Titanium(IV)-Catalyzed Stereoselective Synthesis of Spirooxindole-1-pyrrolines

Joseph J. Badillo ${ }^{\ddagger}$, Carlos J. A. Ribeiro ${ }^{\S}$, Marilyn M. Olmstead ${ }^{\ddagger}$, and Annaliese K. Franz ${ }^{\ddagger \star}$
${ }^{\ddagger}$ Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
${ }^{8}$ Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal
contact: akfranz@ucdavis.edu

Table of contents

I. General Information 2
II. General Procedures 3
III. Characterization Data 5
IV. Proposal for Reversal of Diastereoselectivity 13
V. X-ray Crystallographic Information 14
VI. References 19
VII. Spectra 20

I. General Information

The following abbreviations are used throughout: ethyl acetate (EtOAc), bis(oxazolinyl)pyridine (pybox), enantiomeric excess (ee), isopropanol (IPA), tetrahydrofuran (THF), Sodium tetrakis(3,5trifluoromethyl)phenylborate (NaBArF), 2,6-Bis[(3aR,8aS)-3a,8a-dihydro-8H-indeno[1,2-d]oxazolin-2$\mathrm{yl}]$ pyridine $[(R, S)$-indapybox].

Materials: Indole-2,3-dione (isatin) reagents were purchased from commercial sources. 5-Methoxy-2-(4methoxyphenyl)oxazole was prepared according to literature procedure and was freshly purified before use. ${ }^{1}$ Dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, THF, and $\mathrm{Et}_{2} \mathrm{O}$ solvents were dispensed from a solvent purification system that passes solvent through two columns of dry neutral alumina. Chloroform $\left(\mathrm{CHCl}_{3}\right)$ was purchased from EMD and is stabilized with 7.5% ethanol. 2,6-Bis[(3aS,8aR)-3a,8a-dihydro-8H-indeno[1,2-d]oxazolin-2-yl]pyridine $\left[(R, S)\right.$-indapybox] was synthesized according to literature procedures. ${ }^{2-4}$ Sodium tetrakis(3,5trifluoromethyl)phenylborate (NaBArF) was synthesized according to literature procedure. ${ }^{5}$ Scandium(III) chloride $\left[\mathrm{ScCl}_{3}(\mathrm{THF})_{3}\right]$ was prepared according to literature procedure, ${ }^{2,6,7}$ while scandium(III) triflate $\left[\mathrm{Sc}(\mathrm{OTf})_{3}\right]$ was purchased from Strem Chemicals, Inc. or Sigma-Aldrich Co. LLC.

Synthesis, Purification and Analysis: All reactions were performed in oven-dried and argon-purged glassware (including 8- and 4-mL Fisher Scientific vials fitted with PTFE closure). Molecular sieves ($4 \AA$) < $50 \mu \mathrm{~m}$ were activated in a vacuum chamber by heating them with a heat gun for 15 min . All ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra were recorded at ambient temperature at 600,400 or 300 MHz and 150,100 , or 75 MHz , respectively, using a Bruker Avance 600 MHz NMR spectrometer, Varian VNMRS $600(600 \mathrm{MHz})$, Varian Mercury $300(300 \mathrm{MHz})$, MercuryPlus $300(300 \mathrm{MHz})$, or Varian Inova $400(400 \mathrm{MHz})$ spectrometers. The ${ }^{1} \mathrm{H}$ spectral data are reported as follows: chemical shift in parts per million downfield from tetramethylsilane on the δ scale, multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; s, septet; m, multiplet; dd, doublet of doublets, and b, broadened), coupling constant (Hz), and integration. Carbon NMR chemical shifts are reported in ppm from tetramethylsilane with the solvent reference employed as the internal standard (deuterochloroform $\left(\mathrm{CDCl}_{3}\right)$ at 77.0 ppm). Infrared spectra were recorded neat on an ATI-FTIR spectrometer.

All HPLC analyses were performed on a Shimadzu LC-20AB system with a Daicel CHIRALPAK ${ }^{\circledR}$ AD-H column ($4.6 \times 250 \mathrm{~mm}, 5 \mu \mathrm{~m}$), Daicel CHIRALPAK ${ }^{\circledR}$ AS-H column ($4.6 \times 250 \mathrm{~mm}, 5 \mu \mathrm{~m}$), or Daicel CHIRALCEL ${ }^{\circledR}$ OD-H column ($4.6 \times 250 \mathrm{~mm}, 5 \mu \mathrm{~m}$), each attached to a guard column, at a constant flow rate (isopropanol/hexanes isocratic system) using Shimadzu SPD-M20A photodiode array detector and $40^{\circ} \mathrm{C}$ column oven temperature.

Compounds were analyzed for LRMS in the positive ion mode by an Applied Biosystems Qtrap (Foster City, CA). Source parameters were 5 kV spray voltage, with a curtain plate temperature of $275^{\circ} \mathrm{C}$ and sheath gas setting of 15 . Samples were analyzed via flow injection analysis by injecting $20 \mu \mathrm{~L}$ samples into a stream of $80 \% \mathrm{MeOH} / 20 \%$ aqueous solution of 0.1% formic acid, flowing at $200 \mu \mathrm{~L}$ per minute.

II. General Procedures

Synthesis of phosphonium ylide ${ }^{8}$

To a stirred solution of triphenylphosphine (1.15 equiv, $18.58 \mathrm{mmol}, 4.86 \mathrm{~g}$) in toluene (20 mL) was added ethyl bromoacetate (1 equiv, $16.16 \mathrm{mmol}, 1.8 \mathrm{~mL}$). The reaction was heated at $80^{\circ} \mathrm{C}$ for 12 h . The cooled reaction mixture was concentrated in vacuo and dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and added to a separatory funnel. To this was added an aqueous solution of $\mathrm{KOH}\left(2.0 \mathrm{~g}\right.$ dissolved in 75 mL of $\mathrm{H}_{2} \mathrm{O}$), and the mixture was vigorously shaken and then let sit for 10 min . The organic layer was isolated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo.

