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Bottlenecks and opportunities in antibiotic discovery 
against Mycobacterium tuberculosis 
Peter D Craggs1,2 and Luiz Pedro S de Carvalho1   

Tuberculosis (TB) persists as a major global health issue and a 
leading cause of death by a single infectious agent. The global 
burden of TB is further exacerbated by the continuing 
emergence and dissemination of strains of Mycobacterium 
tuberculosis resistant to multiple antibiotics. The need for novel 
drugs that can be used to shorten the course for current TB 
drug regimens as well as combat the persistent threat of 
antibiotic resistance has never been greater. There have been 
significant advances in the discovery of de novo TB treatments, 
with the first TB-specific drugs in 45 years approved for use. 
However, there are still issues that restrict the pipeline of new 
antitubercular chemotherapies. The rate of failure of TB drug 
candidates in clinical trials remains high, while the validation of 
new TB drug targets and subsequent identification of novel 
inhibitors remains modest. 
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Introduction 
Infection by the slow-growing, obligate human pathogen, 
Mycobacterium tuberculosis, leads to the complex disease 
tuberculosis (TB). The estimated extent of M. tuberculosis 
infection is 25% of the world’s population, with the vast 
majority of these leading to the latent form of TB, defined 
as persistent host immune response to stimulation by an-
tigens of the pathogen with no clinical manifestation of the 
active disease [1]. In 2020, approximately 10 million people 
contracted active TB, while 1.5 million died as a result of 
the disease. Positively, the rates of new TB cases and 

deaths have declined by 11% and 9.2%, respectively, since 
2015. Despite the positive decline in TB cases and deaths, 
these changes are not sufficient to satisfy the World Health 
Organization (WHO) End TB Strategy milestones. 

TB is a treatable disease, but its chemotherapy requires 
an intensive first-line regimen, consisting of a combina-
tion of four drugs: rifampicin, isoniazid, ethambutol, and 
pyrazinamide over an initial two-month period, followed 
by a further six-month continuation of rifampicin and 
isoniazid treatment [2]. Chemotherapy for the treatment 
of drug-resistant TB is not quite as standardized, pri-
marily due to its multiple types (mono-, multi-, or ex-
tensively drug-resistant) each of which requiring a 
distinct regimen. These pharmacologically diverse dis-
eases are divided into five different categories by the 
WHO. However, most of the recommended regimens to 
treat a drug-resistant M. tuberculosis infection involve a 
combination of the second-line TB drugs, which include 
bedaquiline, linezolid, fluoroquinolones, ᴅ-cycloserine, 
delamanid, meropenem, para-aminosalicyclic acid, pre-
tomanid, and ethionamide [3]. Recent successes with 
bedaquiline-containing drug combinations, most notably 
the 2019 US Food and Drug Administration approval or 
the BPaL regimen (bedaquiline in combination with 
pretomanid and linezolid), highlight how dynamic anti-
tubercular treatment, particularly for drug-resistant TB, 
has become [4]. This dynamism is predominantly en-
abled by the availability of new TB drugs, which pro-
mises to continue with more new and repositioned 
antibiotics in late-stage clinical development. Despite 
these successes, second-line TB drug regimens can take 
anywhere from six months to over two years to treat 
drug-resistant M. tuberculosis infections [5]. 

TB treatment is complex due to a number of different 
factors, including host health and immune status, phar-
macological interactions with other drugs, toxicity due to 
chronic use, as well as the diversity of physiological 
states adopted by M. tuberculosis during TB pathogenesis  
[6]. The treatment of a latent M. tuberculosis infection is a 
particular challenge as the physiological states adopted 
by the bacilli limit the efficacy of most TB drugs. To 
achieve the WHO End TB Strategy, new TB treatments 
must be effective against both actively replicating M. 
tuberculosis, as well as the latent form of the bacillus. 
Host toxicity of the current TB drugs has remained a 
major concern, with severe side effects such as blind-
ness, deafness, and organ failure of the liver and kidneys. 
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The safety profile of the newly approved antitubercular 
chemotherapies, including bedaquiline and linezolid, 
remains an issue with several clinically relevant adverse 
events reported, including QT prolongation and per-
ipheral neuropathy [7]. These toxicities, as well as 
emerging reports of bedaquiline and linezolid-resistant 
strains of M. tuberculosis, highlight the continuing need to 
develop new TB drugs and regimens [8,9]. 

