Vanadium-Catalyzed Regioselective Oxidative Coupling of 2-HydroxycarbazolesLei Liu, ${ }^{+\hbar}$ Patrick J. Carroll, ${ }^{*}$ and Marisa C. Kozlowski**\dagger Department of Applied Chemistry, China Agricultural University, Beijing, 100193,P. R. China.+ Department of Chemistry, Penn Merck High Throughput ExperimentationLaboratory, University of Pennsylvania, Philadelphia, PA 19104-6323, United Satesmarisa@sas.upenn.eduSupporting Information
Table of Contents
General Considerations S2
Preparation of Hydroxycarbazole Substrates S3-9
Conventional Oxidant Screen S9
Parallel Microscale Screening Results S10
General Procedure for Vanadium Catalysts S11-12
General Procedure for Regioselective Oxidative Hydroxycarbazole Coupling S13-20
Measurement of Atropisomerization Barrier for 2a S20-21
Calculations of Atropisomerization Barrier for 5a S21-28
Crystal Structure of 5a S29-32
Spectral Data S33-83
References S84

General Considerations.

Unless otherwise stated, all non-aqueous reactions were carried out under an atmosphere of dry argon in dry glassware. When necessary, solvents and reagents were dried prior to use. Tetrahydrofuran was distilled from $\mathrm{Na} /$ benzophenone prior to use. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was distilled from CaH_{2}. Chloroform was distilled after drying over molecular sieves. Organometallic reagents were purchased from Aldrich. Analytical thin layer chromatography (TLC) was performed on Silicycle $250 \mu \mathrm{~m}$ silica-gel F-254 plates. High throughput experimentation was performed at the Penn/Merck High Throughput Experimentation Laboratory at the University of Pennsylvania. The screens were analyzed by HPLC with addition of an internal standard.
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a AM-500 Fourier transform NMR spectrometer at 500 MHz and 125 MHz , respectively. Chemical shifts are reported relative to the solvent resonance peak $\delta 7.26\left(\mathrm{CDCl}_{3}\right), \delta 2.50\left(\mathrm{DMSO}-d_{6}\right), \delta 2.05$ (acetone- d_{6}) for ${ }^{1} \mathrm{H}$ and $\delta 77.16\left(\mathrm{CDCl}_{3}\right), \delta 39.52\left(\right.$ DMSO- $\left.d_{6}\right), \delta 29.84$ (acetone- d_{6}) for ${ }^{13} \mathrm{C}$. Data are reported as follows: chemical shift, multiplicity ($\mathrm{s}=\operatorname{singlet}, \mathrm{d}=$ doublet, t $=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{b}=$ broad singlet, $\mathrm{m}=$ multiplet), coupling constants, and number of protons. High resolution mass spectra were obtained using a VG autospec with an ionization mode of either ESI or CI. Infrared spectra are reported in cm^{-1}. Melting points were obtained and are uncorrected.

General Procedure A for the Synthesis of hydroxycarbazoles 1a and 1b

9-Methyl-2-hydroxycarbazole (1a) [Table 1]. A solution of 2-hydroxycarbazole (1.81 $\mathrm{g}, 9.88 \mathrm{mmol}$) and dry DMF ($1.5 \mathrm{~mL}, 19.76 \mathrm{mmol}$) in dry THF (20 mL) was added dropwise to $95 \% \mathrm{NaH}(0.59 \mathrm{~g}, 24.7 \mathrm{mmol})$ under a argon atmosphere and stirred at room temperature. After $10 \mathrm{~min}, \mathrm{CH}_{3} \mathrm{I}(0.68 \mathrm{~mL}, 10.87 \mathrm{mmol})$ was added and the stirring was continued for 2 h . The resulting mixture was cooled to $0^{\circ} \mathrm{C}$ and quenched with water (2 mL). After concentration, the product was purified by column chromatography on silica gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(98: 2)$ as the eluent. Compound 1a (1.55 g) was obtained as a white solid in 80% yield. Spectral data matched those reported previously. ${ }^{1}$

1b

9-Benzyl-2-hydroxycarbazole (1b) [Table 2, entry 1]. Following the general procedure A, 2-hydroxycarbazole ($916 \mathrm{mg}, 5.0 \mathrm{mmol}$) and dry DMF ($0.78 \mathrm{~mL}, 10.0 \mathrm{mmol}$) in dry THF (10 mL) was added dropwise to $95 \% \mathrm{NaH}(300 \mathrm{mg}, 12.5 \mathrm{mmol})$ under a argon atmosphere and stirred at room temperature. After $10 \mathrm{~min}, \mathrm{PhCH}_{2} \mathrm{Cl}(0.63 \mathrm{~mL}, 5.5 \mathrm{mmol})$ was added and the stirring was continued at $50^{\circ} \mathrm{C}$ for 5 h . After quenching, concentration and column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(98: 2)$ product $\mathbf{1 b}(1.06 \mathrm{~g})$ was obtained as a white solid in 78% yield. Spectral data matched those reported previously. ${ }^{1}$

General Procedure B for the Synthesis of hydroxycarbazoles 1c-1I

DMF, THF

1d

Following a modified procedure by Tidwell et al., ${ }^{2}$ copper powder ($5.08 \mathrm{~g}, 80.0 \mathrm{mmol}$) was added over 40 min to a stirred molten mixture 2,5 -dibromonitrobenzene (5.62 g , 20.0 mmol) and 4-iodoanisole ($5.8 \mathrm{~g}, 24.8 \mathrm{mmol}$) and then maintained at $175{ }^{\circ} \mathrm{C}$ for another 3.5 h . The reaction mixture was extracted into hot toluene and filtered through Celite. The filtrate was washed with water, dried over MgSO_{4}, and concentrated. The resultant material was recrystallized from ethanol to give yellow needles in 62% yield. Spectral data matched those reported previously. ${ }^{2}$

A solution of 4-bromo-4'-methoxy-2-nitrobiphenyl ($3.7 \mathrm{~g}, 12.0 \mathrm{mmol}$) in triethyl phosphite ($10 \mathrm{~mL}, 62.4 \mathrm{mmol}$) was stirred at reflux under argon for 8.5 h . After the volatiles were removed under reduced pressure, the residue was suspended in ethanol with stirring. The solid was filtered off and washed with a little ice-ethanol. The product was obtained as a white solid in 72% yield. Spectral data matched those reported previously. ${ }^{2}$

A solution of 2-bromo-7-methoxycarbazole ($2.38 \mathrm{~g}, 8.62 \mathrm{mmol}$) and dry DMF (0.8 mL , $10.34 \mathrm{mmol})$ in dry THF (10 mL) was added dropwise to $95 \% \mathrm{NaH}(0.25 \mathrm{~g}, 10.34 \mathrm{mmol})$ under an argon atmosphere and stirred at room temperature. After $10 \mathrm{~min}, \mathrm{CH}_{3} \mathrm{I}(0.59$ $\mathrm{mL}, 9.48 \mathrm{mmol}$) was added and the stirring was continued for 2 h . The resulting mixture was poured into ice-water. The precipitated product was collected by filtration and dried to give white powder in 93% yield. Spectral data matched those reported previously. ${ }^{2}$

7-Bromo-9-methyl-2-hydroxycarbazol (1d) [Table 2, entry 4]. 2-Bromo-7-methoxy-9methylcarbazole ($508 \mathrm{mg}, 1.75 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ under argon was cooled to $-40{ }^{\circ} \mathrm{C} . \mathrm{BBr}_{3}(0.51 \mathrm{~mL}, 5.25 \mathrm{mmol})$ was then added to the reaction mixture, which was
stirred overnight under argon, allowing gradual warming to room temperature. The reaction was quenched with ice-menthol $(10 \mathrm{~mL})$ and washed with water $(10 \mathrm{~mL})$, then extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic layers were washed with brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the material was purified by column chromatography on silica gel with Hexane/EtOAc (2:1). Product 1d (435 mg) was obtained as white solid in 90% yield: mp $164-165{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta$ 9.67 (bs, 1H), $7.90(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 157.2,142.7,141.5,121.7,121.3,121.2,120.5,116.6,114.1,111.5,109.0$, 95.0, 29.0; IR (film) $3434,1635,1597,1461,1232,1199,949,791 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NOBr}[\mathrm{M}-\mathrm{H}]^{-} m / z=273.9868$; found 273.9875.