Synthesis of acyl protected alkylidene oxindole ${ }^{9,10}$

In a 20 mL scintillation vial with a stir bar charged with 5 -fluoroindoline-2,3-dione (1 equiv, 5.168 $\mathrm{mmol}, 0.86 \mathrm{~g}$), in THF ($0.65 \mathrm{M}, 8 \mathrm{~mL}$) was added phosphonium ylide (1.1 equiv, $5.7 \mathrm{mmol}, 2.0 \mathrm{~g}$). After 12 h the reaction was transferred to a 100 mL round bottom flask, concentrated in vacuo, and product was recrystallized from EtOH to afford N -H alkylidene product.

To a 250 mL round bottom flask equipped with a stir bar under inert atmosphere and charged with alkylidene (1 equiv, $8.1 \mathrm{mmol}, 1.89 \mathrm{~g}$) was added $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.1 \mathrm{M}, 81 \mathrm{~mL})$. Subsequently acetic anhydride (7 equiv, $56.7 \mathrm{mmol}, 5.28 \mathrm{~mL}$) and pyridine (1 equiv, $8.1 \mathrm{mmol}, 0.65 \mathrm{~mL}$) were added, followed immediately by N, N-dimethyl-aminopyridine (0.1 equiv, $0.81 \mathrm{mmol}, 0.01 \mathrm{~g}$). After the reaction was complete as judged by thin layer chromatography ($3: 7 \mathrm{EtOAc} / \mathrm{hexanes}$) (generally done in about 45 min to 90 min), sat. aq. $\mathrm{NaHCO}_{3}(80 \mathrm{~mL})$ was added. The reaction was stirred until the evolution of gas ceased (generally about 2 h), and the organic layer was collected. The organic layer was washed $3 \times 60 \mathrm{~mL}$ of sat. aq. CuSO_{4}, recollected and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo and the product was recrystallized in EtOH. Filter sample through a pad of silica in $20 \% \mathrm{EtOAc}$ /hexanes if recrystallization attempts yield a viscous oil. (Note: that aqueous CuSO_{4} and NaHCO_{3} react with each other exothermically and should not be mixed unless on a small scale.)

General procedure for $\mathbf{T i}(\mathbf{I V})$-catalyzed synthesis of spirooxindole-1-pyrrolines:

A solution of alkylidene oxindole (1.5 equiv, 0.15 mmol) and oxazole (1.0 equiv, 0.1 mmol) was prepared in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{M})$ at $25^{\circ} \mathrm{C}$ in a 4 mL oven dried scintillation vial fitted with a magnetic stir bar. To this homogeneous solution, a solution of TiCl_{4} (0.2 equiv, $0.02 \mathrm{mmol}, 1.0 \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) was added and the reaction was sealed under argon atmosphere and stirred until completion as judged by TLC $(10 \%$ $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$), which was $<1 \mathrm{~h}$. Upon completion the reaction was diluted with 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with sat. sodium potassium tartrate (20 mL), brine (20 mL), dried over MgSO_{4}, filtered, and concentrated in vacuo. Before purification the diastereomeric ratio (dr) was obtained using ${ }^{1} \mathrm{H}$

NMR spectroscopy. The crude material was then purified by flash chromatography (gradient 100\% DCM to $10 \% \mathrm{EtOAc} / \mathrm{DCM})$ to yield the spiro-1-pyrroline product.

General procedure for $\mathrm{Sc}($ III $)$-catalyzed synthesis of spirooxindole-1-pyrrolines:

To solution of $\mathrm{Sc}(\mathrm{OTf})_{3}(0.2$ equiv, 0.02 mmol$)$ and dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{M})$ at $25{ }^{\circ} \mathrm{C}$, in a 4 mL oven dried scintillation vial fitted with a magnetic stir bar, was added the alkylidene oxindole (1.5 equiv, 0.15 mmol) and oxazole (1.0 equiv, 0.1 mmol). The reaction was sealed under argon atmosphere and stirred until completion as judged by TLC $\left(10 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, which was approximately 5 h . Upon completion the reaction was diluted with 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. When judged to be complete, the reaction was concentrated in vacuo and the diastereomeric ratio was obtained using ${ }^{1} \mathrm{H}$ NMR spectroscopic analysis of the unpurified reaction mixture. The crude material was then purified by flash chromatography (gradient 100\% DCM to $10 \% \mathrm{EtOAc} / \mathrm{DCM})$ to yield the spiro-1-pyrroline product. Using $5 \mathrm{~mol} \%$ catalyst loading is effective for high conversion, but it was observed that the rate of the reaction can be affected by the "age" and dryness of the $\mathrm{Sc}(\mathrm{OTf})_{3}$ bottle.

General procedure for the Sc(III)-catalyzed enantioselective synthesis of spirooxindole-1-pyrrolines:

A 4 mL scintillation vial filled with 0.01 g of $4 \AA$ molecular sieves and magnetic stir bar was dried under vacuum with a heat gun and then (R, S)-indapybox (0.11 equiv, 0.011 mmol 0.0044 g), NaBArF (0.1 equiv, $0.01 \mathrm{mmol}, 0.0088 \mathrm{~g})$, and $\mathrm{Sc}(\mathrm{OTf})_{3}(0.2$ equiv, $0.02 \mathrm{mmol}, 0.010 \mathrm{~g})$ were added, followed by $\mathrm{PhCH}_{3}(0.5$ mL). The mixture was allowed to stir at room temperature for $1-2 \mathrm{~h}$ to allow complexation of the ligand and metal. Then the alkylidene oxindole (1.5 equiv, 0.15 mmol) was added. After 5 min the oxazole (1.0 equiv, 0.1 mmol) was added. The reaction was then sealed under argon atmosphere and stirred until complete as judged by TLC (10% EtOAc/DCM), which was approximately 12 h . When judged to be complete, the reaction was concentrated in vacuo and the diastereomeric ratio was obtained using ${ }^{1} \mathrm{H}$ NMR analysis of the unpurified reaction mixture. A reversal in diastereoselectivity was observed when using the pybox ligand compared to conditions without a ligand. Next the mixture was purified by flash chromatography (gradient $100 \% \mathrm{DCM}$ to $10 \% \mathrm{EtOAc} / \mathrm{DCM}$) to yield the spirooxindole-1-pyrroline product. The enantioselectivity of the product was measured using HPLC with a chiral stationary phase, and compared to a racemic standard that was prepared using the $\mathrm{Ti}(\mathrm{IV})$ - or $\mathrm{Sc}(\mathrm{III})$-catalyzed procedure without ligand.

