
ABSTRACT

An Automated Method for Fitting Variograms from Finite Element Displacement Data in the
Hot-To-Cold Process

Brandon Doolin
Department of Mechanical Engineering, BYU

Master of Science

Kriging is a linear, three-dimensional interpolation method for unstructured grids. The
process centers around estimating a functions autocorrelation through a separate function called the
variogram. The variogram can be sampled at all locations to determine what is termed the empirical
variogram, but a model of this function must be determined in order to use in the Kriging process.
Even if a poorly fitted variogram is used, Kriging will still give generally good results. However,
for applications that require higher levels of precision, a well-fitted variogram is essential.

Blade un-running, or more commonly called hot-to-cold, is a process that uses a finite
element solver to remove centripetal and aerodynamic loads from a hot mesh representation of the
blade and provide a cold mesh of the blade. A geometry mapping must then take place to transform
the hot geometry into a cold geometry useable by CAD systems i.e. a non-discretized version.

This project analyzes the shape and trends of the empirical variograms at different locations
across both a cantilever beam and a rotor blade of similar sizes. Trends will be identified between
the two to identify the best variogram models to fit to the empirical variogram. The models are then
fitted automatically by different optimization techniques and different objective functions. Tech-
niques include gradient-based methods and various gradient-free methods. Objective functions
will include the sum of squares, the average of absolute differences, and the Hausdorff metric.
These method/objective pairs are compared by their ”goodness of fit” and computational cost to
determine the best technique and function to use in the Kriging process.

Keywords: variogram, hot-to-cold, optimization

CHAPTER 1. INTRODUCTION AND BACKGROUND

”Blade un-running”, or more commonly called ”hot-to-cold”, is a process that uses a finite

element solver to remove centripetal and aerodynamic loads from a ”hot” mesh representation of

the blade and provide a ”cold” mesh of the blade.

The un-running begins by meshing the geometry with finite element software and applying

loads to the hot mesh. The result of this analysis is referred to as the “double deflected” mesh.

From the double deflected mesh, a set of node displacements is calculated and the negative of

these are input along with the original hot mesh into an iteration loop. At the beginning of the

loop the displacements are applied to the hot mesh to create an approximation to the cold mesh.

Next, the aerodynamic and centripetal forces are applied to the cold approximation to create a

hot mesh approximation. If the difference between the hot mesh and the approximate hot mesh is

within tolerance, then the cold mesh approximation is accepted as the actual cold mesh. Otherwise,

the displacements from the cold approximation to the hot approximation are calculated, and the

negative of these is input to the beginning of the loop. This loop is repeated until the correct cold

mesh is found [1]. A diagram of this process can be seen in figure 1.1.

While understanding this hot-to-cold process is not completely necessary for this work, it

is useful to understand the inputs and the outputs of the system in order to understand the context

for variogram fitting, the focus of this work which will be discussed later. In this sense, the hot-to-

cold process can be considered a black box that takes as input a hot (deformed) geometry file, and

outputs a hot (deformed) mesh as well as a cold (undeformed) mesh.

The designer will be left with these three sets of data: a hot and cold mesh and one geometry

representation. This geometry file differs from the mesh file in its placement of points or nodes.

The mesh files have nodes placed at locations and in densities chosen by the meshing software. The

geometry files have points chosen in specific locations and densities for use in the CAD system

they come from. Consequently, these files almost always differ from each other.

1

Figure 1.1: A flow chart illustrating the iterative loop for the hot-to-cold transformation

A cold geometry file is needed for many stages of analysis, even after the hot geometry has

been determined. The cold file is used to perform off-design analyses as well as create manufactur-

ing drawings and processes [2]. The meshes are not useable in many of these analyses and almost

never in any of the manufacturing steps due to their discretized nature. Therefore, engineers must

map their existing geometry file from its current hot state to a cold state.

This mapping can be accomplished by a simple interpolation scheme. The displacement

from one hot node to its corresponding cold node can be calculated for each of the Euclidean

directions. These displacement values are then interpolated for each hot geometry point.

