Condensation Reactions of Chlorophosphanes with Chalcogenides

Supporting Information

Condensation Reactions of Chlorophosphanes with Chalcogenides

Sivathmeehan Yogendra, Saurabh S. Chitnis, Felix Hennersdorf, Michael Bodensteiner, Roland Fischer, Neil Burford,^{*} Jan J. Weigand^{*}

Prof. Dr. Jan. J. Weigand,* SivathmeehanYogendra, Felix Hennersdorf,

TU Dresden, Department of Chemistry and Food Chemistry, Mommsenstraße 4, 01062 Dresden (Germany); [*] E-mail: jan.weigand@tu-dresden.de

Prof. Dr. Neil Burford,* Saurabh S. Chitnis Department of Chemistry, University of Victoria, British Columbia, Canada V8W 3V6

[*] E-mail: nburford@uvic.ca

Michael Bodensteiner

University of Regensburg, 93053 Regensburg, Germany

Roland Fischer

Department of Inorganic Chemistry, TU Graz, Stremayrgasse 9, 8010 Graz, Austria

This PDF file includes:

1.	Material and Methods	1–2
2.	Syntheses and Spectroscopic Data	3–27
3.	Crystallographic Details2	8–31
4.	References	32

1. Material and Methods

1.1. General Remarks

General Considerations: All manipulations were performed in a Glovebox MB Unilab or using Schlenk techniques under an atmosphere of purified Argon (Westfalen AG). Dry, oxygen-free solvents (CH₂Cl₂, CH₃CN, C₆H₅F (distilled from CaH₂), Et₂O, toluene (distilled from potassium/benzophenone), n-hexane, n-pentane (destilled from potassium) were employed. Deuterated benzene (C₆D₆) was purchased from Sigma-Aldrich and distilled from potassium. Anhydrous deuterated acetonitrile (CD₃CN), dichloromethane (CD₂Cl₂) and chloroform (CDCl₃) were purchased from Sigma-Aldrich. All distilled and deuterated solvents were stored either over molecular sieves (4 Å: CH₂Cl₂, CH₃CN, C₆H₅F, C₆D₆, CD₂Cl₂; 3 Å: CH₃CN, CD₃CN) or potassium mirror (Et₂O, *n*-hexane, *n*-pentane). All glassware was oven-dried at 160 °C prior to use. (Me)₂PCl, (Ph)₂PCl, (*i*Pr)₂PCl, (*t*Bu)₂PCl, (Mes)₂PCl, (EtO)₂PCl, (Me₃Si)₂S, (Me₃Si)₂Se, MeOTf, AgOTf TMSCl, 15-crown-5, Fe₂(CO)₉, were purchased from Aldrich, Strem or ABCR Chemicals and used as received. $Na_2S^{[1]}$, $Na_2Se^{[1]}$, $Na_2Te^{[1]}$, $(C_6F_5)_2PCl^{[2]}$, $(iPr_2N)_2PCl^{[3]}$, $(p-Tol)_2PCl^{[4]}$ and $Et_2PCl^{[5]}$ were prepared according to procedure given in literature. NMR spectra were measured on a Bruker AVANCE III (¹H (400.13 MHz), ¹³C (100.61 MHz), ³¹P (161.98 MHz), ¹⁹F (376.50 MHz) at 300 K. All ¹³C NMR spectra were exclusively recorded with broad band proton decoupling. Reported numbers assigning atoms in the ¹³C spectra were indirectly deduced from the crosspeaks in 2D correlation experiments (HMBC, HSQC). Chemical shifts were referenced to $\delta_{\text{TMS}} = 0.00 \text{ ppm} (^{1}\text{H}, ^{13}\text{C}) \text{ and } \delta_{\text{H3PO4}(85\%)} = 0.00 \text{ ppm} (^{31}\text{P}, \text{ externally}).$ Chemical shifts (δ) are reported in ppm. Coupling constants (J) are reported in Hz. Assignments of individual resonances were done using 2D techniques (HMBC, HSQC, HH-COSY) where necessary. ${}^{1}J_{PP}$ coupling constants were set to negative values^[6] and all other sings of the coupling constants were obtained accordingly. ${}^{1}J_{PSe}$ coupling constants were set to negative values as well.^[7] The designation of the spin systems is performed by convention.^[8] The furthest downfield resonance is denoted by the latest letter in the alphabet and the furthest upfield by the earliest letter. Melting points were recorded on an electrothermal melting point apparatus (Büchi Switzerland, Melting point M-560) in sealed capillaries under Argon atmosphere and are uncorrected. Infrared (IR) and Raman spectra were recorded at ambient temperature using a Bruker Vertex 70 instrument equipped with a RAM II module (Nd:YAG laser, 1064 nm). The Raman intensities are reported in percent relative to the most intense peak and are given in parenthesis. An ATR unit (diamond) was used for recording IR spectra. The intensities are reported relative to the most intense peak and are given in parenthesis using the following abbreviations: vw = very weak, w = weak, m = medium, s = strong, vs = very strong. Elemental analyses were performed on an EuroEA Elemental Analyzer from HEKAtech.