III. Characterization Data

The stereochemistry for the major diastereomer $\mathbf{3 a}$, formed using TiCl_{4} or $\mathrm{Sc}(\mathrm{OTf})_{3}$ in the absence of ligand, was determined by X-ray crystallographic analysis to be the $3,4^{\prime}$-trans $/ 4^{\prime}, 5^{\prime}$-trans isomer (a racemic mixture of $3 S, 4^{\prime} R, 5^{\prime} R$ and $3 R, 4^{\prime} S, 5^{\prime} S$ notated $3 S^{*}, 4^{\prime} R^{*}, 5^{\prime} R^{*}$). The minor diastereomer (epi-3a) for this reaction was determined to be the $3,4^{\prime}$-trans $/ 4^{\prime}, 5^{\prime}$-cis isomer $\left(3 S^{*}, 4^{\prime} R^{*}, 5^{\prime} S^{*}\right)$ because this was identified as the major diasteromer using the $\mathrm{Sc}($ III $)$-pybox conditions as confirmed using X-ray crystallography.

4'-ethyl $\quad 5^{\prime}$-methyl ($3 S^{*}, 4^{\prime} R^{*}, 5^{\prime} R^{*}$)-1-acetyl-5-fluoro-2'-(4-methoxyphenyl)-2-oxo-4',5'-dihydrospiro[indoline-3,3'-pyrrole]-4',5'-dicarboxylate (3a): Synthesized according to the representative procedure for the titanium-catalyzed synthesis of spirooxindole-1-pyrrolines to afford the product as a white solid ($43.2 \mathrm{mg}, 90 \%$ yield, $91: 9 \mathrm{dr}$). mp $65-68{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.33(\mathrm{dd}, J=9.0,4.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.33$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}$), 7.10 (ddd, $J=8.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.76$ (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}$), 6.78-6.75 (m, 1H), $5.46(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.72(\mathrm{~s}$, $3 \mathrm{H}), 0.81(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.8,170.7,170.3,168.9,167.6,162.4,160.3$ $\left(\mathrm{d}, J_{F C}=247.5 \mathrm{~Hz}\right), 136.0\left(\mathrm{~d}, J_{F C C C C}=2.8 \mathrm{~Hz}\right), 129.5,127.2\left(\mathrm{~d}, J_{F C C C}=8.0 \mathrm{~Hz}\right), 123.6,118.7\left(\mathrm{~d}, J_{F C C C}=7.8\right.$ $\mathrm{Hz}), 116.9\left(\mathrm{~d}, J_{F C C}=22.5 \mathrm{~Hz}\right), 114.4,111.5\left(\mathrm{~d}, J_{F C C}=24.8 \mathrm{~Hz}\right), 73.7,67.4,61.7,58.3,55.5,53.3,26.6,13.6$. IR (neat, selected peaks) $1751,1728,1605,1255,1171,1014 \mathrm{~cm}^{-1}$. LRMS calculated for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{FN}_{2} \mathrm{O}_{7}[\mathrm{M}+$ $\mathrm{H}]^{+}$483.2, found 483.1. Recrystallization from DCM layered with hexanes and isopropyl alcohol afforded single crystals and the structure was confirmed by X-ray analysis.

The relative stereochemistry for epi-3a, formed using Sc-catalyzed conditions with the (R, S) -indapybox ligand was determined by X-ray crystallographic analysis to be the $3,4^{\prime}$-trans $/ 4^{\prime}, 5^{\prime}$-cis isomer. The absolute stereochemistry was assigned to be ($3 S, 4^{\prime} R, 5^{\prime} S$) by analogy to the absolute configuration observed for products resulting from the addition of allylsilanes to alkylidene oxindoles using similar catalyst conditions. ${ }^{11}$ (Note: the use of a chiral ligand promotes a reversal of diastereoselection relative to TiCl_{4} or $\mathrm{Sc}(\mathrm{OTf})_{3}$ conditions without ligand.)

4'-ethyl (3S,4'R,5'S)-1-acetyl-5-fluoro-2'-(4-methoxyphenyl)-2-oxo-4',5'-dihydrospiro[indoline-3,3'-pyrrole]-4',5'-dicarboxylate (epi-3a): Synthesized according to the representative procedure for the Sc -catalyzed enantioselective synthesis of spirooxindole-1-pyrrolines to afford the product as a white foam ($48.3 \mathrm{mg}, 99 \%$ yield, $9: 91 \mathrm{dr}$ based on ${ }^{1} \mathrm{H}$ NMR, 86:14 er). $[\alpha]_{\mathrm{D}}{ }^{23.7}=+$ 53.8 ($\mathrm{c}=1.82, \mathrm{CHCl}_{3}$ stabilized with $7.5 \% \mathrm{EtOH}$). Enantiomeric ratio was determined by HPLC with a Daicel CHIRALPAK® AD-H column (15% IPA/hexanes), $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}}($ major $)=49.8 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=$ $16.7 \mathrm{~min}, 86: 14 \mathrm{er}$. ${ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.31(\mathrm{dd}, J=9.0,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{dd}, J=8.3,2.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.30(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.10$ (ddd, $J=8.8,8.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.40(\mathrm{~d}, J=9.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.79-3.73(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.69(\mathrm{~s}, 3 \mathrm{H}), 0.79(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.1,171.0,170.5,169.3,167.1,162.2,160.5\left(\mathrm{~d}, J_{F C}=246.0\right.$ $\mathrm{Hz}), 136.2,129.6,128.1\left(\mathrm{~d}, J_{F C C C}=8.9 \mathrm{~Hz}\right), 123.9,117.9\left(\mathrm{~d}, J_{F C C C}=7.8 \mathrm{~Hz}\right), 116.5\left(\mathrm{~d}, J_{F C C}=22.8 \mathrm{~Hz}\right)$, 114.3, $114.0\left(\mathrm{~d}, J_{F C C}=26.0 \mathrm{~Hz}\right), 73.4,67.9,61.5,58.2,55.4,52.8,26.6,13.5$. IR (neat, selected peaks) 1744, 1715, 1477, 1254, 1171, 1026, $653 \mathrm{~cm}^{-1}$. LRMS calculated for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{FN}_{2} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+} 483.2$, found 483.4 .