M. tuberculosis drug-resistance mechanisms include cell- 
envelope penetration, efflux, enzymatic modification, 
and decreased activation [10]. These resistance pro-
cesses collectively represent a significant bottleneck for 
the development of new antitubercular chemotherapies. 
The issues presented by drug-efflux mechanisms in M. 
tuberculosis have recently been thoroughly reviewed by 
Remm and coauthors [11]. The activation/inactivation 
and metabolism mechanisms employed by M. tuberculosis 
for xenobiotics are complex, dynamic, and are yet to be 
fully characterized. While these mechanisms will not be 
explored in this article, the bottlenecks presented could 
also be exploited as opportunities for new drug dis-
covery. 

This minireview aims to summarize and critically eval-
uate a few important bottlenecks, as well as highlight 
opportunities for modern antitubercular discovery. 

Old molecules and classic targets with great 
potential 
Drug repurposing represents a “risk-free” and econom-
ically streamlined platform to identify new applications 
to existing molecules. The TB drug-discovery 

community has fully embraced this concept, yet very 
few compounds have reached clinical trials [12,13]. Drug 
repurposing would perhaps better deliver results if it was 
viewed as a route to novel lead compounds, instead of 
“ready-to-go” drugs. A few important examples are dis-
cussed below to illustrate this point. 

The two most successful drug-repurposing efforts for M. 
tuberculosis are clavulanic acid and penems ( Figure 1). 
Enzymological experiments demonstrated that clavu-
lanic acid and certain penems are irreversible inhibitors 
of M. tuberculosis β-lactamase BlaC [14,15]. This in-
dicated for the first time the potential to inhibit the 
chromosomally encoded BlaC and sensitize M. tubercu-
losis to β-lactam antibiotics. Indeed, analysis of the 
combination of meropenem (MEM) and clavulanate re-
vealed potent and quick sterilization of cultures both at 
normoxic and hypoxic conditions [16]. These studies 
opened the TB and nontuberculous mycobacteria drug- 
discovery field to the use of clavulanate/penems as an-
timycobacterial agents [17–19]. 

Another elegant example of repurposing is spectino-
mycin. Spectinomycin, a ribosomal inhibitor, is not suf-
ficiently potent to be used as an antimycobacterial agent  
[20]. Instead of pursuing a molecule that does not have 
the desired properties, Lee and colleagues used specti-
nomycin as a starting point to generate and screen for 
improved compounds against M. tuberculosis. Building on 
important lessons learned from Gram-negative antibiotic 
discovery and medicinal chemistry, the team created 
improved analogs (spectinamides) (Figure 1), which are 
poor substrates for mycobacterial efflux pumps, such as 

Figure 1  
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Old molecules, new antitubercular drugs. Chemical structures of the compounds discussed in the drug-repurposing section. *The N-thio-β-lactam 
example is molecule 1 g, disclosed in the report by Martelli and colleagues [10]. +The C5-modified carbapenem example presented is molecule 10a 
from the study carried out by Gupta and coworkers [8].   
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Rv1258c [21]. Spectinamides, in a molecule- and target- 
centered drug-discovery program rooted in excellent 
medicinal chemistry, are currently in development as 
promising antitubercular agents [22–24]. 