2

One method of performing this interpolation is using Kriging. Kriging is an n-dimensional

interpolation method on an unstructured grid. Kriging works by constructing weights based off of

minimizing variance between the value at the point that is to be interpolated and the values of the

surrounding points. The variance in this case is measured by a function called the semivariogram.

The semivariogram, more commonly referred to as just the variogram, is a measure of the

dissimilarity or variance of function values based off of a separation distance in space of the points

corresponding to the function values. It is defined as in equation (1.1).

γ(h) =
1
n

n

∑
i=1

[z(xi +h)− z(xi)]
2 (1.1)

Although this equation cannot be determined analytically, it can be sampled at discrete

locations. For all known points, the entire set of possible pairs is generated. For each pair, the

semivariance is calculated and plotted. This plot is commonly referred to as the variogram cloud

as it contains a large number of data points in a very scattered fashion. This cloud is a rough

estimate of the variogram itself though it contains a considerable amount of noise [3].

Generally, to reduce the noise in the variogram cloud, the data is binned together and av-

eraged into ranges of separation distance. Therefore, instead of a cloud of points at each specific

h, the bins would represent all points in a range of hh. This tends to smooth out the noise in the

variogram cloud (though noise is still present in this representation). This binned collection is com-

monly referred to as the empirical variogram. The empirical variogram gives a good insight into

the shape and behavior of the variogram. However, the empirical variogram cannot be evaluated at

arbitrary locations. This requires a function to be fitted to it first [4].

Although a function model need only be non-negative definite to be considered a licit vari-

ogram, some shapes of variograms appear very often. A set of function models that are guaranteed

to be non-negative definite that match these shapes has been developed and are commonly used.

Some of these common functions can be seen in figure 1.2.

Fitting a variogram has few rules to it; in fact, it is generally thought of as more of an art

than a science. Usually a variogram model is chosen that best resembles the empirical variogram,

then parameter values are manipulated until a “good-looking” fit is achieved. If a single variogram

3

Figure 1.2: Different variogram models. From top left to bottom right: a) power, b) spherical,
c) exponential, d) cardinal sine, e) Gaussian, f) nugget

model does not yield good results, another model can be added to the current one. This is possible

because the sum of any two licit variograms is also a licit variogram [4].

Some have tried to fit variograms using more a more scientific approach such as least

squares estimation. These methods often require non-linear solution techniques—such as the

Levenberg-Marquardt algorithm—since many variograms are not linear in their parameters. These

methods have had varying levels of success in fitting variogram models to empirical variograms

[3, 5].

Hot-to-cold mapping with kriging requires that three variograms be calculated and fitted,

one for each direction. Also, since meshes generally contain tens of thousands of nodes, kriging is

much more feasible to do on small localities of the mesh instead of the entire mesh at once. This

4

means that these three variograms must be calculated and fitted at numerous localities when per-

forming interpolation, possibly needing thousands of variograms. Therefore, this scale of problem

requires an efficient, robust, and automated method for fitting these variograms.

This work seeks to create such a method by posing the problem as a general optimization

problem instead of the more traditional least squares optimization approach for automation.

5

CHAPTER 2. METHOD

Least squares problems are essentially optimization problems where an analytical solution

exists so long as the function is linear in its coefficients. When it is non-linear in its coefficients

(as is the case for most variograms) a different approach must be taken.

At the heart of the problem is an optimization to try to minimize the difference between the

sampled points and the fitted function. The least squares process uses the sum of squared differ-

ences as their difference metric, but this could also be accomplished using the sum of differences,

the average difference, or the Hausdorff distance.

The least squares method also uses an analytical approach to minimizing the sum of squared

differences. This, however, could be done by a numerical approach such as gradient-based optimiz-

ers (e.g. GRG, SQP, etc.) or gradient-free optimizers (e.g. genetic algorithm, particle swarm, etc.).

While the analytical approach is faster and more accurate than a numerical approach, solutions

only exist for the linear case.