Racemic standard mixture of 3a (major) and epi-3a (minor):

Enantiomerically enriched epi-3a (86:14 er) [Peaks at 10.7 and 28.8 min correspond to 3a, 94:6 er]:

4'-ethyl 5 '-methyl $\left(3 S^{*}, 4 R^{*}, 5 R^{*}\right)$-1-acetyl-5-fluoro-2-oxo-2'-phenyl-4',5'-dihydrospiro[indoline-3,3'-pyrrole]-4',5'-dicarboxylate (3b): Synthesized according to the representative procedure for the titaniumcatalyzed synthesis of spirooxindole-1-pyrrolines to afford the product as a white foam ($43.8 \mathrm{mg}, 75 \%$ yield, 90:10 dr). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.34(\mathrm{dd}, J=9.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.24(\mathrm{~m}$, $2 \mathrm{H}), 7.11$ (ddd, $J=8.7,8.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{dd}, J=7.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=$ $9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.71(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.81(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 175.6,170.6,170.1,169.8,167.5,160.2\left(\mathrm{~d}, J_{F C}=247.6 \mathrm{~Hz}\right), 136.1\left(\mathrm{~d}, J_{F C C C C}=\right.$ $2.7 \mathrm{~Hz}), 131.9,131.2,129.0,127.7,126.9\left(\mathrm{~d}, J_{\mathrm{FCCC}}=8.0 \mathrm{~Hz}\right), 118.8\left(\mathrm{~d}, J_{F C C C}=7.7 \mathrm{~Hz}\right), 117.1\left(\mathrm{~d}, J_{F C C}=22.5\right.$ $\mathrm{Hz}), 111.4\left(\mathrm{~d}, J_{F C C}=24.9 \mathrm{~Hz}\right), 73.9,67.6,61.8,58.1,53.3,26.6,13.6$. IR (neat, selected peaks) 1753, 1732, $1477,1371,1275,1173,1014 \mathrm{~cm}^{-1}$. LRMS calculated for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{FN}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+} 453.15$, found 453.4.

4'-ethyl 5'-methyl
$\left(3 S^{*}, 4^{\prime} R^{*}, 5^{\prime} R^{*}\right)$-1-acetyl-2'-(4-bromophenyl)-5-fluoro-2-oxo-4',5'-
dihydrospiro[indoline-3,3'-pyrrole]-4',5'-dicarboxylate (3c): Synthesized according to the representative procedure for the titanium-catalyzed synthesis of spirooxindole-1-pyrrolines to afford the product as a white foam $(46.8 \mathrm{mg}, 85 \%$ yield, $86: 14 \mathrm{dr}$, diastereoselectivity is the ratio of the major relative to the sum of minor diastereomers). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.34(\mathrm{dd}, J=9.1,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.23$ $(\mathrm{d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{ddd}, J=8.9,8.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{dd}, J=7.1,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{~d}, J=9.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.40(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.71(\mathrm{~s}, 3 \mathrm{H}), 0.80(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.4,170.4,169.8,168.7,167.3,160.2\left(\mathrm{~d}, J_{F C}=248.0 \mathrm{~Hz}\right), 136.0\left(\mathrm{~d}, J_{F C C C C}\right.$ $=2.7 \mathrm{~Hz}), 132.3,130.0,129.1,126.7,126.5\left(\mathrm{~d}, J_{F C C C}=8.2 \mathrm{~Hz}\right), 118.9\left(\mathrm{~d}, J_{F C C C}=7.7 \mathrm{~Hz}\right), 117.2\left(\mathrm{~d}, J_{F C C}=\right.$ $22.4 \mathrm{~Hz}), 111.4\left(\mathrm{~d}, J_{F C C}=24.7 \mathrm{~Hz}\right), 73.9,67.4,61.8,58.1,53.3,26.5,13.5$. IR (neat, selected peaks) 2029, $1753,1709,1477,1259,1169,1009 \mathrm{~cm}^{-1}$. LRMS calculated for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{BrFN}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+} 531.06$, found 531.1.

1-benzyl 4^{\prime}-ethyl 5^{\prime}-methyl $\quad\left(3 S^{*}, 4^{\prime} R^{*}, 5{ }^{\prime} R^{*}\right)$-5-fluoro-2'-(4-methoxyphenyl)-2-oxo-4',5'-dihydrospiro[indoline-3,3'-pyrrole]-1,4',5'-tricarboxylate (3d): Synthesized according to the representative procedure for the titanium-catalyzed synthesis of spirooxindole-1-pyrrolines to afford the product as a white foam $(52.0 \mathrm{mg}, 90 \%$ yield, $90: 10 \mathrm{dr}$, diastereoselectivity based on purified material and is the ratio of the major relative to the sum of minor diastereomers). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01(\mathrm{dd}, J$ $=9.0,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.36(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{ddd}, J=8.8$, $8.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{dd}, J=7.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.52(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{~d}, J$ $=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.69-3.75(\mathrm{~m}$, $2 \mathrm{H}), 0.72(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.9,170.2,169.0,167.6,162.3,160.1\left(\mathrm{~d}, J_{F C}\right.$ $=246.9 \mathrm{~Hz}), 150.6,135.2\left(\mathrm{~d}, J_{F C C C C}=2.5 \mathrm{~Hz}\right), 134.7,129.6,128.8,128.7,128.1,126.8\left(\mathrm{~d}, J_{F C C C}=8.1 \mathrm{~Hz}\right)$, $123.6,117.2\left(\mathrm{~d}, J_{F C C C}=7.7 \mathrm{~Hz}\right), 116.9\left(\mathrm{~d}, J_{F C C}=22.8 \mathrm{~Hz}\right), 114.3,111.6\left(\mathrm{~d}, J_{F C C}=24.9 \mathrm{~Hz}\right), 73.6,69.2,67.3$, $61.6,58.2,55.4,53.2,13.4$. IR (neat, selected peaks) $1772,1730,1483,1255,1225,1153,1020 \mathrm{~cm}^{-1}$. LRMS calculated for $\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{FN}_{2} \mathrm{O}_{8}[\mathrm{M}+\mathrm{H}]^{+} 575.18$, found 575.3.

