
Receding Horizon UAV Path Planning Via Gradient-Based
Optimization of Ferguson Splines
Kyle Ingersoll, Patrick DeFranco, Bryce Ingersoll

April 10, 2015

Abstract—Path planning is an integral task of many
unmanned air vehicle (UAV) applications. Minimizing
travel time while avoiding obstacle collision is an important
objective of almost any UAV flight path. In this paper, we
seek to minimize the path length from an initial position
to a final destination while avoiding collision with static,
circular obstacles. We pose the path planning task as an op-
timization problem inside a receding horizon framework.
After each planning step, the first segment of the path is
then traversed and a new path is planned; this procedure
continues until the final destination is achieved. The
objective of the optimization is to minimize the distance to
the final destination; the objective function also includes
a term that promotes smooth, navigable trajectories. The
path optimization is constrained by the obstacles and by
a minimum and maximum step length. Path segments are
modeled as Ferguson splines. The optimization of splines
results in efficient, feasible paths even in complex obstacle
fields. For particularly challenging scenarios, a multi-start
approach is used to increase robustness.

I. INTRODUCTION

Unmanned air vehicles (UAVs) have broad poten-
tial applications, including infrastructure monitor-
ing, police surveillance, retail delivery, etc. Much
of the current research surrounding UAVs focuses
on achieving robust performance in a wide va-
riety of environments. Examples of this type of
research include GPS-denied navigation and sense-
and-avoid, the latter being imperative for the safe
integration of UAVs into the national airspace. In
both of these specific areas, and in the field of
robotics in general, path planning is an important
task. Given a set of obstacles, path planning seeks
to solve the problem of finding the best path to
accomplish some objective, often getting from one
point to another in the shortest time. Advanced path
planning algorithms take into account factors other
than just physical obstacles. These additional factors
might include threat to the agent incurred over the

path or the cumulative field of view of the agent as
it traverses the path. In this paper, we consider the
simpler path planning problem: finding the shortest
path through an obstacle field.

A. Relevant literature

The UAV path planning problem has been ap-
proached in a myriad of ways. In [1], Beard and
McLain present two widely referenced methods:
Voronoi graphs and rapidly exploring random trees
(RRT). The Voronoi graph method models each
obstacle as a point and then partitions the area
into a set of convex cells that each contain only
one obstacle. The interior of each cell is closer
to the obstacle contained in that cell than to any
other obstacle. When applied to path planning, the
edges of the cells can be traced to obtain a path
through the obstacle field. Two immediately appar-
ent shortcomings of this method are 1) its inability
to model obstacles with nonzero area and 2) that it
produces non-smooth paths. The first shortcoming
can be overcome by modeling real obstacles with
several point obstacles configured in the shape of
the real obstacles. The second shortcoming can be
compensated for by over-estimating the size of the
obstacles; thus, when the UAV overshoots the de-
sired path, there is some factor of safety that it will
not collide with an obstacle. The second method,
RRT, is an exploration algorithm that uniformly, but
randomly, searches an area. When using RRTs for
path planning, the algorithm checks for a feasible
path from the branch ends to the final destination
at the end of each iteration. When a feasible path
is found, the algorithm then traverses the path and
searches for possible links between non-consecutive
path nodes, thus smoothing and shortening the path.
The RRT method also produces non-smooth paths

1



2

that are inherently difficult for a UAV to follow
precisely.

Other path planning approaches include prob-
abilistic road maps (PRMs) [2]–[4], graph-based
shortest path algorithms [5], and many other meth-
ods [6], [7]. Each planning scheme presented in the
cited works have advantages and disadvantages in
various situations. For a more thorough discussion,
we refer the reader to the cited survey papers.

In this paper, we present a novel path planning al-
gorithm that efficiently and robustly finds a feasible
path through a complex obstacle field. Our approach
integrates and improves on aspects of [8] and [9]–
[11]. These papers frame the path planning problem
in terms of optimization.

The authors of [8] use receding horizon control,
in which the controller plans several short segments
in successive steps instead of planning the complete
path all at once. At each time step, the controller
minimizes the time required to travel from the path
segment’s end point to the final destination, where
the path segment is constrained by some planning
horizon. The robot then precedes a given distance
along that path and then repeats the search.