This work seeks to investigate which method is the most suitable for optimizing the prob-

lem:

minimize f (x)

by varying x ∈ R7

sub ject to ci ≥ 0, i = 1,2, . . . ,n

f : objective (sum of squared differences, average difference, or Hausdorff metric)

x : vector of design variables for the variogram model

c : vector of bound constraints

For each combination of function and optimizer this work will evaluate several metrics to

help determine which is best suited. The optimization schemes will be run to fit 141 different

6

empirical variograms. The time it takes to complete the optimization will be recorded to provide

an estimation of algorithm speed. Also, the minimized value for each of the 141 variograms will

be normalized, averaged, and recorded to provide an estimation of the quality of the fit. These

results will then be compared to generally determine the best practice for variogram fitting with

hot-to-cold data.

The fitting procedure will be done using a nested variogram model. The model will consist

of the sum of a nugget model, a linear model (power model with exponent of 1.0), a near-quadratic

model (power model with exponent of 1.99), a cardinal sine model, and a Gaussian model. The

constraints for the optimization will consist of simple bound constraints to reduce the search space.

7

CHAPTER 3. RESULTS

Preliminary tests of a gradient-based optimizer (in this case Matlabs fmincon) with simple

bound constraints yielded poor results. The optimizer tended to give a purely linear fit, which is

far from ideal. This happened regardless if the bounds were normalized to order 1 or their original

values. This can be seen in figure 3.1.

Figure 3.1: Empirical variogram 4 (of 141) (red) and the fitted variogram (blue) using fmincon.
The unlabeled axes are separation distance (x) and semivariance (y).

Further investigation led to also normalizing all of the y-values to order 1 (multiplying the

maximum y-value by a factor to yield 1 and multiplying all other y-values by the same factor).

When this was done, the optimizer was able to find good solutions to the optimization using all

the metrics (sum of squared differences, average differences, and Hausdorff distance. These can

be seen in figure 4. It can be seen in figure 3.2 that the sum of squared differences had the best fit

8

(though it is the most expensive to evaluate) whereas the Hausdorff distance had the worst fit of

the three.

Figure 3.2: Empirical variogram 4(of 141) (red) and the fitted variogram using the sum of squared
differences metric (blue), average difference (green) and Hausdorff distance (yellow).

To determine if the fits obtained represented a global optimum or a local optimum, the

process was compared to global optimizers. A genetic algorithm, particle swarm optimizer, and

simulated annealing optimizer were all implemented in Java. An optimization was run on the opti-

mizers to determine the best parameters to use with these optimizers. These optimizers were then

run on all 141 variograms with the mean output metric (sum of squares, average, or Hausdorff) cal-

culated for comparisons. This was likewise done with the gradient-based optimizer. A comparison

of these values can be seen in table 3.1.

It can be seen that the gradient-based optimizer did not, in fact, find the global minimum

for any of the three metrics. It was especially poor at finding the global optimum when using

the Hausdorff metric. During execution of the optimization with the Hausdorff metric (and occa-

sionally with the average difference metric), the computer noted that the matrices being formed

in the optimization were close to singular, likely due to difficulties calculating gradients with the

Hausdorff metric (essentially a max and min function which is difficult to get a gradient from).

9

Table 3.1: ”Goodness of fit” or accuracy results for each metric and optimizer

Optimizer
Mean Metric Value

Sum of Squares Average Hausdorff
Gradient-Based 0.0637 0.0217 0.0978

Simulated Annealing 0.0602 0.0205 0.0718
Particle Swarm 0.0641 0.0216 0.0738

Genetic Algorithm 0.0621 0.0210 0.0751

This leads to the question of trade-offs. Obviously the simulated annealing algorithm was

the best at finding the global optimum. However, gradient-free methods tend to use more function

calls to reach the optimum than gradient-based methods. The function calls were tallied for the

full 141 variogram set and compiled as in table 3.2.

Table 3.2: Call totals for each optimizer and metric

Optimizer
Mean Function Call Totals

Sum of Squares Average Hausdorff
Gradient-Based 331,557 282,356 167,022

Simulated Annealing 2,094,937 1,893,418 2,084,481
Particle Swarm 3,769,800 3,444,000 3,497,700

Genetic Algorithm 4,011,600 3,264,600 2,774,100

Table 3.2 clearly shows that the gradient-based optimizer uses an order of magnitude less

calls than the gradient-free methods. The other clear finding from the table is that simulated an-

nealing uses considerably fewer function calls than the other gradient-free methods. By these

two tables a clear conclusion is that the two best optimizers are the gradient-based and simulated

annealing.