methyl $\left(3 S^{*}, 4^{\prime} R^{*}, 5{ }^{\prime} R^{*}\right)$-1-acetyl-4'-benzoyl-2'-(4-methoxyphenyl)-2-oxo-4',5'-dihydrospiro[indoline-3,3'-pyrrole]-5'-carboxylate (3e): Synthesized according to the representative procedure for the titaniumcatalyzed synthesis of spirooxindole-1-pyrrolines to afford the product as a white foam ($45.3 \mathrm{mg}, 88 \%$ yield, $>95: 5 \mathrm{dr}){ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.32(\mathrm{~m}$, $2 \mathrm{H}), 7.28(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.14(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.92(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 195.9,176.8,170.9,170.0,167.9,162.1,139.0,137.0,133.6,130.1,129.5$, $128.4,127.5,126.1,125.0,124.7,124.1,116.8,114.3,73.9,68.3,61.0,55.4,53.2,26.6$. IR (neat, selected peaks) $1745,1699,1604,1250,1169 \mathrm{~cm}^{-1}$. LRMS calculated for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+} 497.17$, found 497.3.

4'-ethyl 5'-methyl
($3 S^{*}, 4^{\prime} R^{*}, 5{ }^{\prime} R^{*}$)-5-fluoro-2'-(4-methoxyphenyl)-1-methyl-2-oxo-4',5'-dihydrospiro[indoline-3,3'-pyrrole]-4',5'-dicarboxylate (3f): Synthesized according to the representative procedure for the titanium-catalyzed synthesis of spirooxindole-1-pyrrolines (100% conversion based on ${ }^{1} \mathrm{H}$ NMR spectroscopy, 38:30:18:14 mixture of diastereomers that were primarily inseparable). Peaks corresponding to the major diastereomer are as follows: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, 2 H), 7.06 (ddd, $J=8.8,8.8,2.6 \mathrm{~Hz}, 1 \mathrm{H}$), 6.88 (dd, $J=8.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.78$ (dd, $J=7.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.72$ (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}$), 5.46 (d, $J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.78$ (dq, $J=10.6 \mathrm{~Hz}, J=$ $7.1 \mathrm{~Hz} 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 0.80(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. LRMS calculated for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{FN}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$ 455.16, found 455.2.

4^{\prime}-ethyl $\quad 5^{\prime}$-methyl $\quad\left(3 S^{*}, 4 R^{*}, 5{ }^{\prime} R^{*}\right.$)-1-acetyl-5-fluoro-2'-(4-methoxyphenyl)-5'-methyl-2-oxo-4',5'-dihydrospiro[indoline-3,3'-pyrrole]-4',5'-dicarboxylate (3g): Synthesized according to the representative procedure for the titanium-catalyzed synthesis of spirooxindole-1-pyrrolines to afford the product as a pale yellow foam ($34.0 \mathrm{mg}, 69 \%$ yield, $94: 6 \mathrm{dr}$, diastereoselectivity based on purified material). ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.37(\mathrm{dd}, J=9.1,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{ddd}, J=8.7,8.7,2.7 \mathrm{~Hz}, 1 \mathrm{H})$, 6.93 (dd, $J=7.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.73$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.67$ (s, 1H), $3.90(\mathrm{~s}, 3 \mathrm{H}), 3.86-3.79$ (m, 2H), 3.75 $(\mathrm{s}, 3 \mathrm{H}), 2.69(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.7,173.1$, $170.6,166.9,166.0,162.2,160.2\left(\mathrm{~d}, J_{F C}=246.3 \mathrm{~Hz}\right), 136.6\left(\mathrm{~d}, J_{F C C C C}=2.6 \mathrm{~Hz}\right), 129.6,128.1\left(\mathrm{~d}, J_{F C C C}=8.0\right.$ $\mathrm{Hz}), 123.9,118.5\left(\mathrm{~d}, J_{F C C C}=7.8 \mathrm{~Hz}\right), 116.6\left(\mathrm{~d}, J_{F C C}=22.4 \mathrm{~Hz}\right), 114.3,112.6\left(\mathrm{~d}, J_{F C C}=25.2 \mathrm{~Hz}\right), 79.5,68.1$, $61.1,60.0,55.4,53.4,26.6,23.4,13.6$. IR (neat, selected peaks) $1716,1604,1477,1254,1165,1103 \mathrm{~cm}^{-1}$. LRMS calculated for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{FN}_{2} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+} 497.17$, found 497.2.

4'-ethyl 5^{\prime}-methyl $\left(3 S^{*}, 4^{\prime} R^{*}, 5{ }^{\prime} R^{*}\right)$-1-acetyl-2'-(4-methoxyphenyl)-2-oxo-4',5'-dihydrospiro[indoline-3,3'-pyrrole]-4',5'-dicarboxylate (3h): Synthesized according to the representative procedure for the titanium-catalyzed synthesis of spirooxindole-1-pyrrolines to afford the product as a white foam (34.6 mg , 75% yield, $92: 8 \mathrm{dr}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.33(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=8.0,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.33(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{dd}, J=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{dd}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 5.50(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.74-3.70(\mathrm{~m}, 1 \mathrm{H}), 2.73$ $(\mathrm{s}, 3 \mathrm{H}), 0.75(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.2,170.9,170.5,169.4,167.8,162.2$, $139.9,130.3,129.5,126.0,125.3,123.9,123.7,117.2,114.3,73.7,67.5,61.5,58.3,55.4,53.2,26.7,13.5$. IR (neat, selected peaks) $1747,1711,1604,1252,1171,1014 \mathrm{~cm}^{-1}$. LRMS calculated for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+}$ 465.17, found 465.3.