D-cycloserine (DCS) is the only resistance-proof anti-
tubercular drug in clinical use (Figure 1) [25]. Yet, it 
causes central nervous system (CNS)-related toxicity in 
a subset of patients and is hence a second-line drug. 
Many academic and pharmaceutical groups have tried, 
unsuccessfully, to identify and optimize DCS analogs or 
similar compounds. We have recently demonstrated that 
DCS inhibition in M. tuberculosis differs from the ac-
cepted mechanism of action, which can partially explain 
the lack of success in identifying improved analogs of 
DCS. DCS engagement with D-Ala:D-Ala ligase appears 
to be the most lethal interaction, instead of inhibition of 
its other target, alanine racemase [25–27]. These find-
ings were further confirmed by the demonstration that 
DCS is slowly hydrolyzed by alanine racemase [28]. 
Armed with this knowledge, new drug-discovery pro-
grams might succeed in identifying hydrolysis-proof, 
improved DCS analogs that interact with both targets, 
but do not cause CNS toxicity. Interestingly, Zandi and 
Townsend also observed that MEM undergoes both 
reversible reaction and nonhydrolytic off-loading reac-
tions with M. tuberculosis L,D-transpeptidases [29]. To-
gether, these two studies suggest that target-catalyzed 
antibiotic degradation is perhaps a more general phe-
nomenon and therefore an important parameter for im-
proved generations of antibiotics. 

Collectively, these examples illustrate the critical im-
portance of understanding kinetic and mechanistic as-
pects of antibiotic-enzyme engagement and how poor 
drugs can be redesigned into excellent compounds 
through elegant medicinal chemistry. 

Single-nutrient utilization, high risk, and 
low gain 
M. tuberculosis metabolism is complex and dynamic, and 
therefore it represents both a unique opportunity and a 
significant bottleneck in drug-discovery cam-
paigns [30–33]. 

For example, we now understand that M. tuberculosis si-
multaneously cometabolises multiple carbon and ni-
trogen sources ( Figure 2) [34,35]. Furthermore, in many 
cases, the transporters and enzymes responsible for nu-
trient uptake and catabolism have been identified  
[34–43]. It is therefore not surprising that inhibitors 
aimed at blocking metabolism of a single nutrient are not 
efficacious. For example, work from Wilburn and col-
leagues demonstrated that even well- validated cyclic 
adenosine monophosphate (cAMP) small- molecule ac-
tivators, which lead to complete interruption of 

cholesterol utilization by M. tuberculosis in vitro, are only 
weakly active during infection [44]. Lack of efficacy is 
likely due to the presence of other carbon sources, such 
as fatty acids, pyruvate/lactate, and amino acids. Al-
though apparent, until we understand exactly the re-
lative importance of different nutrients utilized by M. 
tuberculosis during infection, discovery of antibiotics tar-
geting single-nutrient utilization is a high-risk, low- 
gain area. 

Another example of this challenge deals with glycerol 
catabolism. Although glycerol is the best carbon source 
for M. tuberculosis in vitro, its abundance in humans is 
very low. It is therefore not surprising that glycerol uti-
lization and its inhibition by compounds such as the 
pyrimidine–imidazole class of glycerol kinase inhibitors 
are devoid of antitubercular activity during experimental 
infection [45]. 

Studies such as these have demonstrated beyond doubt 
that M. tuberculosis is not a “picky eater”. A quantitative 
characterization of nutrient preferences should be a 
primary focus of the TB research community, as a more 
thorough understanding of M. tuberculosis metabolism 
will surely yield opportunities for methodical, de novo 
antitubercular drug discovery. 

M. tuberculosis cell-envelope permeability, a 
key challenge in antitubercular discovery 
The difficulties of translating inhibitors identified and 
optimized using target-based drug- discovery approaches 
to bacterial cells were seminally highlighted by Payne 
and colleagues [46]. These challenges remain, with one 
of the primary causes believed to be the permeability of 
the bacterial cell envelopes. The complex M. tuberculosis 
cell envelope is atypical among bacteria, reflecting the 
extreme environments that the bacilli encountered ori-
ginally in environmental niches. Not only is the dense 
and elaborate cell envelope highly dynamic, it is also 
tightly regulated, with only a fraction of the transporters 
of related species [47,48]. The challenges of gaining 
access to M. tuberculosis by crossing the cell envelope and 
some strategies for addressing these issues are discussed 
below, and are shared with Gram-negative bacteria. 