7-Fluoro-9-methyl-2-hydroxycarbazol (1c) [Table 2, entry 2 and 3]. Following general procedure B , white solid, 40% yield over 4 steps; mp 195-196 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.88-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{dd}, J=10.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.94-6.90(\mathrm{~m}, 1 \mathrm{H})$, $6.82(\mathrm{~s}, 1 \mathrm{H}), 6.74(\mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{bs}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.6(\mathrm{~d}, J=240 \mathrm{~Hz}), 154.6,143.1(\mathrm{~d}, J=1.3 \mathrm{~Hz}), 142.0(\mathrm{~d}, J=11.3$ $\mathrm{Hz}), 120.9,120.3(\mathrm{~d}, J=10.0 \mathrm{~Hz}), 119.5,116.8,108.4,107.0(\mathrm{~d}, J=23.8 \mathrm{~Hz}), 95.5(\mathrm{~d}, J$ $=26.3 \mathrm{~Hz}$), 95.2 , 29.4; IR (film) $3419,1639,1606,1586,1467,1205,1103,958,794 \mathrm{~cm}^{-}$ ${ }^{1}$; HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{NOF}[\mathrm{M}]^{+} \mathrm{m} / \mathrm{z}=215.0746$; found 215.0750.

$1 e$

7-Chloro-9-methyl-2-hydroxycarbazol (1e) [Table 2, entry 5 and 6]. Following general procedure B , white solid, 45% yield over 4 steps; mp 167-168 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $(500$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 7.86-7.84 (m, 2H), $7.31(\mathrm{~s}, 1 \mathrm{H}), 7.16(\mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H})$, $6.74(\mathrm{dd}, J=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{bs}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 155.1, 143.0, 141.9, 130.4, 121.7, 121.3, 120.3, 119.6, 116.5, 108.6, 108.5, 95.2, 29.3; IR (film) 3364, 1634, 1597, 1464, 1232, 1188, 1072, 949, $798 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NOCl}[\mathrm{M}+\mathrm{H}]^{+} m / z=232.0529$; found 232.0523.

7-Phenyl-9-methyl-2-hydroxycarbazol (1f) [Table 2, entry 7]. A mixture of 7-bromo-9-methyl-2-hydroxycarbazol $1 \mathbf{d}(386 \mathrm{mg}, 1.4 \mathrm{mmol})$, phenyl boronic acid ($341 \mathrm{mg}, 2.8$ mmol), potassium carbonate ($484 \mathrm{mg}, 3.5 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{2}(5.0 \mathrm{mg}, 7.0 \mu \mathrm{~mol})$ were stirred in dioxane: $\mathrm{H}_{2} \mathrm{O}(4: 1 \mathrm{v}: \mathrm{v}, 6 \mathrm{~mL}$, degassed with argon) and stirred at reflux overnight under argon. After cooling to room temperature, the reaction mixture was partitioned into diethyl ether and water. The aqueous mixture was extracted with diethyl ether and the combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration, the material was purified by column chromatography on silica gel with hexane/EtOAc (3:1). Product $1 \mathrm{f}(329 \mathrm{mg})$ was obtained as white solid in 86% yield: $\mathrm{mp} 194-195{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.03(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.75-7.73(\mathrm{~m}, 2 \mathrm{H})$, $7.54(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.40-7.37(\mathrm{~m}, 1 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}), 6.76-6.74(\mathrm{~m}, 1 \mathrm{H}), 5.02$ (bs, 1H), 3.78 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.9,143.2,142.4,141.9,138.2$, 128.9, 127.7, 127.1, 122.4, 121,4 119.8, 118.9, 116.9, 108.2, 107.0, 95.0, 29.3; IR (film) 3419, 1631, 1607, 1464, 1420, 1234, 950, 810, 764, $696 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} m / z=274.1232$; found 274.1232.

1 g
7-p-Methoxyphenyl-9-methyl-2-hydroxycarbazol (1g) [Table 2, entry 8]. Following the same procedure as for $\mathbf{1 f}$. White solid (305 mg), 85% yield; $\mathrm{mp} 216-218{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 9.57(\mathrm{bs}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.72 (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.37$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.03$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), $6.88(\mathrm{~s}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}) $\delta 158.6,156.8,142.9,141.3,136.0,133.8,128.0,121.5,120.9,119.3,117.4$, $114.6,114.3,108.4,106.3,94.9,55.2,28.9$; IR (film) 3434, 1637, 1521, 1465, 1237, $1183 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} m / z=304.1338$; found 304.1345 .

1h
7-Trimethylsilyl-9-methyl-2-hydroxycarbazol (1h) [Table 2, entry 9 and 10]. Following a modified procedure by Node et al., ${ }^{3}$ 7-bromo-9-methyl-2-hydroxycarbazol $\mathbf{1 d}(386 \mathrm{mg}, 1.4 \mathrm{mmol})$ was dissolved in dry THF $(10 \mathrm{~mL})$ and the solution was cooled to $-78{ }^{\circ} \mathrm{C} . n$ - BuLi (2.5 M in n-hexane, $1.25 \mathrm{~mL}, 3.08 \mathrm{mmol}$) was slowly added to the
solution over 15 min and the resulting mixture was stirred at the same temperature for 1.5 h. Trimethylsilylchloride ($0.46 \mathrm{~mL}, 3.64 \mathrm{mmol}$) was then added slowly. The stirring was continued at $-78^{\circ} \mathrm{C}$ for 2 h and at room temperature for additional 12 h . The mixture was quenched with 1 N aq. $\mathrm{HCl}(6 \mathrm{~mL})$ and stirred at rt for 1 h . The phases were separated and the aqueous phase was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic phases were washed with brine and dried over MgSO_{4}. After the volatiles were removed under reduced pressure, the product was purified by column chromatography on silica gel with hexane/EtOAc (3:1), product $\mathbf{1 h}(332 \mathrm{mg})$ was obtained as white solid in 88% yield: $\mathrm{mp} 161-163{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 6.74(\mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.15(\mathrm{bs}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 0.39(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.9$, 142.7, 141.0, 136.2, 124.0, 123.7, 121.5, 119.0, 117.0, 112.9, 108.0, 94.9, 29.1, -0.6; IR (film) $3435,1636,1456,1321,1231,1118 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NOSi}$ $[\mathrm{M}+\mathrm{H}]^{+} m / z=270.1314$; found 270.1311.

$1 i$
7-Methyl-9-methyl-2-hydroxycarbazol (1i) [Table 2, entry 11]. Following general procedure B, white solid, 38% yield over 4 steps; mp 181-183 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.87-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 6.71$ (dd, $J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{bs}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}) $\delta 154.4,142.6,141.8,134.7,120.9,120.8,120.6,119.2,117.2,108.7,107.7,95.0$, 29.1, 22.3; IR (film) 3434, 1636, 1465, 1185, 1112, 813, $794 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} m / z=212.1075$; found 212.1065.

7-Methoxy-9-methyl-2-hydroxycarbazol (1j) [Table 2, entry 12]. Following a modified procedure by Maily et al. ${ }^{4}$ A solution of 7-bromo-9-methyl-2-hydroxycarbazol 1d (508 $\mathrm{mg}, 1.75 \mathrm{mmol})$ in dry THF $(25 \mathrm{~mL})$ under argon was cooled to $-78^{\circ} \mathrm{C} . n-\mathrm{BuLi}(2.5 \mathrm{M}$, $0.84 \mathrm{~mL}, 2.1 \mathrm{mmol}$) was added dropwise and the reaction mixture was stirred with continued cooling for 10 minutes. Trimethyl borate $(0.25 \mathrm{~mL}, 2.28 \mathrm{mmol})$ was added to the reaction mixture, which was stirred overnight under argon, allowing gradual warming to room temperature. The reaction mixture was acidified with 1 M aqueous HCl and extracted with diethyl ether. The combined extracts were concentrated, and the residue was dissolved in a mixture of THF $(10 \mathrm{~mL})$ and $1 \mathrm{M} \mathrm{NaOH}(20 \mathrm{~mL})$. Hydrogen peroxide ($2 \mathrm{~mL}, 30 \%$) was added dropwise and the mixture was stirred for 15 minutes. The mixture was then acidified using 1 M HCl and extracted with diethyl ether. The combined
organic extracts were washed with brine and dried over MgSO_{4}. After filtration and concentration, the crude product was purified by column chromatography on silica gel with hexane/EtOAc (3:1). The product $\mathbf{1 j}(318 \mathrm{mg})$ was obtained as white solid in 80% yield: mp 167-169 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84(\mathrm{dd}, J=7.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.80$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.84-6.82(\mathrm{~m}, 2 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.98$ (bs, 1H), 3.93 (s, 3H), $3.69(\mathrm{~s}, 3 \mathrm{H}){ }^{13}{ }^{3} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.4,153.9$, 142.7, 142.6, 120.3, 120.2, 117.2, 117.0, 107.8, 107.2, 95.1, 93.3, 55.9, 29.2; IR (film) 3421, 1636, 1473, 1365, 1217, 1111, 1050, $957 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{2}[\mathrm{M}]^{+}$ $m / z=227.0946$; found 227.0935.