4'-ethyl 5^{\prime}-methyl ($\left.3 S^{*}, 4^{\prime} R^{*}, 5{ }^{\prime} R^{*}\right)$-5-fluoro-2'-(4-methoxyphenyl)-2-oxo-4',5'-dihydrospiro[indoline$\mathbf{3 , 3}$ '-pyrrole]-4',5'-dicarboxylate (7): To a 0.2 M solution of oxindole $\mathbf{3 a}$ ($400 \mathrm{mg}, 0.8 \mathrm{mmol}$) in THF in a 20 mL scintillation vial fitted with a magnetic stir bar was added $\mathrm{H}_{2} \mathrm{O}_{2}(10$ equiv, $16.0 \mathrm{mmol}, 1.6 \mathrm{~mL}), \mathrm{KHCO}_{3}$ (2.0 equiv, $1.6 \mathrm{mmol}, 160 \mathrm{mg}$). The mixture was stirred until complete as judged by TLC (10% $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$). The reaction was then diluted with ether (20 mL), brine (50 mL), and dried over MgSO_{4} and purified using column chromatography with a gradient beginning with $100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ending with $10-15 \%$ $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford the product as a white solid ($336 \mathrm{mg}, 95 \%$ yield). $\mathrm{mp} 194-198{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}(600$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.36(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{ddd}, J=8.7,8.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{dd}, J=8.6$, $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{dd}, J=7.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.49(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=9.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{dq}, J=10.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{dq}, J=10.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 0.78(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.1,170.8,169.3,168.2,162.3,159.1\left(\mathrm{~d}, J_{F C}=243.3 \mathrm{~Hz}\right)$, $137.0,129.5,128.2\left(\mathrm{~d}, J_{F C C C}=7.9 \mathrm{~Hz}\right), 124.1,116.6\left(\mathrm{~d}, J_{F C C}=23.5 \mathrm{~Hz}\right), 114.2,112.5\left(\mathrm{~d}, J_{F C C}=25.2 \mathrm{~Hz}\right)$,
$111.7,73.9,67.8,61.5,56.8,55.4,53.2,13.6$. IR (neat, selected peaks) $1736,1714,1606,1485,1261,1174$, $1022 \mathrm{~cm}^{-1}$. LRMS calculated for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{FN}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+} 441.15$, found 441.0.

3,3-diethyl 5-methyl (4R*,5R*)-2-(4-methoxyphenyl)-4-phenyl-4,5-dihydro-3H-pyrrole-3,3,5tricarboxylate (9): Synthesized according to the representative procedure for the titanium-catalyzed synthesis of spirooxindole-1-pyrrolines to afford the product as a yellow oil ($55.5 \mathrm{mg}, 99 \%$ yield, $73: 27 \mathrm{dr}$). Representative peaks corresponding to the major diastereomer are as follows: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, some peaks in the aromatic region (phenyl ring) not listed due to overlap with minor diastereomer) $\delta 8.10$ (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.48$ $(\mathrm{d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{dq}, J=10.8,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{~d}, J=10.8$, $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.75(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $170.4,168.4,167.4,166.2,161.9,136.1,131.6,131.0,129.2,127.9,125.6,113.2,76.8,76.0,62.9,61.5$, $57.4,55.4,51.7,14.0,13.3$. IR (neat, selected peaks) $1728,1604,1252,1205,1174,1086,1026,841 \mathrm{~cm}^{-1}$. LRMS calculated for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{NO}_{7}[\mathrm{M}+\mathrm{H}]^{+} 454.19$, found 454.3. The stereochemistry for the major isomer (4,5-trans) is drawn based on analogy to the spirooxindole-1-pyrroline stereochemistry.

The relative stereochemistry $\left(1 S^{*}, 3 \mathrm{a} R^{*}, 9 \mathrm{~b} S^{*}\right)$ for the major diastereomer of $\mathbf{1 1}$ was confirmed by X-ray crystallographic analysis. The stereochemistry for the minor diastereomer (epi-11) was assigned to be $1 R^{*}, 3 \mathrm{a} R^{*}, 9 \mathrm{~b} S^{*}$.by analogy to the stereochemistry for the spirooxindole-1-pyrrolines.

Dimethyl ($1 S^{*}, 3 \mathrm{a} R^{*}, 9 \mathrm{~b} S^{*}$)-3-(4-methoxyphenyl)-4-oxo-1,9b-dihydrochromeno[3,4-c]pyrrole-1,3a(4H)-

 dicarbox-ylate (11): A solution of coumarin (1.0 equiv, 0.2 mmol) and oxazole (1.1 equiv, 0.22 mmol) was prepared in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{M})$ at $25^{\circ} \mathrm{C}$ in a 4 mL oven dried scintillation vial fitted with a magnetic stir bar. To this homogeneous solution, TiCl_{4} (0.2 equiv, $0.04 \mathrm{mmol}, 1.0 \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) was added and the reaction was stirred for 45 min . Then the reaction was diluted with 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washedwith sat. sodium potassium tartrate (20 mL), brine (20 mL), dried over MgSO_{4}, filtered, and concentrated in vacuo. Before purification the diastereomeric ratio (dr) was obtained using ${ }^{1} \mathrm{H}$ NMR spectroscopy. The crude material was then purified by flash chromatography (gradient 100% DCM to $1 \% \mathrm{EtOAc} / \mathrm{DCM}$) to yield the pyrroline product ($69.2 \mathrm{mg}, 85 \%$ yield, $88: 12 \mathrm{dr}$). Longer reaction times (e.g. 20h) were determined to increase the yield of the pyrroline and allowed the unreacted oxazoline to convert to a more polar by-product, making purification easier; however, these conditions led to a small erosion in the diastereoselectivity (74.6 $\mathrm{mg}, 91 \%$ yield, $80: 20 \mathrm{dr}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.21$ $-7.15(\mathrm{~m}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.58(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.86$ (s, 3H), $3.70(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.3,170.0,168.2,162.4,161.7,150.3,131.3,129.9$, $129.8,125.3,124.4,117.5,117.3,114.0,77.5,66.8,55.5,54.1,53.1,50.8$; IR (neat, selected peaks) 2955, 1737, 1613, 1248, 1167, 1025, $837 \mathrm{~cm}^{-1}$; LRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{NO}_{7}[\mathrm{M}+\mathrm{H}]^{+} 410.12$, found 410.2. Recrystallization from DCM layered with hexanes afforded single crystals and the structure was confirmed by X-ray analysis.