This receding horizon approach has the advan-
tage of reducing a very complex problem into sev-
eral smaller, more tractable problems. Additionally,
since the controller periodically recalculates the
path, it is more robust to errors, uncertainties, and
unknowns in the system model or world map. It can
also better handle obstacles that change in shape or
position with time than a single-pass planner can.

A downside of receding horizon path planning
is “entrapment,” or its tendency to become stuck,
particularly when facing obstacles with concave
shapes [8]. As far as the planner can see, the best
path is into the obstacle. After taking a step, it
finds the concave interior of the obstacle and cannot
proceed further.

Our work also builds on the work done for ground
robots in [9]–[11], in which the authors optimize
path segments described by Ferguson splines for
ground robot navigation. We make a few key im-
provements in our work. First, the works described
in the list papers optimize the trajectory from start
to finish in a single pass. Our path planning problem
involves a more complicated obstacle field that
would be more difficult to plan in a single pass,
so we implement a receding horizon approach.
In addition, those papers use a penalty that is a

function of the distance from the obstacles which
consequently penalizes paths that may be a safe
distance from obstacles. In our work, we implement
the distance from obstacles as a constraint, thus
allowing the path to go right to the border of the
obstacles. This allows for shorter paths that are still
feasible.

We choose to use a multi-start gradient-based
method for our optimization rather than particle
swarm optimization (PSO) or artificial bee colony
(ABC) optimization. Gradient-based optimization
quickly finds valids paths and we show the multi-
start approach still avoids being trapped in local
minima of the obstacle field.

B. Our Implementation

Our algorithm uses the receding horizon frame-
work of [8] in combination with the Ferguson spline
approach of [9]. We design our objective function
to favor paths that are navigable by a typical fixed-
wing UAV. Section II defines the problem statement
and simulation environment. Section III describes
our proposed method. Section IV presents several
paths produced by our method. Finally, Section V
presents concluding remarks and potential future
research directions.

II. PROBLEM STATEMENT

We seek to find a feasible and short path through
an arbitrary obstacle field. The beginning location
of the path is at (0, 0) and the final destination
is at (100, 100). In the space (x, y) ∈ [5, 95], we
place nobs obstacles; this ensures that the beginning
and ending locations lie in the feasible region. The
obstacle locations are selected using Latin hyper-
cube sampling (LHS). Two sets of nobs/2 obstacles
are overlayed with successive calls of LHS. The
design of the obstacle field is meant to ensure the
obstacles are relatively evenly distributed but to also
allow for the challenges of overlapping obstacles
and concavities in the obstacle field. This type of
field is meant to be representative of an inner-city or
forest environment. The obstacles are circular with
radii uniformly ranging from rmin = 3 to rmax = 7.
Non-circular obstacles can either be conservatively
modeled with a single circular obstacle or more
closely modeled with several smaller circular ob-
stacles. A given randomly generated obstacle field



3

may contain concavities; a good path planner should
be reasonably robust to these types of challenges.

We also seek to plan a path that could be followed
by a typical fixed-wing UAV. In our UAV model, we
assume the simple case of level flight with no wind.
Thus, only turning dynamics are considered. We
further ignore side slip and assume that all turns are
coordinated turns. A coordinated turn is described
by

χ̇ =
g

Vg
tanφ cos(χ− ψ),

where χ is the aircraft course angle, ψ is the aircraft
heading, φ is the roll angle, g is the gravitational
constant, and Vg is the aircraft ground speed. The
turn radius of the aircraft is described by

R =
Vg cos γ

χ̇
,

where γ is the flight path angle (vertical climb). In
level flight γ = 0, and with no wind or side slip,
χ = ψ. Combining the equations and making the
mentioned assumptions, the turn radius R is defined
by

R =
V 2
g

g tanφ
. (1)

III. OUR METHOD

In this section, we describe the overall framework
of our approach (Section III-A) and provide a de-
tailed formulation of the optimization problem we
seek to solve (Section III-C).

A. Overall Framework

Our path planner uses a receding horizon frame-
work. We start by planning the first three path seg-
ments. The UAV traverses the first segment and then
plans three more segments. This process is repeated
until the end of the third segment is within some
small gate distance of destination. When this occurs,
the final three path segments are re-optimized to
minimize their total length, and the path planning
is complete.