1k
6-Bromo-9-methyl-2-hydroxycarbazol (1k) [Table 2, entry 13]. Following general procedure B , white solid, 42% yield over 4 steps; mp $154-155{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, DMSO- d_{6}) $\delta 9.68(\mathrm{bs}, 1 \mathrm{H}), 8.18(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.41(\mathrm{~m}, 2 \mathrm{H}), 6.86$ $(\mathrm{s}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) $\delta 157.5$, $142.8,139.3,126.0,124.5,121.6,121.4,113.7,110.8,110.6,109.0,94.9,29.0$; IR (film) $3420,1637,1466,1277,1199,946 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NOBr}[\mathrm{M}-\mathrm{H}]^{-} \mathrm{m} / \mathrm{z}$ $=273.9868$; found 273.9873.

1I
6-Trimethylsilyl-9-methyl-2-hydroxycarbazol (11) [Table 2, entry 14]. Following the same procedure as for $\mathbf{1 h}$. White solid (353 mg), 86% yield; mp $128-130{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.17$ (s, 1H), $7.96(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{dd}, J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.36(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}), 6.75(\mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{bs}, 1 \mathrm{H}), 3.75$ $(\mathrm{s}, 3 \mathrm{H}), 0.37(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.8,142.6,141.9,129.6,129.3$, 124.7, 122.9, 121.3, 117.0, 108.1, 108.0, 95.0, 29.1, -0.4; IR (film) 3434, 2953, 1634, 1601, 1469, 1243, 1093, 946, $824 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NOSi}[\mathrm{M}-\mathrm{H}]^{-} \mathrm{m} / \mathrm{z}=$ 268.1158; found 268.1168.

9-Benzhydryl-2-hydroxycarbazole (1m) [Table 2]. Following the general procedure A, 2-hydroxycarbazole ($92 \mathrm{mg}, 0.5 \mathrm{mmol}$) and dry DMF ($78 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$) in dry THF (5 mL) was added dropwise to $95 \% \mathrm{NaH}(30 \mathrm{mg}, 1.25 \mathrm{mmol})$ under a argon atmosphere and stirred at room temperature. After $10 \mathrm{~min}, \mathrm{Ph}_{2} \mathrm{CHCl}(78 \mu \mathrm{~L}, 0.55 \mathrm{mmol})$ was added and the stirring was continued at $50{ }^{\circ} \mathrm{C}$ for 5 h . After quenching, concentration and column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(100: 1)$ product $1 \mathrm{~m}(105 \mathrm{mg})$ was obtained as a white solid in 60% yield: $\mathrm{mp} 184-186{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.02-8.00(\mathrm{~m}$, $1 \mathrm{H}), 7.93$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.94-7.30(\mathrm{~m}, 6 \mathrm{H}), 7.26-7.17$ (m, 6H), 7.08 (s, 1H), 7.03 (dd, $J=7.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{dd}, J=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~s}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.6,142.4,141.2,139.0,129.0,128.7,128.2$, 124.7, 124.0, 121.3, 119.7, 119.6, 118.0, 110.8, 108.6, 97.6, 62.7; IR (film) 3352, 3029, 1631, 1600, 1449, 1342, 1167, $907,698 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{NO}[\mathrm{M}-\mathrm{H}]^{-}$ $m / z=348.1388$; found 348.1383.

Table S1. Oxidation of 2-Hydroxycarbazole with Conventional Oxidants

		Oxidant	ortho-ortho'			ortho-ortho
			temp	t		
entry	oxidant	solvent	$\left({ }^{\circ} \mathrm{C}\right)$	(h)	o-o'	o-o
1	$(t-\mathrm{BuO})_{2}$	PhCl	135	8	32	29
2	$\mathrm{CuCl}_{2} / \mathrm{TMEDA} / \mathrm{O}_{2}$	MeOH	rt	1	dec	pose
3	$\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$	$\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	rt-70	24	8	6
4	MnO_{2}	DCE	80	16	20	18
5	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	MeCN	80	16	6	13
6	p-Chloroanil*	MeOH	70	18	<5	<5

[^0]
Parallel Microscale Screening Results

HTE of 2-Hydroxycarbazole

othro-othro'

othro-othro

Table S2. Complete HTE Results of 2-Hydroxycarbazole

Catalyst	SM	$o-{ }^{\prime}$	O-o	IS	$o-o^{\prime} / \mathbf{I S}$	o-o/IS
Co-Salen-Cy- t - Bu	37	12	95	325	0.04	0.29
Co-Salan-Cy-t-Bu	285	83	159	354	0.23	0.45
Cr-Salen-Cy- t - Bu	103	187	29	376	0.50	0.08
Cr -Salen-Ph- t - Bu	1372	112	12	369	0.30	0.03
Cr -Salen-Cy- NO_{2}	1697	0	0	377	0.00	0.00
Cr-Salan-Ph- t - Bu	1553	30	0	365	0.08	0.00
Cu -Salen-Ph-t-Bu	1832	0	0	405	0.00	0.00
$\mathrm{Cu}-\mathrm{Salan}-\mathrm{Cy}-\mathrm{t}-\mathrm{Bu}$	1254	127	110	391	0.32	0.28
$\mathrm{Cu}-\mathrm{Salan}-\mathrm{Ph}-t-\mathrm{Bu}$	1472	88	73	387	0.23	0.19
Mn-Salen-Cy- t - Bu	1787	0	109	392	0.00	0.28
Mn -Salan-Cy- NO_{2}	918	169	191	384	0.44	0.50
$\text { V-Salen-H- } t-\mathrm{Bu}$	1592	76	43	392	0.19	0.11
V-Salen-Ph- t-Bu	409	387	0	401	0.97	0.00
V-Salan-Ph-t-Bu	571	156	38	382	0.41	0.10
Ru-Salen-Cy-t-Bu	1350	128	104	388	0.33	0.27
Ru-Salen-Ph-t-Bu	820	168	170	389	0.43	0.44
Ru -Salan-Cy- t - Bu	453	137	187	393	0.35	0.47
Ru-Salan-Ph-t-Bu	987	180	132	392	0.46	0.34
Ru-Salan-Cy- NO_{2}	1104	129	86	364	0.35	0.24

General Procedure for Vanadium Catalysts ${ }^{5-7}$

$$
\mathrm{R}=\mathrm{NO}_{2}, t-\mathrm{Bu}
$$

All glassware was flame dried. A mixture of L-tert-leucine or (\pm)-phenylalanine (0.34 mmol) and salicylaldehyde derivative (0.17 mmol or 0.34 mmol) in $\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 $\mathrm{mL}, 1: 1$) was heated to reflux and monitored by TLC. The reaction mixture was cooled to room temperature and $\mathrm{VO}(\mathrm{OEt})_{3}(0.34 \mathrm{mmol})$ was added. After 3 h under air, solvent was removed under reduced pressure to afford the catalysts.

(S,R,S)-Vanadium catalyst V1. Dark green solid; HRMS (ESI) calcd for $\mathrm{C}_{35} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{~V}_{2}$ $[\mathrm{M}]^{+} m / z=729.1222$; found 729.1253.

(S,R,S)-Vanadium catalyst V2. Dark green solid; HRMS (ESI) calcd for $\mathrm{C}_{35} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{~V}_{2}$ $[\mathrm{M}]^{+} m / z=737.1848$; found 737.1843.