IV. Proposal for Reversal of Diastereoselectivity

In the absence of a large ligand such as (R, S)-indapybox, we propose that the oxazole can approach the prochiral alkylidene oxindole in either an antiperiplanar or synclinal orientation. Steric interactions between the aryl substituent of the oxazole and the β-position of the alkylidene oxindole are minimized in approach "A-antiperiplanar", giving rise to product 3 with $5 R^{*}$ stereochemistry. We propose that a synclinal orientation may occur if favorable $\pi-\pi$ stacking and/or lone pair-MX ${ }_{n}$ interactions exist ("A-synclinal"). In the presence of the (R, S)-indapybox ligand, the oxazole is expected to approach from the si-face in an antiperiplanar orientation that minimize interactions between the aryl or methoxy group and the ligand framework, giving rise to product epi-3 with opposite $5 S^{*}$ stereochemistry.

V. X-ray crystallographic Information

X-ray crystallographic Information for JJB4238 (3a)

Figure S1. X-ray structure for JJB4238 (3a) with thermal displacement parameters at the 50% probability level for non-H atoms. There are two independent molecules in the asymmetric unit. The structure is centrosymmetric. In molecule 1 , chirality is $\mathrm{R}, \mathrm{S}, \mathrm{S}$ for $\mathrm{C} 7, \mathrm{C} 12, \mathrm{C} 13$, respectively and in molecule 2 , chirality is $\mathrm{S}, \mathrm{R}, \mathrm{R}$, for C32, C37, C38, respectively

Table S1. Crystal data and structure refinement for JJB4238 (3a)

Identification code	sw 03	
Empirical formula	$\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{FN}_{2} \mathrm{O}_{7}$	
Formula weight	482.45	
Temperature	$90(2) \mathrm{K}$	
Wavelength	$0.71073 \AA$	
Crystal system	Monoclinic	
Space group	$\mathrm{C} 2 / \mathrm{c}$	
Unit cell dimensions	$\mathrm{a}=31.188(9) \AA=90^{\circ}$.	
	$\mathrm{b}=10.623(3) \AA$	$\beta=100.167(3)^{\circ}$.
	$\mathrm{c}=28.223(8) \AA$	$\gamma=90^{\circ}$.
Volume	$9204(4) \AA^{3}$	
Z	16	
Density (calculated)	$1.393 \mathrm{Mg} / \mathrm{m}^{3}$	
Absorption coefficient	$0.108 \mathrm{~mm}^{-1}$	

$\mathrm{F}(000)$	4032
Crystal size	$1.193 \times 1.139 \times 0.963 \mathrm{~mm}^{3}$
Crystal color and habit	colorless block
Diffractometer	Bruker SMART 1000
Өrange for data collection	2.797 to 27.569°.
Index ranges	$-40 \leq \mathrm{h} \leq 40,-13 \leq \mathrm{k} \leq 13,-36 \leq \leq \leq 36$
Reflections collected	42994
Independent reflections	$10567[\mathrm{R}(\mathrm{int})=0.0295]$
Observed reflections $[\mathrm{I}>2 \sigma(\mathrm{I})]$	8509
Completeness to $\theta=25.242^{\circ}$	99.8%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.746 and 0.657
Solution method	$\mathrm{SHELXS}-97$ (Sheldrick, 2008)
Refinement method	$\mathrm{SHELXL}-2013$ (Sheldrick, 2013)
Data / restraints / parameters	$10567 / 0 / 639$
Goodness-of-fit on F^{2}	1.058
Final R indices [I>2 $\sigma(\mathrm{I})]$	$\mathrm{R} 1=0.0413$, wR2 $=0.1060$
R indices (all data)	$\mathrm{R} 1=0.0533$, wR2 $=0.1114$
Extinction coefficient	n / a
Largest diff. peak and hole	0.326 and $-0.261 \mathrm{e} . \AA^{-3}$

X-ray Crystallographic information for JJB5060 toluene solvate (epi-3a)

Figure S2. X-ray structure for JJB5060 toluene solvate (epi-3a) with thermal displacement parameters at the 50\% probability level for non-H atoms.

Table S2. Crystal data and structure refinement for JJB5060 toluene solvate. (epi-3a)

Identification code	mn2191
Empirical formula	C32 H31 F N2 O7
Formula weight	574.59
Temperature	90(2) K
Wavelength	1.54178 A
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	$\mathrm{a}=8.7859(2) \AA \quad \alpha=81.6796(9)^{\circ}$.
	$\mathrm{b}=12.7763(4) \AA \quad \beta=76.9516(8)^{\circ}$.
	$\mathrm{c}=13.0960(3) \AA \quad \gamma=86.6732(8)^{\circ}$.
Volume	1416.52(6) \AA^{3}
Z	2
Density (calculated)	$1.347 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.829 \mathrm{~mm}^{-1}$
F(000)	604
Crystal size	$0.369 \times 0.322 \times 0.196 \mathrm{~mm}^{3}$
Crystal color and habit	colorless plate
Diffractometer	Bruker Apex DUO
Theta range for data collection	3.496 to 72.465°.
Index ranges	$-10<=\mathrm{h}<=10,-14<=\mathrm{k}<=15,-16<=1<=16$
Reflections collected	24676
Independent reflections	5357 [$\mathrm{R}(\mathrm{int})=0.0282]$
Observed reflections ($\mathrm{I}>2$ sigma(I) $)$	5191
Completeness to theta $=67.679^{\circ}$	96.3 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.754 and 0.651
Refinement method	SHELXL-2013 (Sheldrick, 2013)
Data / restraints / parameters	5357/0 / 383
Goodness-of-fit on F^{2}	1.020
Final R indices [$1>2$ sigma (I)]	$\mathrm{R} 1=0.0463, \mathrm{wR} 2=0.1218$
R indices (all data)	$\mathrm{R} 1=0.0472, \mathrm{wR} 2=0.1227$
Extinction coefficient	n / a
Largest diff. peak and hole	0.421 and -0.380 e. \AA^{-3}

