1.0253772	4.7216728	-1.0303461
H	-1.3216052	4.3561818	0.6727809
C	0.5572948	3.5469798	-0.0668321
H	1.1392928	3.6677258	-0.9859461
H	1.0557448	4.0991058	0.7337459
O	0.5484988	2.1428868	0.2738079
H	0.1876728	-0.4112412	0.5749389
C	4.4083138	-0.1545012	-0.3830991
C	3.3002488	-0.0889642	0.4568919
C	2.3508048	-1.1187322	0.4530389
C	2.5251988	-2.2078172	-0.4113431
C	3.6347388	-2.2667492	-1.2508771
C	4.5808268	-1.2419942	-1.2398071
H	5.1390998	0.6470168	-0.3659161
H	3.1738018	0.7647028	1.1124839
H	1.8020878	-3.0161062	-0.4256191
H	3.7602458	-3.1186072	-1.9106691
C	5.4464708	-1.2915252	-1.8916021
C	1.1256038	-1.0287372	1.3261349
N	0.4847658	-2.2853922	1.6428759
N	-0.0537032	-3.2823192	1.8693269
	1.2351398	-0.1932302	2.5004799
0.2969358	0.4831998	3.4349749	

PDT-a

$\mathrm{H}(298 \mathrm{~K})=\mathbf{- 1 1 3 2 . 4 9 6 2 4 4}$ Hartree $\quad \Delta \mathrm{H}_{\mathrm{rxn}}=\mathbf{- 9 . 4} \mathrm{kcal} \mathrm{mol}^{-1}$ $G(298 \mathrm{~K})=\mathbf{- 1 1 3 2 . 5 7 5 4 7 7}$ Hartree $\quad \Delta G_{\mathrm{rxn}}=\mathbf{- 1 2 . 0} \mathrm{kcal} \mathrm{mol}^{-1}$

C	3.2161786	-2.6054878	0.2366049
C	2.9788236	-1.3114398	0.7020759
C	1.6908536	-0.7631578	0.6845039
C	0.6422556	-1.5518798	0.1918919
C	0.8740796	-2.8443848	-0.2766841
C	2.1642736	-3.3761028	-0.2574961
H	4.2226856	-3.0113608	0.2629929
H	3.8056396	-0.7220618	1.0879199
H	-0.3685874	-1.1536508	0.1814949
H	0.0459756	-3.4379378	-0.6514101
H	2.3460696	-4.3832358	-0.6186681
C	1.4344476	0.6499902	1.1608999
H	2.2513416	0.9900122	1.8048379
C	1.2713136	1.6513532	0.0120939
H	0.4558786	1.3133682	-0.6431971
C	2.5192516	1.9311242	-0.8286741
H	3.4111206	1.9243762	-0.1925771
H	2.6638586	1.1953372	-1.6214481
C	2.2425786	3.3448402	-1.3545931
H	3.1473846	3.8826322	-1.6451381
H	1.5820056	3.3053452	-2.2258971
C	1.5303676	3.9996032	-0.1663811
H	2.2373146	4.5064322	0.4999579
H	0.7645016	4.7196462	-0.4667391
O	0.8979646	2.9313032	0.5690589
H	0.5204486	0.6797362	1.7628829
C	-4.1810644	0.2335702	-0.5769201
C	-3.9956424	-0.9769308	-1.2250041
C	-3.8622224	-2.1798828	-0.4819881
C	-3.9254374	-2.1108618	0.9350529
C	-4.1117124	-0.8950408	1.5729319
C	-4.2394134	0.2798732	0.8216099
H	-4.2813634	1.1466192	-1.1536111
H	-3.9499084	-1.0217628	-2.3069441
H	-3.8256164	-3.0249248	1.5087269
H	-4.1580234	-0.8533558	2.6556999
S	-4.3839944	1.2297422	1.3247899
	-3.6336264	-3.6914468	-1.2826571

PDT-b

$\mathrm{H}(298 \mathrm{~K})=-958.104217$ Hartree $\quad \Delta \mathrm{H}_{\mathrm{rxn}}=-12.7 \mathrm{kcal} \mathrm{mol}^{-1}$ G (298 K) =-958.190019 Hartree $\quad \Delta G_{\text {rxn }}=-14.7 \mathrm{kcal} \mathrm{mol}^{-1}$

XIII. References

(1) Hamilton, D. S.; Nicewicz, D. A. J. Am. Chem. Soc. 2012, 134, 18577-18580.
(2) Wilger, D. J.; Gesmundo, N. J.; Nicewicz, D. A. Chem. Sci. 2013, 4, 3160-3165.
(3) Kuruvilla, E.; Ramaiah, D. J. Phys. Chem. B 2007, 111, 6549-6556.
(4) Seiders, J. R.; Wang, L.; Floreancig, P. E. J. Am. Chem. Soc. 2003, 125, 2406-2407.
(5) Horn, M.; Schappele, L. H.; Lang-Wittkowski, G.; Mayr, H.; Ofial, A. R. Chem. - Eur. J. 2013, 19, 249-263.
(6) Weber, G.; Teale, F. W. J. Trans Faraday Soc 1957, 53, 646-655.
(7) Benniston, A. C.; Harriman, A.; Li, P.; Rostron, J. P.; van Ramesdonk, H. J.; Groeneveld, M. M.; Zhang, H.; Verhoeven, J. W. J. Am. Chem. Soc. 2005, 127, 16054-16064.
(8) Knauf, R. R.; Brennaman, M. K.; Alibabaei, L.; Norris, M. R.; Dempsey, J. L. J. Phys. Chem. C 2013, 117, 25259-25268.
(9) Fukuzumi, S.; Kotani, H.; Ohkubo, K.; Ogo, S.; Tkachenko, N. V.; Lemmetyinen, H. J. Am. Chem. Soc. 2004, 126, 1600-1601.
(10) Fukuzumi, S.; Kotani, H.; Ohkubo, K. Phys. Chem. Chem. Phys. 2008, 10, 5159.
(11) Koelle, U.; Infelta, P. P.; Graetzel, M. Inorg. Chem. 1988, 27, 879-883.
(12) Sattler, W.; Ener, M. E.; Blakemore, J. D.; Rachford, A. A.; LaBeaume, P. J.; Thackeray, J. W.; Cameron, J. F.; Winkler, J. R.; Gray, H. B. J. Am. Chem. Soc. 2013, 135, 10614-10617.
(13) Riyad, Y. M.; Naumov, S.; Hermann, R.; Brede, O. Phys. Chem. Chem. Phys. 2006, 8, 1697.
(14) Benesi, H. A.; Hildebrand, J. H. J. Am. Chem. Soc. 1949, 71, 2703-2707.
(15) Foster, R. Organic Charge-Transfer Complexes; Academic Press Inc. Ltd.: London, 1969.
(16) Nash, C. P. J. Phys. Chem. 1960, 64, 950-953.
(17) Johnson, R. C. J. Chem. Educ. 1970, 47, 702.
(18) Kirk, A. D.; Namasivayam, C. Anal. Chem. 1983, 55, 2428-2429.
(19) Demas, J. N.; Bowman, W. D.; Zalewski, E. F.; Velapoldi, R. A. J. Phys. Chem. 1981, 85, 27662771.
(20) Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
(21) Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652.
(22) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789.
(23) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650-654.
(24) McLean, A. D.; Chandler, G. S. J. Chem. Phys. 1980, 72, 5639-5648.
(25) Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999-3094.
(26) Legault, C. Y. CYLview, 1.0b; Université de Sherbrooke, 2009 (http://www.cylview.org).