(\pm)-Vanadium catalyst V3. Dark Green solid; HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{NO}_{5} \mathrm{~V}$ $[\mathrm{M}+\mathrm{H}]^{+} m / z=478.1798$; found 478.1793.

(\pm)-Vanadium catalyst V4. Dark brown solid; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~V}$ $[\mathrm{M}+\mathrm{H}]^{+} m / z=467.1023$; found 467.1028.

(S)-Vanadium catalyst V5. Dark Green solid; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{NO}_{5} \mathrm{~V}$ $[\mathrm{M}+\mathrm{H}]^{+} m / z=444.1955$; found 444.1946.

(S)-Vanadium catalyst V6. Dark Green solid; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~V}$ $[\mathrm{M}+\mathrm{H}]^{+} m / z=433.1180$; found 433.1179.

General Procedure for Regioselective Oxidative Hydroxycarbazole Coupling (Table 1 and Table 2)

To a 5 mL microwave vial was added hydroxycabazole (0.1 mmol) and catalyst (0.01 mmol). The vial was sealed with a septum and solvent (1 mL) was added. Oxygen was added via active purge. The septum was replaced with a crimping cap and the vessel was sealed and stirred for the indicated time at the indicated temperature. After the reaction mixture was filtered through a plug of silica and concentrated in vacuo, the resultant mixture was chromatographed on silica using ethyl acetate/hexane to afford the product.

9,9'-Dimethyl-[1,3'-bicarbazole]-2,2'-diol (2a) [Table 1]. Following the general procedure, using catalyst V5 (10 mol\%) in chloroform at $40^{\circ} \mathrm{C}$ for 2.5 d , the ortho-ortho' product was obtained as white solid (13.8 mg) in 70% yield: $\mathrm{mp} 154-156{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.98$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}$), 5.26 (bs, 1H), 5.19 (bs, 1H), 3.88 (s, 3H), 3.27 (s, 3H), ${ }^{13} \mathrm{C}$ NMR (125 MHz ,
CDCl_{3}) $\delta 154.1,154.0,143.7,141.9,141.6,140.2,125.4,124.8,123.8,122.9,122.7$, $122.1,119.8,119.7,119.6,119.3,117.8,117.6,110.0,108.7,108.6,108.1,103.4,95.4$, 30.8, 29.4; IR (film) 3421, 1636, 1593, 1466, 1442, 1257, 1206, 980, $746 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} m / z=393.1603$; found 393.1596; chiral HPLC (IA, 80:20 hexanes: $i-\mathrm{PrOH}, 1 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=31.54$ and 44.16 min .

2b
9,9'-dibenzyl-[1,3'-bicarbazole]-2,2'-diol (2b) [Table 2, entry 1]. Following the general procedure, using catalyst V5 ($20 \mathrm{~mol} \%$) in chloroform at $40^{\circ} \mathrm{C}$ for 3 d , the orthoortho' product was obtained as white solid (15.3 mg) in 56% yield: mp $141-143{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.13(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H}), 7.41-7.20(\mathrm{~m}, 11 \mathrm{H}), 7.04(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-6.94(\mathrm{~m}$, $1 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 6.81-6.78(\mathrm{~m}, 2 \mathrm{H}), 6.27(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.52(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H})$, 5.48 (d, $J=17.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.08 (bs, 1H), 5.13 (d, $J=17.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.93 (d, $J=17.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.85$ (bs, 1H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.2,153.8,143.1,142.0,141.2$, $139.6,137.4,137.0,129.0,128.2,127.9,126.9,126.7,125.4,125.3,125.1,124.1,123.1$, $123.0,122.2,120.1,120.0,119.8,119.4,118.3,117.8,109.6,109.2,108.6,108.5,103.9$, 95.8, 43.7, 46.9; IR (film) 3434, 1635, 1452, 1325, 1265, 1172, $955 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{38} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}-\mathrm{H}]^{-} m / z=543.2073$; found 543.2099.

3b
9,9'-Dibenzyl-[1,1'-bicarbazole]-2,2'-diol (3b) [Table 2, entry 1]. Following the general procedure, using catalyst V5 ($20 \mathrm{~mol} \%$) in chloroform at $40^{\circ} \mathrm{C}$ for 3 d , the orthoortho product was obtained as white solid (2.2 mg) in 8% yield: $\mathrm{mp} 145-147{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.11(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.08(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.32$ (m, 2H), 7.30-7.27 (m, 2H), 7.07 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), ~ 6.87-6.85$ (m, 2H), 6.82-6.78 (m, $6 \mathrm{H}), 6.28(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 4.76(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.71(\mathrm{bs}, 2 \mathrm{H}), 4.56(\mathrm{~d}, J=17.5$ $\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.3,142.0,139.8,137.2,128.0,126.8,125.2$, $125.1,122.9,122.8,120.1,119.3,119.3,109.4,108.8,99.3,47.0$; IR (film) 3422, 1637,

1452, 1415, 1344, 1182, $948 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{38} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}=$ 545.2229; found 545.2225.

7,7'-Difluoro-9,9'-dimethyl-[1,3'-bicarbazole]-2,2'-diol (2c) [Table 2, entry 2 and 3]. Following the general procedure, using catalyst V5 (20 mol\%) in chloroform at $40^{\circ} \mathrm{C}$ for 3 d , the ortho-ortho' product was obtained as white solid (13.3 mg) in 62% yield. Catalyst V5 (10 mol $\%$) at $40^{\circ} \mathrm{C}$ for 2 d , the ortho-ortho' product was obtained (9.6 mg) in 45% yield (78% based on recovered starting material): mp 200-202 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.94-7.91(\mathrm{~m}, 1 \mathrm{H}), 7.88-7.85(\mathrm{~m}$, $1 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=10.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-6.92(\mathrm{~m}$, 3 H), 5.15 (bs, 2H), $3.84(\mathrm{~s}, 3 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.0(\mathrm{~d}, J$ $=240 \mathrm{~Hz}), 161.7(\mathrm{~d}, J=240 \mathrm{~Hz}), 153.8,153.6,144.2(\mathrm{~d}, J=1.3 \mathrm{~Hz}), 142.6(\mathrm{~d}, J=11.3$ $\mathrm{Hz}), 142.4(\mathrm{~d}, J=12.5 \mathrm{~Hz}), 140.6(\mathrm{~d}, J=1.3 \mathrm{~Hz}), 123.3,121.8,120.7(\mathrm{~d}, J=10 \mathrm{~Hz})$, $120.1(\mathrm{~d}, J=10 \mathrm{~Hz}), 119.3,119.1,117.5,117.3,110.3,108.6,107.7(\mathrm{~d}, J=23.8 \mathrm{~Hz})$, 107.6 (d, $J=23.8 \mathrm{~Hz}$), 103.6, $96.0(\mathrm{~d}, J=27.5 \mathrm{~Hz}), 95.9(\mathrm{~d}, J=26.3 \mathrm{~Hz}), 95.7,31.1$, 29.7; IR (film) 3433, 1645, 1440, 1354, 1208, 1109, $985 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~F}_{2}[\mathrm{M}+\mathrm{H}]^{+} m / z=429.1415$; found 429.1423 .

7,7'-Dibromo-9,9'-dimethyl-[1,3'-bicarbazole]-2,2'-diol (2d) [Table 2, entry 4]. Following the general procedure, using catalyst V5 (20 mol\%) in chloroform at $40^{\circ} \mathrm{C}$ for 2 d , the ortho-ortho' product was obtained as white solid (11.1 mg) in 40% yield (73% based on recovered starting material): $\mathrm{mp}>300{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57$ (s, 1H), $7.40(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.19$ (bs, $2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.4,154.3,143.9,142.7$, $142.5,140.3,123.8,122.9,122.8,122.3,121.9,121.7,120.9,120.4,119.1,118.4,117.3$, $117.1,112.0$ (2C), 110.4, 108.8, 103.5, 95.8, 31.0, 29.6; IR (film) 3435, 1636, 1589, 1438,

1365, 1235, 1205, 980, $798 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Br}_{2}[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}=$ 548.9790; found 548.9813.