Molecule 1

Molecule 2

Figure S3. X-ray Structure for CR2-21 (11) with thermal displacement parameters at the 50% probability level for non-hydrogen atoms. Each of the two molecules in the asymmetric unit has minor disorder. In molecule1, the OMe group of the acetoxy group has $0.474(3) / 0.526(3)$ disorder and in molecule2, the OMe group has $0.449(6) / 0.551(6)$ disorder for A and B sets, respectively. In molecule 1 , the chirality is $\mathrm{R}, \mathrm{S}, \mathrm{R}$ for $\mathrm{C} 8, \mathrm{C} 9, \mathrm{C} 10$, respectively. In molecule 2 , the chirality is $\mathrm{S}, \mathrm{R}, \mathrm{S}$ for $\mathrm{C} 30, \mathrm{C} 31, \mathrm{C} 32$, respectively.

Table S3. Crystal data and structure refinement for CR2-21 (11):

Identification code	mn2188
Empirical formula	$\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NO}_{7}$
Formula weight	409.38
Temperature	90(2) K
Wavelength	0.71073 A
Crystal system	monoclinic
Space group	$\mathrm{P} 21 / \mathrm{c}$
Unit cell dimensions	$a=17.736(3) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=12.166(2) \AA \quad \beta=91.250(3)^{\circ}$.
	$\mathrm{c}=17.785(4) \AA \quad \gamma=90^{\circ}$.
Volume	3836.7(13) \AA^{3}
Z	8
Density (calculated)	$1.417 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.107 \mathrm{~mm}^{-1}$
F(000)	1712
Crystal size	$0.400 \times 0.180 \times 0.100 \mathrm{~mm}^{3}$
Crystal color and habit	colorless needle
Diffractometer	Bruker SMART 1000
Θ range for data collection	2.838 to 27.563°.
Index ranges	$-22 \leq h \leq 23,-15 \leq k \leq 15,-23 \leq 1 \leq 23$
Reflections collected	39895
Independent reflections	$8768[\mathrm{R}(\mathrm{int})=0.0585]$
Observed reflections [$\mathrm{I}>2 \sigma(\mathrm{I})$]	5977
Completeness to $\theta=25.242^{\circ}$	99.7 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.746 and 0.703
Solution method	SHELXS-97 (Sheldrick, 2008)
Refinement method	SHELXL-2013 (Sheldrick, 2013)
Data / restraints / parameters	8768 / 0 / 587
Goodness-of-fit on F^{2}	1.022
Final R indices [$\mathrm{I}>2 \sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0573, \mathrm{wR} 2=0.1288$
R indices (all data)	$\mathrm{R} 1=0.0937, \mathrm{wR} 2=0.1460$
Extinction coefficient	n/a
Largest diff. peak and hole	0.393 and -0.254 e. \AA^{-3}

VI. References

(1) a) Mitchell, J. M.; Shaw, J. T. Angew. Chem., Int. Ed. 2006, 45, 1722-1726. b) Li, P.; Evans, C. D.; Wu, Y.; Cao, B.; Hamel, E.; Joulli, M. M. J. Am. Chem. Soc. 2008, 130, 2351-2364.
(2) Hanhan, N. V.; Ball-Jones, N. R.; Tran, N. T.; Franz, A. K. Angew. Chem. Int. Ed. 2012, 51, 989992.
(3) Desimoni, G.; Faita, G.; Guala, M.; Pratelli, C. Tetrahedron: Asymmetry 2002, 13, 1651-1654.
(4) Müller, P.; Boléa, C. Helv. Chim. Acta 2001, 84, 1093-1111.
(5) Yakelis, N. A.; Bergman, R. G. Organometallics 2005, 24, 3579-3581.
(6) Ripert, V.; Hubert-Pfalzgraf, L. G.; Vaissermann, J. Polyhedron 1999, 18, 1845-1851.
(7) Manzer, L. E. Inorg. Synth. 1982, 21, 135-140.
(8) Gagey, N.; Neveu, P.; Benbrahim, C.; Goetz, B.; Aujard, I.; Baudin, J.-B.; Jullien, L. J. Am. Chem. Soc. 2007, 129, 9986-9998.
(9) Lv, H.; Chen, X.-Y.; Sun, L.-h.; Ye, S. The J. Org. Chem. 2010, 75, 6973-6976.
(10) Madin, A.; O'Donnell, C. J.; Oh, T.; Old, D. W.; Overman, L. E.; Sharp, M. J. J. Am. Chem. Soc. 2005, 127, 18054-18065.
(11) Ball-Jones, N. R.; Badillo, J. J.; Tran, N. T.; Franz, A. K. Angew. Chem. Int. Ed. 2014, 53, 94629465.

$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

epi-3a

$600 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$600 \mathrm{MHz}, \mathrm{CDCl}_{3}$

3c

$150 \mathrm{MHz}, \mathrm{CDCl}_{3}$

3c

$600 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$600 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$600 \mathrm{MHz}, \mathrm{CDCl}_{3}$

3h

$600 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$600 \mathrm{MHz}, \mathrm{CDCl}_{3}$
$\mathrm{MeO}_{2} \mathrm{C}$

9