In determining the best metric to use, a comparison of cost needs to be considered as well

as goodness of fit. Each of the three metrics must first compute the difference and sum it up. This

is exactly what is done for the average difference metric, so it can be said that it has the base cost

of these methods. The sum of squares metric does this and adds a multiplication. Depending on

the computer architecture this added multiplication could add little or no time. Suffice it to label

the cost as base+. The Hausdorff metric has the base cost plus a conditional comparison. Once

10

again, this conditional comparison will add a little or no additional execution time. Once again we

can label its cost as base+.

Because the Hausdorff metric was more difficult to get a good fit with the gradient-based

method as well as having a cost of base+, it can be eliminated as the metric of choice. To determine

which of the remaining two metrics to use, a visual fit comparison was done using variograms 4,

9, 120, 126, and 138. This can be seen in figures 3.3 and 3.4.

Figure 3.3: Fits to several empirical variograms using Matlabs fmincon with the sum of squares
and average difference metrics.

Visually, the fits for the sum of squares metrics and average difference metrics were roughly

the same for these five variograms using the gradient-based optimizer. The sum of squares tended

to fit a bit better when large changes in curvature happened as in variogram 4, 120, and 126.

However, this was not a large difference visually speaking.

The same trend that existed with the gradient-based optimizer also existed with the gradient-

free method, but to a lesser extent. The sum of squares metric tends to exaggerate differences more

than the average difference metric does. This is likely the cause for the observed difference in fit

with both optimizers. However, this metric is still cheaper to use than the sum of squares metric.

11

Figure 3.4: Fits to several empirical variograms using simulated annealing with the sum of squares
and average difference metrics.

12

CHAPTER 4. CONCLUSION

Four optimizers and three metrics were evaluated for their viability in performing vari-

ogram fitting. All methods were found to be robust, though simulated annealing stood out as the

most accurate while the gradient-based method was the fastest. The Hausdorff distance proved to

be a less desirable metric when compared with the other two. The sum of squares yielded a better

fit, but the average difference was computationally cheaper.

This gives the user several good options to choose from when performing automated var-

iogram fitting based off of finite element displacement results. When the absolute fastest perfor-

mance is needed, a gradient-based optimizer with the average difference metric will fit the best.

On the other hand, when the absolute most accurate performance is needed, simulated anneal-

ing with the sum of squares metric is ideal. For different needs of speed and accuracy, different

combinations of these 2 optimizers and metrics can be used.

13

REFERENCES

[1] Paldi, F., 2007. “Conversion of ‘hot’ geometry into ‘cold’ geometry using the finite element
method program ansys®.” Master of science, Engineering and Computational Engineering,
Technical University of Berlin. 1

[2] Mahajan, A. J., and Stefko, G. L., 1993. “An iterative multidisciplinary analysis for rotor
blade shape determination.” In AIAA/SAE/ASME/ASEE 29th Joint Propulsion Conference and
Exhibit, Vol. 29. 2

[3] Chiles, J.-P., and Delfiner, P., 2012. Geostatistics: Modeling Spatial Uncertainty., 2 ed. John
Wiley & Sons. 3, 4

[4] Bohlin, G., 2005. Variogram analysis http://people.ku.edu/~gbohling/cpe940/

Variograms.pdf. 3, 4

[5] Brunell, R. M., 1992. An automatic procedure for fitting variograms by cressie’s approximate
weighted least squares criterion Tech. rep., Southern Methodist University, October. 4

14

http://people.ku.edu/~gbohling/cpe940/Variograms.pdf
http://people.ku.edu/~gbohling/cpe940/Variograms.pdf

	Title Page
	Abstract
	Table of Contents
	LIST OF TABLES
	LIST OF FIGURES
	NOMENCLATURE
	Chapter 1 Introduction and Background
	Chapter 2 Method
	Chapter 3 Results
	Chapter 4 Conclusion
	References