7,7'-Dichloro-9,9'-dimethyl-[1,3'-bicarbazole]-2,2'-diol (2e) [Table 2, entry 5 and 6]. Following the general procedure, using catalyst V5 (20 mol\%) in chloroform at $40^{\circ} \mathrm{C}$ for 3 d , the ortho-ortho' product was obtained as white solid (13.6 mg) in 59% yield. Catalyst V5 (10 mol \%) at $40^{\circ} \mathrm{C}$ for 2 d , the ortho-ortho' product (9.2 mg) was obtained in 40% yield (75% based on recovered starting material): mp 262-264 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}), 7.21-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 5.19(\mathrm{bs}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}){ }^{13}{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.3$, 154.2, 144.0, 142.5, 142.2, 140.5, 131.3, 130.7, 123.7, 122.2, 121.5, 121.3, 120.6, 120.2, $120.1,117.3,117.1,110.4,109.0,108.8,103.5,95.8,31.0,29.6$; IR (film) 3419, 1634, 1592, 1440, 1347, 1237, 1205, 1075, 981, $799 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}_{2}[\mathrm{M}+\mathrm{H}]^{+} m / z=461.0824$; found 461.0812 .

7,7'-Diphenyl-9,9'-dimethyl-[1,3'-bicarbazole]-2,2'-diol (2f) [Table 2, entry 7]. Following the general procedure, using catalyst V5 (20 mol\%) in chloroform at $40^{\circ} \mathrm{C}$ for 1 d , the ortho-ortho' product was obtained as white solid (11.7 mg) in 43% yield (79% based on recovered starting material): $\mathrm{mp} 184-186{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 8.09-8.07 (m, 2H), $8.07(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~d}$, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.52-7.44(\mathrm{~m}, 7 \mathrm{H}), 7.40-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{bs}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 154.2, 154.1, 144.3, 142.5, 142.4, 142.2, 142.1, 140.7, 139.1, 138.4, 129.0, 128.9, 127.7, $127.6,127.3,127.1,123.8,122.3,122.2,122.0,120.1,119.6,119.5,119.4,117.7,117.4$, 110.2, 108.4, 107.4, 107.3, 103.5, 96.6, 30.8, 29.5; IR (film) 3435, 1639, 1445, 1350, $1261 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{38} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} m / z=545.2229$; found 545.2233.

7,7'-Bis(p-methoxyphenyl)-9,9'-dimethyl-[1,3'-bicarbazole]-2,2'-diol (2g) [Table 2, entry 8]. Following the general procedure, using catalyst V5 ($20 \mathrm{~mol} \%$) in chloroform at $40{ }^{\circ} \mathrm{C}$ for 1.5 d , the ortho-ortho' product was obtained as white solid (11.8 mg) in 39% yield (79% based on recovered starting material): mp 181-183 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.08(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.68-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.46-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{~s}$, $1 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 7.05-7.03(\mathrm{~m}, 3 \mathrm{H}), 7.00-6.99(\mathrm{~m}, 2 \mathrm{H}), 5.28(\mathrm{bs}, 1 \mathrm{H}), 5.19(\mathrm{bs}, 1 \mathrm{H})$, $3.92(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 159.2, 159.1, 154.1, 154.0, 144.2, 142.5, 142.3, 140.6, 138.7, 138.1, 134.9, 134.7, 128.7, $128.6,123.7,122.1,121.8,121.5,120.0,119.5,119.2,119.1,117.7,117.5,114.4,114.3$, $110.1,108.3,106.9,106.8,103.5,95.5,55.6,55.5,30.8,29.5$; IR (film) $3433,1640,1519$, 1440, 1350, 1241, 1178, $1038 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{40} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}=$ 605.2440; found 605.2440.

7,7'-Bis(trimethylsilyl)-9,9'-dimethyl-[1,3'-bicarbazole]-2,2'-diol (2h) [Table 2, entry 9 and 10]. Following the general procedure, using catalyst V5 (10 mol\%) in chloroform at $40^{\circ} \mathrm{C}$ for 2 d , the ortho-ortho' product was obtained as white solid $(20.7 \mathrm{mg})$ in 77% yield. Catalyst V5 (10 mol\%) in chloroform at $40^{\circ} \mathrm{C}$ under nitrogen for 2 d , the orthoortho ' product was obtained as white solid (12.9 mg) in 48% yield: $\mathrm{mp} 208-210{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.98(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H}), 7.43-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{bs}, 1 \mathrm{H}), 5.19(\mathrm{bs}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 0.40(\mathrm{~s}, 9 \mathrm{H}), 0.35(\mathrm{~s}$, $9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.3,154.2,143.8,141.6,141.3,140.3,137.4$, $136.5,124.5,124.4,123.9,123.6,123.3,122.3,119.2,118.7,117.7,117.5,113.3,113.2$, 110.0, 108.1, 103.4, 95.4, 30.6, 29.4, -0.6 (2C); IR (film) 3436, 2953, 1636, 1591, 1443,

1346, 1258, 1246, 835, $753 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{32} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z}=$ 537.2394; found 537.2397.

7,7'-Dibromo-9,9'-dimethyl-[1,3'-bicarbazole]-2,2'-diol (2i) [Table 2, entry 11]. Following the general procedure, using catalyst V5 (10 mol\%) in chloroform at $40^{\circ} \mathrm{C}$ for 2 d , the ortho-ortho' product was obtained as white solid (14.5 mg) in 69% yield: mp $228-230{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{bs}, 1 \mathrm{H}), 5.13(\mathrm{bs}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.23$ $(\mathrm{s}, 3 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 153.7, 153.6, 143.7, $142.3,142.0,140.2,135.6,134.9,123.3,121.7,121.1,120.7,121.0,120.4,119.5,119.0$, 117.9, 117.7, 109.8, 109.0, 108.9, 107.9, 103.5, 95.4, 30.7, 29.4, 22.4, 22.3; IR (film) 3434, 2923, 1639, 1450, 1259, 1208, 979, $800 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+} m / z=421.1916$; found 421.1924.

7,7'-Dimethoxy-9,9'-dimethyl-[1,3'-bicarbazole]-2,2'-diol (2j) [Table 2, entry 12].
Following the general procedure, using catalyst V5 ($10 \mathrm{~mol} \%$) in chloroform at room temperature for 3 d , the ortho-ortho' product was obtained as white solid (11.5 mg) in 51% yield: mp 232-233 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.92(\mathrm{~s}$, $1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 5.19(\mathrm{bs}, 1 \mathrm{H}), 5.12(\mathrm{bs}, 1 \mathrm{H}), 3.95$ $(\mathrm{s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.0$, $158.5,153.2,153.0,143.8,143.2,143.0,140.2,122.7,121.1,120.5,120.0,117.9,117.7$, $116.9,116.6,109.9,108.0,107.7,107.6,103.7,95.5,93.6,93.5,56.0,55.9,30.8,29.5$; IR (film) 3434, 1641, 1456, 1352, 1223, 1118, $1053 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} m / z=453.1814$; found 453.1813.

6,6'-Dibromo-9,9'-dimethyl-[1,3'-bicarbazole]-2,2'-diol (2k) [Table 2, entry 13]. Following the general procedure, using catalyst V5 (20 mol\%) in chloroform at $40^{\circ} \mathrm{C}$ for 2 d , the ortho-ortho' product was obtained as white solid (11.3 mg) in 41% yield $(76 \%$ based on recovered starting material): mp $220-222{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 8.13 (s, 1H), $8.06(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{dd}, J=8.5,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.46$ (dd, $J=6.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H}), 7.13$ (d, $J=7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{bs}, 1 \mathrm{H}), 5.16(\mathrm{bs}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 154.6,154.5,144.0,140.6,140.5,140.3,128.1,127.5$, 124.7, 124.5, 124.0, 122.6, 122.5, 122.1, 116.8, 116.6, 112.6, 112.5, 110.4, 110.2, 110.1, 108.8, 103.3, 95.7, 31.0, 29.6; IR (film) 3435, 1638, 1461, 1362, 1278, 1247, 1012, 974 cm^{-1}; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Br}_{2}[\mathrm{M}+\mathrm{H}]^{+} m / z=548.9813$; found 548.9821.