Each path segment is modeled as a Ferguson
spline. Ferguson splines are described by

X(t) = P0F1(t) + P1F2(t) + P ′0F3(t) + P ′1F4(t)

where the basis functions are given by

F1(t) = 2t3 − 3t2 + 1

F2(t) = −2t3 + 3t2

F3(t) = t3 − 2t2 + t

F4(t) = t3 − t2,
where P0 and P1 are the beginning and end points
of the spline and P ′0 and P ′1 are the derivatives of the
spline at these points. In our application, t ∈ [0, 1].

As defined in [12], Ferguson splines can have one
of any three boundary conditions. In this work, we
choose the constraint of having defined derivatives
at the boundaries. Having the derivatives of the
end points be explicit spline parameters is a major
advantage of using Ferguson splines as it allows the
whole path to be smooth path by implicitly requiring
derivatives to match at the spline joints.

B. Vehicle Dynamics
A disadvantage of Ferguson splines is that it is

difficult to analytically find the maximum curvature
along a given spline, which means it is difficult
to understand feasibility of the path for a given
set of vehicle dynamics. We experimented with
cubic and quadratic Bezier curves to model the path
segments and considered using other approaches,
such as fixed radius circles or many discrete line
segments. We decided that it was more valuable
to continue using Ferguson splines instead of other
path definitions; although those methods could have
made defining a minimum turn radius more straight-
forward, they would have been more difficult to
control or would have increased the complexity of
the optimization problem.

Due to the nature of our objective function (see
Section III-C2), paths generated will generally wrap
tightly around an obstacle, move in a straight line
between obstacles, or turn slightly in the direction of
a better path that becomes apparent as the planning
horizon progresses. With careful definition of the
obstacles to meet a minimum radius and safety
margin, the minimum turn radius constraint can still
be met with reasonable assurance. For example,
in our tests we have a minimum obstacle radius
of 3 meters. Using Equation (1), we can calculate
that with a roll angle of 60 degrees, the maximum
airspeed in the tightest turn would be just over 7
meters per second, which is feasible for many small,
foam-type UAVs. Such calculations could be run for



4

a given obstacle field to set feasible safety margins
for obstacle size and to determine what type of
vehicle can fly through a given field.

In considering vehicle navigation, we ignore the
second order dynamics of the aircraft. Constraints
on higher order dynamics would ensure that the
change in turn radius does not exceed the roll
capabilities of the aircraft. If the turns are smooth
and the obstacles reasonably spaced, it is safe to
assume that this constraint could be ignored, as was
done in [13].

The dynamic constraints focus on fixed-wing
UAVs. When using helicopter or multi-rotor UAVs,
the turn constraints no longer apply. Like many
ground robots, rotorcraft are able to move at arbi-
trarily low forward speeds and even rotate in place,
thus allowing them to make a turn of any curvature.

C. Formulation of the Optimization Problem

1) Design Variables: Our optimization problem
has 12 design variables: (P1x , P1y) and (P ′1x , P

′
1y),

the location and derivative of the first segment’s end
point, which is also the second segment’s begin-
ning point; (P2x , P2y) and (P ′2x , P

′
2y), the location

and derivative of the second segment’s end point
and the third segment’s end beginning point; and
(P3x , P3y) and (P ′3x , P

′
3y), the location and derivative

of the third segment’s end point. The location and
derivative of the first segment’s beginning point is
implicitly constrained to be the current location and
derivative.

2) Objective Function: At each planning step,
we minimize the objective function

f(x) = d

(
1 + α

`

`min

)
where

d =
√

(xfinal − P3x)2 + (yfinal − P3y)2,

the distance between the end point of the third spline
and the final destination. This objective function
rewards 1) minimizing the distance to the final des-
tination and 2) taking a direct path. The importance
of these tasks is balanced by the scalar α. In our
simulations, we set α = 0.2.

The curvature reduction term

α
`

`min
(2)

was used in [9]–[11]. This metric penalizes long
paths that traverse only a short distance—that is,
paths with high curvature. By tuning α, we can
reach a good balance between straight paths and
optimal ending points. A similar effect could be
achieved by performing two optimization problems:
first minimizing the distance to the final destina-
tion and then minimizing the path length given a
fixed (P3x , P3y) computed with the first optimiza-
tion problem. We believe that the single objective
function is a more elegant approach. We note that
with the objective function, there is no incentive to
find a minimum curvature path when the third spline
arrives at the final destination because d = 0 forces
f = 0, regardless of curvature. In this case, we use
two optimization steps to straighten the path.