Initially, in response to the perceived failure of target- 
based antibacterial drug discovery, a number of whole- 
cell phenotypic screens were carried out most notably to 
identify inhibitors of M. tuberculosis [49]. These screens, 
against either chemical diversity compound collections 
or focussed sets of molecules for specific targets, have 
been relatively successful, as demonstrated by the in-
creasing numbers of inhibitor series for targets such as 
DprE1 and MmpL3 [50]. However, these proto-che-
mogenomic approaches have, to date, failed to identify a 
broad cross section of targets vulnerable to small- 
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molecule inhibition, with identification of compounds 
for the aforementioned apparently promiscuous targets 
predominating [51–53]. 

The failures of many target-based drug-discovery pro-
jects for M. tuberculosis macromolecules have not been 
because of poor compounds. Invariably, the studies 
carried out to identify and optimize these inhibitors have 
used well-established drug-discovery approaches or tried 
to capitalize on the accumulated knowledge of how to 
drug a specific target class. 

The use of an established drug-discovery approach, 
fragment-based inhibitor identification, was utilized to  

identify molecules for the M. tuberculosis essential cyto-
chrome P450s (P450s or CYPs) enzyme, CYP121. A 
number of chemically diverse inhibitor classes, opti-
mized using elegant structural biology-aided medicinal 
chemistry, have subsequently been identified, many 
with low-nanomolar affinities (Figure 3). Unfortunately, 
this approach has not been able to translate these affi-
nities into potent antibacterial inhibition [54,55]. 

Another well-established M. tuberculosis drug target 
pursued using target-based discovery is the eukaryotic- 
like serine–threonine kinase PknB. A primary attraction 
of this target is that it may be possible to capitalize on 
the wealth of chemotherapeutic knowledge accumulated 

Figure 2  
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An up-to-date view of M. tuberculosis nutrition. M. tuberculosis takes up a diverse selection of nutrients that are subsequently used to fuel metabolism. 
The chemical structures presented in this image are a selection of the molecules acquired from the extracellular environment by M. tuberculosis. The 
molecules are (moving clockwise from CO2), oleic acid (top), palmitic acid (bottom), ammonium, L-glutamine, L-asparagine, glycine, L-alanine, L-serine, 
α-glycerylphosphorylcholine, cholesterol, pyruvate, lactate, dextrose, and acetate. The central panel is a scanning electron micrograph image of M. 
tuberculosis, depicting bacilli covered in microvesicles. The production of microvesicles by M. tuberculosis has previously been characterized as a 
means to export molecules that can modulate the immune response as well as a mechanism to enhance iron acquisition (J Bacteriol. 2014 
Mar;196(6):1250–6. doi: 10.1128/JB.01090-13.). The central panel image is courtesy of Dr. Maximiliano G. Gutierrez (The Francis Crick Institute).   
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from the many studies of the mammalian members of 
this enzyme class. Unfortunately, the development of 
PknB inhibitors has so far failed to deliver cell-active 
compounds (Figure 3). The primary source of this failure 
is believed to be M. tuberculosis cell-envelope perme-
ability, which has rendered several chemically diverse 
inhibitor series, mostly with low-nanomolar affinities for 
this genetically validated target, nonefficacious against 
the bacterium [56,57]. 

The challenge of translating inhibitor potency against 
recombinant bacterial targets into whole-cell anti-
bacterial activity is well-established. However, studies 
are starting to emerge that employ novel strategies to 
circumvent these issues. A set of physicochemical traits 
have been defined that when satisfied predispose com-
pounds for accumulation in Escherichia coli (E. coli) [58]. 
These “eNTRy rules” have been used to convert 
deoxynybomycin, from a Gram-positive-only inhibitor, 
to a broad-spectrum antibiotic that is active against a 
diverse panel of multidrug-resistant Gram-negative pa-
thogens. Hergenrother and colleagues then went on to 
use these physicochemical rules to modify the antibiotic 

ribocil C (Figure 4), which is inactive against Gram-ne-
gative bacteria, to facilitate intracellular accumulation in 
E. coli, while maintaining target potency, ultimately 
leading to whole-cell activity [59]. 