6,6'-Bis(trimethylsilyl)-9,9'-dimethyl-[1,3'-bicarbazole]-2,2'-diol (21) [Table 2, entry 14]. Bollowing the general procedure, using catalyst V5 ($10 \mathrm{~mol} \%$) in chloroform at 40 ${ }^{\circ} \mathrm{C}$ for 2 d , the ortho-ortho' product was obtained as white solid (20.4 mg) in 76% yield: $\mathrm{mp} 200-202{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.20(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 8.11(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.27$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.14 (s, 1H), 7.03 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.24$ (bs, 1H), $5.12(\mathrm{bs}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}), 0.37(\mathrm{~s}, 9 \mathrm{H}), 0.33(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}) $\delta 154.1,154.0,143.7,142.5,142.2,140.2,130.4,130.2,129.9,129.7,124.9$, 124.4, 123.7, 122.8, 122.6, 122.1, 117.7, 117.5, 110.1, 108.4, 108.3, 108.2, 103.4, 95.4, 30.7, 29.4, $-0.45,-0.53$; IR (film) 3434, 2952, 1638, 1455, 1364, 1246, 1094, 980, 834 cm^{-1}; HRMS (ESI) calcd for $\mathrm{C}_{32} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+} m / z=537.2394$; found 537.2395.

9,9',9'", $9^{\prime \prime \prime}$-Tetramethyl-[3,1':3', $\left.3^{\prime \prime}: 1^{\prime \prime}, 3^{\prime \prime \prime}-q u a t e r c a r b a z o l e\right]-2,2^{\prime}, 2^{\prime \prime}, 2^{\prime \prime \prime}-t e t r a o l(5 a)$ [Table 1, entry 6]. Following the general procedure, using catalyst V6 ($10 \mathrm{~mol} \%$) in chloroform at room temperature 22 h , as a 1.3:1 mixture of diastereomers in the form of a light yellow solid (5.8 mg) in 30% yield: major diastereomer ${ }^{1} \mathrm{H}$ NMR (500 MHz , acetone- d_{6}) $\delta 8.16(\mathrm{~s}, 2 \mathrm{H}), 8.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.05(\mathrm{~s}, 2 \mathrm{H}), 8.03(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, 7.47 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.36(\mathrm{~m}, 6 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.11$ (s, 2H), $3.89(\mathrm{~s}, 6 \mathrm{H}), 3.33(\mathrm{~s}, 6 \mathrm{H})$; minor diastereomer $\delta 8.16(\mathrm{~s}, 2 \mathrm{H}), 8.13(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 8.08(\mathrm{~s}, 2 \mathrm{H}), 8.04(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.36(\mathrm{~m}, 6 \mathrm{H})$, 7.24-7.19 (m, 2H), 7.16-7.13 (m, 2H), 7.12 (s, 2H), $3.88(\mathrm{~s}, 6 \mathrm{H}), 3.34(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}) $\delta 155.9,155.8,152.4,152.2,142.4,142.3,141.5,141.4,140.8$, $140.1,140.0,124.3,124.1,122.7,122.3,122.1,119.8,119.5,119.3,119.1,119.0,118.8$, 118.7, 116.2, 116.1, 114.8, 114.5, 109.2, 108.9, 108.6, 94.8, 30.5, 30.4, 29.1, 29.0; IR (film) 3496, 3050, 2934, 1636, 1603, 1578, 1482, 1454, 1403, 1321, 1254, 1205, 1115, 983, 967, 780, $743 \mathrm{~cm}^{-1}$; HRMS (ESI) calcd for $\mathrm{C}_{52} \mathrm{H}_{37} \mathrm{~N}_{4} \mathrm{O}_{4}[\mathrm{M}-\mathrm{H}]^{-} \mathrm{m} / \mathrm{z}=781.2815$; found 781.2821.

Measurement of Atropisomerization Barrier for 2a. The two enantiomers of 2a were separated by CSP HPLC (IA, 80:20 hexanes: $i-\mathrm{PrOH}, 1 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=31.54$ and 44.16 min . Isolated peaks were reinjected and analyzed after given time intervals at 18 ${ }^{\circ} \mathrm{C}$ (Figure S1). Conversion of the rate constant into $\Delta \mathrm{G}_{\text {atrop }}$ and half lives was accomplished via equations S1 and S2.

Figure S1. Plots of \ln (concentration) vs time for atropisomerization of 2a. a) all points $\Delta \mathrm{G}_{\text {atrop }}=22.6 \mathrm{kcal} / \mathrm{mol}, \mathrm{t}_{1 / 2}=2.9 \mathrm{~h}$. b) initial points (before back reaction becomes relevant) $\Delta \mathrm{G}_{\text {atrop }}=22.4 \mathrm{kcal} / \mathrm{mol}, \mathrm{t}_{1 / 2}=2.3 \mathrm{~h}$.

$$
\begin{gather*}
\Delta \mathrm{G}^{\ddagger}=-R T\left(\ln \frac{\left(\mathrm{k}^{*} h\right)}{\left.\mathrm{T}^{\star} k_{B}\right)}\right) \tag{S1}\\
\mathrm{t}_{1 / 2}=\ln 2 / \mathrm{k} \tag{S2}
\end{gather*}
$$

Calculations of Atropisomerization Barrier for 5a. In theory, compound 5a can exist as three diastereomers arising from rotation about the axial chiral $\mathrm{C}-\mathrm{C}$ bonds i.e., about the $\mathrm{C}-\mathrm{C}\left({ }^{\circ}\right)$ and $\mathrm{C}-\mathrm{C}\left({ }^{*}\right)$ bonds. In effort to gain insight into the stability of the stereoaxis of the potential diastereomers of the tetramer 5a, energy scans were performed about the rotatable C-C bonds with Gaussian ${ }^{8}$ using B3LYP/6-31G(d) in the gas phase.

Calculations show no energetic preferences between the diasteromers about the central C-$\mathrm{C}-\mathrm{C}\left({ }^{\circ}\right)$ bond with the enthalpic and free energy differences being within $0.2 \mathrm{kcal} / \mathrm{mol}$. Further, the computed barrier for the interconversion is extremely low and facile at room temperature i.e., $12-13 \mathrm{kcal} / \mathrm{mol}$ (Figure S2). This result implies at room temperature rotation about the middle $\mathrm{C}-\mathrm{C}\left({ }^{\circ}\right)$ bond is rapid.
Further energy scans about the rotatable C-C $\left(^{*}\right.$) bonds gave rise to larger barriers oning to the greater sterics arising from the $\mathrm{N}-\mathrm{Me}$ and $\mathrm{C}-\mathrm{OH}$ bonds. Calculations showed that the axial rotation in which the $\mathrm{C}-\mathrm{OH}$ and $\mathrm{N}-\mathrm{Me}$ bonds are passing through each other is high (ca. $55 \mathrm{kcal} / \mathrm{mol}$). However, a much smaller barrier ($22-23 \mathrm{kcal} / \mathrm{mol}$) barrier was observed for the C-OH/C-OH passing each other (Figure S3). This result implies that the isomers \mathbf{C}^{\prime} and \mathbf{D}^{\prime} will equilibribrate slowly at room temperature with a half-life around one hour.

\ddagger

Figure S2: Scan of rotation about the middle bond of 5a.

$\Delta \Delta \mathbf{G}^{\dagger}=\mathbf{2 2 - 2 3} \mathbf{~ k c a l} / \mathrm{mol}$

D'

Figure S3: Scan of rotation about the side bond of $\mathbf{5 a}$.