3) Constraints: We impose constraints associ-
ated with the length of the path segments and with
the obstacles. Each path segment must be longer
than a minimum step size P`min and shorter than
a maximum step size P`max , set to 3 and 15, re-
spectively, in our simulations. Enforcing a minimum
step size helps the path escape from concavities
in the obstacle field. Limiting the maximum step
size enables faster solutions by reducing the design
space. The length of a parametric curve is given by

` =

∫ β

α

√(
dx

dt

)2

+

(
dy

dt

)2

dt. (3)

Unfortunately, when Equation (3) is applied to the
Ferguson spline, the closed-form solution to the
integral becomes difficult to compute analytically.
Consequently, we estimate the length of each path
segment by approximating the spline as a sum of
small, straight elements,

`est =
n∑
i=1

√
(∆x)2 + (∆y)2

where n equals 50. The step size constraints are then
given as

P`max ≥ `est

P`min ≤ `est.

To ensure the obstacle constraints, we need to find
the minimum distance between all obstacles and a
path segment. Once again, the closed-form solution
to this problem is difficult to compute analytically.
Consequently, we sample each segment at ns uni-
form intervals and require that each sampled point



5

along the spline meet the constraint requirement.
In our simulations, ns = 30, i.e. each segment is
sampled at t = 0.0345, 0.0690, . . . , 0.9655, 1. These
constraints then take the form

ri ≤
√

(Xx(t)− xobsi)
2 + (Xy(t)− yobsi)

2

where ri and (xobsi , yobsi) are the radius and position
of the ith obstacle, respectively. We note that t = 0
must already be a feasible point. At each planning
step, the optimizer only considers obstacles that
might pose an active constraint in the current look-
ahead window, i.e. obstacles that meet the require-
ment√

(Xx(0)− xobsi)
2 + (Xy(0)− yobsi)

2 ≥ 3P`max +ri.

Considering only the nearby obstacles improves the
efficiency of the method.

4) Final Optimization Problem: As mentioned
in Section III-C2, once the final destination has
been achieved, we re-optimize the final three path
segments. In this problem, we seek to minimize `est.
We retain the constraints described in Section III-C3
except we consider all obstacles in the field rather
than just those in the current look-ahead window to
reduce code complexity.

5) Gradients: Gradients of both the objective
function and constraint functions are computed us-
ing the complex step approximation [14] given by

∂f

∂xi
=

Imf(xi + j)

h

where h = 10−30, and the complex variable j
is only added to the ith element of x. Though a
more efficient gradient calculation method could
be used to improve performance, the complex step
method gives accurate gradients and was simple to
implement. Exact gradients supplied by the complex
step method result in quick and stable convergence.

6) Initial Guesses and Multi-Start: At the be-
ginning of each planning step, the locations and
derivatives of P1, P2, and P3 are set to that of P2, P3,
and P3 from the previous planning step. Although
this means that P3 starts in an unfeasible region, it
allows that point to freely expand into space guar-
anteed to be devoid of obstacles. It also generally
improves time to convergence because the algorithm
does not have to “redo the work” it performed in the
previous planning step. Beginning with a random,
feasible guess has been found to make the single-
start approach more robust. However, it invariably

increases time to convergence and designs longer
paths.

When using a multi-start approach, the first guess
is that described in the preceding paragraph. We
then generate a random initial guess within the min-
imum and maximum step size radii. We then check
that the random initial guess meets the step size and
obstacle constraints; if the constraints are satisfied,
the optimization problem is solved using that initial
guess. If the constraints are violated, we continue
to randomly generate initial guesses until a feasible
guess is found or we reach the maximum number of
iterations, usually set to 10. If the optimization rou-
tine converges to a solution, satisfies all constraints,
and results in a lower objective function value than
the previous minimum, that solution is retained. We
perform the multi-start approach described above 10
times. Experimental results shows that multi-start
adds considerable robustness to our method.