The prevailing drug-discovery strategies to identify new 
M. tuberculosis inhibitors, such as whole-cell phenotypic 
screening, have gone some way to address the lack of 
permeability of the cell envelope. However, a limiting 
factor of these approaches is that invariably the com-
pounds screened were originally selected using rules 
specific for mammalian cells (Lipinski’s rule of 5) [60]. 
While these criteria are ultimately important to treat 
human diseases, they may not be the most appropriate 
compounds to cross the cell envelope. The approaches 
taken by Hergenrother and coworkers demonstrate that 
it is possible to define a tailored set of physicochemical 
rules that can be used to modify compounds that were 
previously impermeable for Gram-negative bacteria, so 
that they accumulate within the bacteria and become 
potent inhibitors [58]. Given the wealth of compound 
screening data available for M. tuberculosis, as well as the 
availability of established methodologies, such as 

Figure 3  
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Potent inhibitors of M. tuberculosis enzymes with low or no antitubercular activity. Chemical structures of the compounds discussed in the cell- 
envelope permeability section. PknB inhibitor (a) is molecule 49 from [44], (b) is compound 11 from [46]. CYP121 (a) is molecule 25a from [43], (b) is 
compound 9 from [42].   
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metabolomics, to monitor the intracellular concentra-
tions of small molecules, perhaps, the definition of 
a specific set of “eNTRy rules” for M. tuberculosis is not 
unattainable. 

Opportunities for future drug discovery 
Despite the bottlenecks highlighted, there remains 
grounds for cautious optimism that the progress made in 
the identification of new antitubercular chemotherapies 
can be maintained. The current clinical development 
pipeline for new TB drugs is comprised of 10 ongoing 
trials, including new molecules and new multidrug re-
gimens (clinicaltrials.gov). The past decade has been the 
most successful period for the TB drug discovery in 50 
years with the approval of three new antitubercular 
drugs: pretomanid, bedaquiline, and delamanid [61]. 
However, the failure rates encountered in clinical trials 
before a drug candidate is approved for human use re-
main very high, in excess of 85% [62]. Furthermore, M. 
tuberculosis mutations conferring resistance to all the new 
and repurposed antitubercular chemotherapies have al-
ready been reported [63]. The need to not only maintain 
the current forward momentum in TB drug discovery 
but also to embrace new technologies to address some of 
the antitubercular bottlenecks highlighted in this mini-
review is clearly evident. The need to do more with less 
is highlighted by the continuing shortfall in research 
funding, including new drug discovery, which has been 
at least 50% below WHO targets for the past decade. 
Embracing advances in complex and data-rich ap-
proaches such as chemoinformatics, machine learning, 
genomics, chemoproteomics, and metabolomics, in 
tandem with a continually growing understanding of M. 
tuberculosis physiology, is one route to lessening the im-
pact of this funding shortfall. 

Capitalizing on the ever-increasing understanding of M. 
tuberculosis essential protein vulnerabilities [51,64], that 
is, not all essential gene products can be inhibited to the 
necessary level, and combining these findings with cut-
ting-edge medicinal chemistry is one means by which 
new TB drugs can be identified. The development of 
spectinamides and oxazolidinones (linezolid and novel 
congeners) as antitubercular agents is an excellent ex-
ample of successful repurposing and highlights why drug 
repurposing should be continually re-evaluated [65]. 

Further characterization of the nutrient requirements of 
M. tuberculosis is another potential opportunity for new 
TB drug discovery. This can and should be considered 
in tandem with the challenges presented by the M. tu-
berculosis cell envelope. A greater understanding of M. 
tuberculosis nutrient requirements and what small mole-
cules are transported across the cell envelope will begin 
to provide a set of rules for access into the bacilli. The 
“eNTRy rules” for Gram-negative pathogens defined by 
Hergenrother and colleagues highlight how this can be 
achieved in a systematic manner. 

Methodically combining these approaches could enable re-
searchers to better the last decades' productivity and con-
tinually expand the arsenal of much-needed anti-TB drugs. 
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Gram-negative “eNTRy rules” applied to modify Ribocil C. The application of Gram-negative “eNTRy rules” to develop the potent antibiotic Ribocil C- 
PA from Ribocil C [48]. More information, including a prediction tool to identify molecules likely to accumulate in Gram-negative bacteria, can be found 
at http://www.entry-way.org/.   
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