Coordinates:

H	-6.28602400	-0.89180200	3.56589600
H	-5.91389400	0.81928200	3.30249600
H	-6.88287500	0.33859600	4.70741500
C	-9.01873900	12.83862100	-0.09884500
C	-10.08533800	13.69246400	0.22481200
C	-11.40582100	13.24285100	0.20119600
C	-11.63546900	11.91382200	-0.16056900
C	-10.56716000	11.03356400	-0.48331100
C	-9.25290500	11.51092000	-0.45206800
H	-8.00090600	13.21768800	-0.07054100
H	-9.88177600	14.72298500	0.50340500
H	-12.22085400	13.91102300	0.46377100
H	-8.42385500	10.85209300	-0.69772200
C	-12.56649700	9.91081500	-0.63642900
C	-13.44794500	8.84818000	-0.84719000
C	-12.90860000	7.61511500	-1.21943500
C	-11.51593300	7.42166400	-1.39288400
C	-10.66272300	8.50153800	-1.16259800
C	-11.16643100	9.75066600	-0.78810900
H	-14.52206100	8.95909500	-0.71679000
H	-9.59246300	8.35062500	-1.27230900
N	-12.84105900	11.22377800	-0.27809700
C	-14.15039900	11.75433300	0.02673700
H	-14.89873100	11.27993200	-0.61507400
H	-14.43259800	11.59163200	1.07602400
H	-14.16774200	12.82791300	-0.17833400
C	-10.77481300	2.86847500	-6.84592400
C	-11.43765200	3.98977000	-7.37050300
C	-11.74562200	5.09052400	-6.57106600
C	-11.36944400	5.04907200	-5.22506000
C	-10.70790000	3.91904300	-4.67989200
C	-10.40908800	2.82785900	-5.50201300
H	-10.54929900	2.02559400	-7.49347400
H	-11.72245100	4.00208700	-8.41939500
H	-12.19782500	7.27991200	-4.44466000
H	-12.27023100	5.94295700	-6.99179600
H	-9.89945900	1.95727400	-5.09634900
C	-11.03143600	5.50043600	-3.02833900
C	-10.96995100	6.07452600	-1.74418600
C	-10.35951300	5.31486400	-0.72526900
C	-9.83471100	4.00910400	-0.95109600
C	-9.90726700	3.48650500	-2.24539400
H	-10.49430600	4.20959300	-3.28038400
-9.49682600	2.49914100	-2.43934400	
H	-11.53913600	6.00570100	-4.22669300

H	-12.12154400	7.53920800	-5.50307400
H	-13.25658200	7.24305100	-4.16104600
O	-5.41418600	4.16616200	1.75697500
H	-4.58358300	4.66790600	1.76248400
O	-7.93745200	4.83712100	1.01395600
H	-6.97446700	4.88393500	1.17975000
O	-10.35580900	5.87562600	0.51907500
H	-9.50854800	5.65255800	0.95135600
O	-13.71478100	6.53229400	-1.45698400
H	-14.62952700	6.77197600	-1.24194700
D'			
C	-8.15572900	2.67461600	9.37376700
C	-7.09763100	3.34424000	10.01006000
C	-6.07735200	3.95064900	9.27808200
C	-6.14423100	3.87520900	7.88519400
C	-7.20219800	3.19536200	7.22635200
C	-8.21336100	2.59573900	7.98431400
H	-8.93520800	2.21275300	9.97272800
H	-7.06874100	3.38963500	11.09526400
H	-5.26029000	4.45632700	9.78383800
H	-9.03298800	2.07560000	7.49554300
C	-5.73876000	4.04736600	5.67129200
C	-5.20679200	4.33486000	4.41245600
C	-5.89358100	3.86415100	3.29496500
C	-7.08512000	3.10631100	3.37927500
C	-7.59712000	2.85426200	4.66014400
C	-6.94007100	3.30405800	5.80538000
H	-4.28905800	4.90584200	4.29250200
H	-8.52619100	2.29810400	4.74602400
N	-5.27541300	4.40081900	6.92767800
C	-4.05720100	5.13021900	7.20368600
H	-3.87463400	5.85785700	6.40761600
H	-4.16630200	5.68260200	8.14036400
H	-3.18515300	4.46749100	7.28465300
C	-10.18825800	-2.83663300	1.07497300
C	-9.33488800	-3.22755500	2.11972000
C	-8.50693000	-2.30772700	2.76275600
C	-8.55039600	-0.97884200	2.33192300
C	-9.40526600	-0.56987900	1.27867400
C	-10.22746900	-1.51044900	0.65001900
H	-10.82460600	-3.57579000	0.59655400
H	-9.32162600	-4.26583700	2.44042300
H	-7.86416000	-2.62137100	3.57980900

H	-10.88882700	-1.21049100	-0.15878600
C	-8.21909700	1.24686300	2.06216500
C	-7.82738500	2.59746900	2.18600600
C	-8.32161900	3.47730900	1.19992500
C	-9.25828500	3.10665500	0.20604400
C	-9.69925700	1.77865800	0.19975600
C	-9.17869000	0.84725000	1.09535700
H	-10.44773200	1.47754600	-0.52714700
N	-7.82843100	0.12159300	2.79450900
C	-6.66996400	-0.00610400	3.66178600
H	-6.24756200	-1.00727800	3.53832700
H	-5.91059400	0.72380100	3.37780600
H	-6.91639100	0.14662100	4.71909400
C	-16.22717500	9.38146500	2.07807500
C	-16.15757600	10.78382600	2.07978400
C	-15.12912500	11.45887800	1.42171400
C	-14.16483800	10.69340300	0.76293800
C	-14.22477900	9.27382500	0.74386000
C	-15.26614200	8.62251100	1.41278000
H	-17.04053900	8.88428500	2.59917900
H	-16.92000100	11.35790700	2.59956800
H	-15.09255600	12.54444500	1.42239000
H	-15.32503600	7.53719500	1.41199900
C	-12.39517800	9.98570300	-0.45103400
C	-11.24677300	9.90318600	-1.24178500
C	-10.79057800	8.63349200	-1.60204100
C	-11.46156600	7.44896000	-1.20808300
C	-12.60571600	7.56824500	-0.41708600
C	-13.09035700	8.82252800	-0.03575200
H	-10.71579000	10.79154400	-1.57686900
H	-13.11341200	6.66289500	-0.09764800
N	-13.03981200	11.10800300	0.05070600
C	-12.65256200	12.47867600	-0.19202900
H	-11.56212000	12.54966300	-0.24700600
H	-13.07873500	12.87509200	-1.12412500
H	-12.98574800	13.10571700	0.63905600
C	-10.41999300	3.18076000	-6.83375200
H	-11.11400500	4.29896400	-7.32351500
C	-12.03460100	6.19871500	-6.87417900
C	-11.50992400	5.33488800	-6.47726300
C	-11.19869100	5.22508300	-5.11872400
C	-10.49246000	4.10491000	-4.61113800
H	-10.10665000	3.07905300	-5.47959300
-10.12258200	2.39091100	-7.51810600	
H	-11.34478400	4.36445400	-8.38366100
	2.21449300	-5.10347900	

C	-10.94664100	5.58086900	-2.89335500
C	-10.92205700	6.10697700	-1.58708500
C	-10.32069400	5.31737800	-0.58491900
C	-9.75906900	4.03456900	-0.85204900
C	-9.76414200	3.57718200	-2.17276500
C	-10.34163400	4.33030100	-3.19147700
H	-9.31069200	2.61606400	-2.39990300
N	-11.48665600	6.09746900	-4.07264300
C	-12.23990300	7.32401600	-4.24999800
H	-11.58565200	8.17677100	-4.46886100
H	-12.94109900	7.19217500	-5.07857200
H	-12.81214800	7.54378400	-3.34971400
O	-5.42990900	4.14442100	2.01862300
H	-4.61239300	4.66356600	2.08003000
O	-7.93925000	4.80229700	1.21590900
H	-6.98270400	4.85816700	1.41306000
O	-10.34511400	5.83049700	0.67943600
H	-9.49827800	5.60917000	1.11488900
O	-9.67417900	8.48031900	-2.38439000
H	-9.29779200	9.35628000	-2.56160000

Crystal Structure of 5a.

Compound 5 a, $\mathrm{C}_{121} \mathrm{H}_{112} \mathrm{~N}_{8} \mathrm{O}_{12}$, crystallizes in the monoclinic space group Cc (systematic absences hkl: $h+k=o d d$) with $a=16.1723(13) \AA, b=24.7158(17) \AA, c=24.1251(18) \AA, \beta=90.474(3)^{\circ}$, $V=9642.7(12) \AA^{3}, Z=4$, and $d_{\text {calc }}=1.288 \mathrm{~g} / \mathrm{cm}^{3}$. X-ray intensity data were collected on a Bruker APEXII CCD area detector employing graphite-monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation $(\lambda=0.71073 \AA$) at a temperature of $100(1) \mathrm{K}$. Preliminary indexing was performed from a series of thirty-six 0.5° rotation frames with exposures of 10 seconds. A total of 2348 frames were collected with a crystal to detector distance of 37.4 mm , rotation widths of 0.5° and exposures of 30 seconds:

scan type	2θ	ω	ϕ	χ	frames
ϕ	-15.50	258.48	8.28	19.46	739
ϕ	-23.00	334.21	38.95	73.66	739
ϕ	-23.00	315.83	12.48	28.88	696

Rotation frames were integrated using SAINT^{9}, producing a listing of unaveraged F^{2} and $\sigma\left(\mathrm{F}^{2}\right)$ values which were then passed to the SHELXTL ${ }^{10}$ program package for further processing and structure solution. A total of 78535 reflections were measured over the ranges $1.50 \leq \theta \leq$ $25.55^{\circ},-19 \leq \mathrm{h} \leq 19,-22 \leq \mathrm{k} \leq 29,-29 \leq \mathrm{I} \leq 29$ yielding 17225 unique reflections (Rint $=0.0476$).