7) Solver: We use the Matlab (Mathworks, Inc.)
function fmincon to solve the constrained gradient-
based optimization problem. The (x, y) locations of
the spline control points are confined by the bounds
(−10, 110); the derivatives of the control points are
confined by the bounds (−1000, 1000).

IV. RESULTS

We present planned paths through four randomly
generated obstacles fields. For all obstacle fields,
nobs = 50. To repeatedly simulate specific obstacle
fields, the random number generator in Matlab was
seeded with 1, 2, 3, and 4. Consequently, the obsta-
cle fields will be referred to as rng(1), rng(2), rng(3),
and rng(4) respectively. Table I reports the number
of function evaluations required by each path (as
reported by fmincon), the number of required path
segments, and the total path length.

Figure 1 displays the evolution of the path in the
rng(2) obstacle field for the multi-start approach;
Figure 2 displays the resulting path for the single-
start approach in the same obstacle field. Videos

TABLE I: Path Planning Results

Planning Scenario Func. Eval. Segments Path Length
Single-Start, rng(2) N/A N/A N/A
Single-Start, rng(4) N/A N/A N/A
Multi-Start, rng(1) 10205 11 157.7259
Multi-Start, rng(2) 11275 11 153.6096
Multi-Start, rng(3) 11256 11 150.8103
Multi-Start, rng(4) 6849 11 145.0263



6

0 20 40 60 80 100

0

20

40

60

80

100

0 20 40 60 80 100

0

20

40

60

80

100

0 20 40 60 80 100

0

20

40

60

80

100

0 20 40 60 80 100

0

20

40

60

80

100

0 20 40 60 80 100

0

20

40

60

80

100

0 20 40 60 80 100

0

20

40

60

80

100

0 20 40 60 80 100

0

20

40

60

80

100

0 20 40 60 80 100

0

20

40

60

80

100

0 20 40 60 80 100

0

20

40

60

80

100

Fig. 1: The path produced using the multi-start approach in the rng(2) obstacle field. A viable path was found with little
difficulty, even with groups of obstacles forming concavities.

0 20 40 60 80 100

0

20

40

60

80

100

Fig. 2: The path produced using the single-start approach in the
rng(2) obstacle field. The algorithm failed to find a viable path.
As mentioned in section I-A, a drawback of receding horizon
planners is their tendency to become stuck in obstacles with
concave shape, as shown here.

0 20 40 60 80 100

0

20

40

60

80

100

Fig. 3: The path produced using the single-start approach in
the rng(4) obstacle field. The planner failed to find a viable
path.



7

0 20 40 60 80 100

0

20

40

60

80

100

0 20 40 60 80 100

0

20

40

60

80

100

0 20 40 60 80 100

0

20

40

60

80

100

0 20 40 60 80 100

0

20

40

60

80

100

0 20 40 60 80 100

0

20

40

60

80

100

0 20 40 60 80 100

0

20

40

60

80

100

0 20 40 60 80 100

0

20

40

60

80

100

0 20 40 60 80 100

0

20

40

60

80

100

0 20 40 60 80 100

0

20

40

60

80

100

Fig. 4: The path produced using the multi-start approach in the rng(4) obstacle field. A viable and very efficient path was
found through this challenging obstacle field.

0 20 40 60 80 100

0

20

40

60

80

100

Fig. 5: The path produced using the multi-start approach in
the rng(1) obstacle field. The multi-start approach allowed the
planner to avoid a potentially dangerous group of obstacles.

0 20 40 60 80 100

0

20

40

60

80

100

Fig. 6: The path produced using the multi-start approach in the
rng(3) obstacle field. The planner easily found a path through
this obstacle field.



8

showing the evolution of these paths are located at
https://www.youtube.com/watch?v=XJn0Dau1Q84
(single-start) and https://www.youtube.com/watch?
v=wiOkw5A-8Gw (multi-start). In this obstacle
field, only the multi-start approach found a
viable path to the final destination. We note
that in the fourth panel of Figure 1, the path is
temporarily trapped in an obstacle concavity—a
local minimum of our objective function. The
multi-start approach enables the path to escape
this concavity and continue towards the final
destination. Our objective function does possess
some inherent robustness to concavities that often
trap the single-start method.