The intensity data were corrected for Lorentz and polarization effects and for absorption using SADABS ${ }^{11}$ (minimum and maximum transmission $0.6023,0.7452$).

The structure was solved by direct methods (SHELXS-97 ${ }^{12}$). The asymmetric unit consists of two molecules of the title compound, each of which is hydrogen bonded to two acetone molecules, plus a molecule of pentane. Refinement was by full-matrix least squares based on F^{2} using SHELXL-97. All reflections were used during refinement. The crystal forms a pseudo-merohedral twin in which the two components are related by a rotation of 180° about the a^{*} axis. Refinement was performed using the twin matrix $\left\{\begin{array}{lllllll}1 & 0 & 0 & 0-1 & 0 & 0 & 0\end{array}\right.$-1 $\}$. The weighting scheme used was $w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0300 P)^{2}+54.0191 \mathrm{P}\right]$ where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$. Nonhydrogen atoms were refined anisotropically and hydrogen atoms were refined using a riding model. Refinement converged to $\mathrm{R} 1=0.0732$ and $w R 2=0.1639$ for 15120 observed reflections for which $F>4 \sigma(F)$ and $R 1=0.0861$ and $w R 2=0.1729$ and $G O F=1.053$ for all 17225 unique, nonzero reflections and 1287 variables. ${ }^{13}$ The maximum Δ / σ in the final cycle of least squares was 0.005 and the two most prominent peaks in the final difference Fourier were +0.370 and -0.379 e / \AA^{3}. The twinning parameter refined to a value of $0.330(2)$.

Table S3 lists cell information, data collection parameters, and refinement data. Figure S4 and Figure S5 are ORTEP ${ }^{14}$ representations of the molecule with 50% probability thermal ellipsoids displayed.

Figure S4. ORTEP drawing of molecule no. 1 of the asymmetric unit with 50% probability thermal ellipsoids.

Figure S5. ORTEP drawing of molecule no. 2 of the asymmetric unit with 50% probability thermal ellipsoids.

Table S3. Summary of Structure Determination of Compound 5a

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Cell constants:

a	16.1723(13) Å
b	24.7158(17) A
C	24.1251(18) A
β	90.474(3) ${ }^{\circ}$
Volume	9642.7(12) \AA^{3}
Z	4
Density (calculated)	$1.288 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.083 \mathrm{~mm}^{-1}$
F(000)	3960
Crystal size	$0.35 \times 0.25 \times 0.08 \mathrm{~mm}^{3}$
Theta range for data collection	1.50 to 25.55°
Index ranges	$-19 \leq \mathrm{h} \leq 19,-22 \leq \mathrm{k} \leq 29,-29 \leq \mathrm{l} \leq 29$
Reflections collected	78535
Independent reflections	$17225[\mathrm{R}$ (int) $=0.0476]$
Completeness to theta $=25.55^{\circ}$	99.1 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7452 and 0.6023
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	17225 / 33 / 1287
Goodness-of-fit on F^{2}	1.053
Final R indices [l>2sigma(l)]	$\mathrm{R} 1=0.0732, \mathrm{wR} 2=0.1639$
R indices (all data)	$\mathrm{R} 1=0.0861, w R 2=0.1729$
Absolute structure parameter	0.0(14)
Largest diff. peak and hole	0.370 and -0.379 e..$^{-3}$

$125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectrum of Compound $\mathbf{1 f}$ in CDCl_{3}

1 j

$500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR Spectrum of Compound 11 in CDCl_{3}

$125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectrum of Compound 11 in CDCl_{3}

$500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR Spectrum of Compound 2a in CDCl_{3}

$500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR Spectrum of Compound 2b in CDCl_{3}

$125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectrum of Compound $\mathbf{2 b}$ in CDCl_{3}

3b

$500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR Spectrum of Compound 3b in CDCl_{3}

$125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectrum of Compound $\mathbf{3 b}$ in CDCl_{3}

$125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectrum of Compound $\mathbf{2 c}$ in CDCl_{3}

$500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR Spectrum of Compound 2d in CDCl_{3}

$125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectrum of Compound 2d in CDCl_{3}

$500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR Spectrum of Compound $\mathbf{2 e}$ in CDCl_{3}

$125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectrum of Compound 2e in CDCl_{3}

$500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR Spectrum of Compound $\mathbf{2 f}$ in CDCl_{3}

$500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR Spectrum of Compound $\mathbf{2 g}$ in CDCl_{3}

$500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR Spectrum of Compound $\mathbf{2 h}$ in CDCl_{3}

$500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR Spectrum of Compound $\mathbf{2 i}$ in CDCl_{3}

Me 21

						Wumamun							Wanumumumumem		
150	140	130	120	110	100	$\begin{gathered} 90 \\ \mathrm{f}(\mathrm{ppm}) \end{gathered}$	80	70	60	50	40	30	20	10	0

$125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectrum of Compound $\mathbf{2 i}$ in CDCl_{3}

$125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectrum of Compound $\mathbf{2 k}$ in CDCl_{3}

$500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR Spectrum of Compound $\mathbf{2 I}$ in CDCl_{3}

\bar{N}

$125 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectrum of Compound $\mathbf{2 1}$ in CDCl_{3}

References:

1) Albanese D.; Landini D.; Penso M.; Spano G.; Trebicka A. Tetrahedron 1995, 51, 5681-5688.
2) Patrick, D. A.; Boykin, D. W.; Wilson, W. D.; Tanious, F. A.; Spychala, J.; Bender, B. C.; Hall, J. E.; Dykstra, C. C.; Ohemeng, K. A.; Tidwell, R. R. Eur. J. Med. Chem. 1997, 32, 781-793.
3) Niside, K.; Ohsugi, S.; Miyamoto, T.; Kumar, K.; Node, M. Monatsh. Chem. 2004, 135, 189-200.
4) Lynett, P. T.; Maly, K. E. Org. Lett. 2009, 11, 3726-3729
5) Li, H.; Da, C.-S.; Xiao, Y.-H.; Li, X.; Su, Y.-N. J. Org. Chem. 2008, 73, 73987401.
6) Chen, C.; Kao, J.; Salunke, S. B.; Lin, Y. Org. Lett. 2011, 13, 26-29.
7) Gisch, N.; Balzarini, J.; Meier, C. J. Med. Chem. 2007, 50, 1658-1667
8) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;

Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.;
Nakatsuj, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.;
Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; J. A. Montgomery, J.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision C.01.; Gaussian, Inc.: Wallingford, CT, 2009.
9) Bruker (2009) SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
10) Bruker (2009) SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
11) Sheldrick, G.M. (2007) SADABS. University of Gottingen, Germany.
12) Sheldrick, G.M. (2008) Acta Cryst. A64,112-122.
13) $\quad \mathrm{R} 1=\Sigma| | \mathrm{F}_{\mathrm{o}}\left|-\left|\mathrm{F}_{\mathrm{c}}\right|\right| / \Sigma\left|\mathrm{F}_{\mathrm{o}}\right|$
$w R 2=\left[\Sigma w\left(F_{o}{ }^{2}-F_{c}{ }^{2}\right)^{2} / \Sigma w\left(F_{o}{ }^{2}\right)^{2}\right]^{1 / 2}$
GOF $=\left[\Sigma \mathrm{w}\left(\mathrm{F}_{0}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2} /(\mathrm{n}-\mathrm{p})\right]^{1 / 2}$
where $\mathrm{n}=$ the number of reflections and $\mathrm{p}=$ the number of parameters refined.
14) "ORTEP-II: A Fortran Thermal Ellipsoid Plot Program for Crystal Structure Illustrations". C.K. Johnson (1976) ORNL-5138.

[^0]: * 10% of tetramer was observed