Figure 3 displays the evolution of the path in the
rng(4) obstacle field for the single-start approach;
Figure 4 displays the resulting path for the multi-
start approach in the same obstacle field. Videos
showing the evolution of these paths can be found at
https://www.youtube.com/watch?v=1h9zIFSA0xk
(single-start) and https://www.youtube.com/watch?
v=9LRA9OPhM5g (multi-start). This obstacle
field is particularly difficult because of the
barrier of contiguous obstacles centered at about
x = 50, y = 40. The multi-start approach is
trapped behind this barrier for one planning period,
but is then able to proceed towards the final
destination. The multi-start approach requires
relatively few planning periods and plans a path
that is only slightly longer than the obstacle-free
distance to the final destination. In the end, the
single-start approach is unable to find a viable path;
it finds a way to circumvent the aforementioned
barrier—though in a way not likely compatible
with fixed-wing UAV dynamics—but then is still
trapped later by other obstacles.

Figure 5 shows the path planned by the multi-
start approach through the rng(1) obstacle field.
Notice in this figure that the third and fourth path
segments (olive green and purple) begin traveling
upwards before proceeding to the right and then
upwards. At these planning steps, the future path
segments actually extended upwards into the open
area directly above the fourth path segment. The
multi-start approach allowed the path to re-route
away from this dangerous area (containing a deep
concavity). It does not necessarily do so intelli-
gently, the optimizer always seeks only to reduce the
final objective function at each step. The multi-start
approach simply has the advantage of having more

opportunities to find the globally optimum path at
each step.

Increasing the P`max parameter effectively permits
the optimizer to see farther at each planning step
and can help reduce path length by minimizing
the number of these types of directional changes.
However, increasing P`max also expands the design
space, thus increasing computational time.

Figure 6 shows the path planned by the multi-
start approach through the rng(3) obstacle field. In
this randomly-generated obstacle field there happens
to be a relatively obstacle-free channel leading in
the general direction of the final destination, which
greatly facilitated the path planning.

V. CONCLUDING REMARKS

There are a number of straightforward extensions
to this path planning method. These include con-
sidering non-circular obstacles, modeling vehicle
dynamics, and extending to 3D space. Implementing
obstacles of different shapes would not be difficult,
it would simply require redefinition of the con-
straints, though it would increase the complexity of
the problem. It may also just be just as efficient to
model complex shapes with overlapping circles.

Another extension of the path planning algorithm
is a more thorough investigation of how constraints
on vehicle dynamics can be applied to constraints
on spline parameters. Though we did a cursory
exploration of this area, we did not have success
in applying motion models to the spline shapes.
Velocity dynamics could be included in this model:
since splines use parametric representations, they
already implicitly represent vehicle velocity. In this
case, the optimization could be run for fastest path,
not just the shortest path. If our algorithm were
implemented in hardware, the curvature of the path
would be sampled at each point in time and these
curvature values could be used to inform ground
speed commands to the UAV’s flight controller.

In addition, the method here only considers
searches in a 2D space. The search could be ex-
tended to 3D space, though some extension of 2D
Ferguson splines into 3D space would need to be
considered.

There are also more extensive changes that could
be made to develop this path planner into a func-
tional method. The first is determining if there is
a reformulation of the problem so that it has a

https://www.youtube.com/watch?v=XJn0Dau1Q84
https://www.youtube.com/watch?v=wiOkw5A-8Gw
https://www.youtube.com/watch?v=wiOkw5A-8Gw
https://www.youtube.com/watch?v=1h9zIFSA0xk
https://www.youtube.com/watch?v=9LRA9OPhM5g
https://www.youtube.com/watch?v=9LRA9OPhM5g


9

deterministic computation time. For example, the
methods listed in [6], [7] often have a proven big-
O computational complexity. With the constrained
optimization approach used here, it is difficult to
guarantee when the algorithm will converge. It
would be worth reconsidering the problem to see if
our receding horizon approach could be presented
as, for example, a convex optimization problem,
which has very predictable behavior. At the very
least, analytic or sensitivity-based gradients could be
used rather than complex step to reduce computation
time.

A second extensive change would be to determine
how the receding horizon approach could be more
robustly implemented. If the optimizer were to get
truly stuck, perhaps in a wide, deep concavity, some
method of backtracking and picking a new route
would be necessary. One possibility is to keep a
map of the space and update regions as visited as the
path goes through them. If the planner gets stuck,
it could then pick a favorable not-previously-visited
region of the map, backtrack to a branch point, and
proceed into the new region.

In pursuing these research directions, it will be
important to do a more thorough comparison to
other UAV path planners. There are many other
approaches to path planning that are being studied
and published. Though we performed a cursory
literary search on the topic, the wide variety of
methods available warrants a broader search through
the discipline. A complete investigation would in-
clude performance benchmark comparisons to other
efficient path planners.

REFERENCES

[1] Randal W. Beard and Timothy W. McLain. Small Unmanned
Aircraft. Princeton University Press, Princeton, New Jersey,
2012.

[2] L.E. Kavraki, L.E. Kavraki, P. Svestka, P. Svestka, J.-C.
Latombe, J.-C. Latombe, M.H. Overmars, and M.H. Over-
mars. Probabilistic roadmaps for path planning in high-
dimensionalconfiguration spaces. IEEE Transactions on
Robotics and Automation, 12(4):566 – 580, 1996.

[3] Po Pettersson and Patrick Doherty. Probabilistic roadmap based
path planning for an autonomous unmanned helicopter. Journal
of Intelligent and Fuzzy Systems, 17:395–405, 2006.

[4] Fei Yan, Yan Zhuang, and Jizhong Xiao. 3D PRM based real-
time path planning for UAV in complex environment. In 2012
IEEE International Conference on Robotics and Biomimetics,
ROBIO 2012 - Conference Digest, pages 1135–1140, 2012.

[5] Myungsoo Jun and Raffaello D Andrea. Path Planning for
Unmanned Aerial Vehicles in Uncertain and Adversarial En-
vironment. Cooperative Control: Models, Applications and
Algorithms, pages 95–111, 2003.

[6] C. Goerzen, Z. Kong, and B. Mettler. A survey of motion
planning algorithms from the perspective of autonomous UAV
guidance. Journal of Intelligent and Robotic Systems: Theory
and Applications, 57(1-4):65–100, 2010.

[7] Qi Juntong Liang Yang, Jizhong Xiao, and Xia Yong. A
Literature Review of UAV 3D Path Planning. In Proceeding of
the 11th World Congress on Intelligent Control and Automation,
pages 2376–2381, 2014.

[8] J. Bellingham, A. Richards, and J.P. How. Receding horizon
control of autonomous aerial vehicles. In Proceedings of the
2002 American Control Conference (IEEE Cat. No.CH37301),
volume 5, pages 3741–3746 vol.5. IEEE, 2002.

[9] Martin Saska, Martin Macas, Libor Preucil, and Lenka Lhotska.
Robot Path Planning using Particle Swarm Optimization of
Ferguson Splines. In 2006 IEEE Conference on Emerging
Technologies and Factory Automation, pages 833–839. IEEE,
September 2006.

[10] E Mansury. Artificial bee colony optimization of Ferguson
splines for soccer robot path planning. In Proceeding of the
2013 RSI International Conference on Robotics and Mecha-
tronics, volume 1, pages 85–89, 2013.

[11] Elahe Mansury, Alireza Nikookar, and Mostafa E. Salehi. Dif-
ferential evolution optimization of ferguson splines for soccer
robot path planning. In Ali Movaghar, Mansour Jamzad,
and Hossein Asadi, editors, Artificial Intelligence and Signal
Processing, volume 427 of Communications in Computer and
Information Science, pages 311–319. Springer International
Publishing, 2014.

[12] J. Ye and R. Qu. Fairing of parametric cubic splines. Mathe-
matical and Computer Modelling, 30(5-6):121–131, 1999.

[13] Joseph Scott Holub. Improving particle swarm optimization
path planning through inclusion of flight mechanics. Master’s
thesis, Iowa State University, 2010.

[14] Joaquim Martins. Multidisciplinary Design Optimization. Un-
published, 2015.


	Introduction
	Relevant literature
	Our Implementation

	Problem Statement
	Our Method
	Overall Framework
	Vehicle Dynamics
	Formulation of the Optimization Problem
	Design Variables
	Objective Function
	Constraints
	Final Optimization Problem
	Gradients
	Initial Guesses and Multi-Start
	Solver


	Results
	Concluding Remarks
	References