1.2. Xray structure refinements

Suitable single crystals were coated with Paratone-N oil, mounted using either a glass fibre or a nylon loop and frozen in the cold nitrogen stream. Crystals were measured on different diffractometers. Data of $2_{S}^{(rBu)}$, $2_{Se}^{(N(Pr)_2)}$ and $2_{S}^{(C_6F_5)}$ were collected on an Agilent SuperNova system at 123 K using Cu K_a radiation ($\lambda = 1.54184$ Å) generated by a Nova micro-focus Xray source. Reflections were collected with an Atlas S2 detector. Data reduction and absorption correction was performed with CrysaAlisPro^[9] software. All other datasets were collected on a Bruker Kappa APEX II system at 100, 153 or 173 K (as indicated in **Tables 3.1** - **3.4**) using Mo K_a radiation ($\lambda = 0.71073$ Å) generated by a fine-focus sealed tube. The data reduction and absorption correction was performed with the Bruker SMART^[10] and Bruker SADABS^[11], respectively. Using Olex2^[12], the structures were solved with SHELXS/T^[13] by direct methods and refined with SHELXL^[13] by least-square minimization against F^2 using first isotropic and later anisotropic thermal parameters for all non-hydrogen atoms. Hydrogen atoms were added to the structure models on calculated positions using the riding model. Images of the structures were produced with Diamond^[14] software. Condensation Reactions of Chlorophosphanes with Chalcogenides

2. Syntheses and Spectroscopic Data

2.1. Synthesis of Tetramethyldiphosphane monosulfide $(1_s^{(Me)})$

a) Using $(Me_3Si)_2S$ as a source of sulfide: $\frac{S}{1-P-P} (Me_3Si)_2S (26.4 \ \mu\text{L}, 0.13 \ \text{mmol}) \text{ was added to a solution of } Me_2PCI (19.8 \ \mu\text{L}, 0.13 \ \mu\text{L}) \text{ and } Me_2PCI (19.8 \ \mu\text{L}, 0.13 \ \mu\text{L}) \text{ and } Me_2PCI (19.8 \ \mu\text{L}, 0.13 \ \mu\text{L}) \text{ and } Me_2PCI (19.8 \ \mu\text{L}, 0.13 \ \mu\text{L}) \text{ and } Me_2PCI (19.8 \ \mu\text{L}, 0.13 \ \mu\text{L}) \text{ and } Me_2PCI (19.8 \ \mu\text{L}, 0.13 \ \mu\text{L}) \text{ and } Me_2PCI (19.8 \ \mu\text{L}, 0.13 \ \mu\text{L}) \text{ and } Me_2PCI (19.8 \ \mu\text{L}, 0.13 \ \mu\text{L}) \text{ and } Me_2PCI (19.8 \ \mu\text{L}, 0.13 \ \mu\text{L}) \text{ and } Me_2PCI (19.8 \ \mu\text{L}, 0.13 \ \mu\text{L}) \text{ and } Me_2PCI (19.8 \ \mu\text{L}, 0.13 \ \mu\text{L}) \text{ and } Me_2PCI (19.8 \ \mu\text{L}, 0.13 \ \mu\text{L}) \text{ and } Me_2PCI (19.8 \ \mu\text{L}, 0.13 \ \mu\text{L}) \text{ and } Me_2PCI (19.8 \ \mu\text{L}, 0.13 \ \mu\text{L}) \text{ and } Me_2PCI (19.8 \ \mu\text{L}, 0.13 \ \mu\text{L}) \text{ and } Me_2PCI (19.8 \ \mu\text{L}, 0.13 \ \mu\text{L}) \text{ and } Me_2PCI (19.8 \ \mu\text{L}, 0.13 \ \mu\text{L}) \text{ and } Me_2PCI (19.8 \ \mu\text{L}, 0.13 \ \mu\text{L}) \text{ and } Me_2PCI (19.8 \ \mu\text{L}, 0.13 \ \mu\text{L}) \text{ and } Me_2PCI (19.8 \ \mu\text{L}) \text{$ 0.25 mmol) in CH₃CN (3 mL) and was stirred for one hour at rt. All volatiles

were removed *in vacuo* affording $\mathbf{1}_{s}^{(Me)}$ as a colorless powder.

Yield: 26.9 mg (70%).

b) Using Na₂S as a source of sulfide:

Me₂PCl (96.5 mg, 1.00 mmol) was added to a suspension of Na₂S (40.1 mg, 0.50 mmol) in CH₃CN (4 mL) and was stirred for 12 h at rt. The suspension was filtered and the filtrate was concentrated in vacuo. The resulting colorless solid was washed with n-pentane (3 mL) and dried in vacuo affording $\mathbf{1}_{s}^{(Me)}$ as a colorless powder.

Yield: 67.8 mg (88%).

Mp.: 65-66 °C; ¹H NMR (CD₂Cl₂, 300 K, in ppm): $\delta = 1.71$ (6H, dd, ³J_{HP} = 12.1 Hz, ${}^{2}J_{\text{HP}} = 5.8 \text{ Hz}, \text{ C2-H}$, 1.16 (6H, dd, ${}^{3}J_{\text{HP}} = 17.6 \text{ Hz}, {}^{2}J_{\text{HP}} = 4.0 \text{ Hz}, \text{ C1-H}$); ${}^{13}\text{C}\{{}^{1}\text{H}\}$ NMR (CD₂Cl₂, 300 K, in ppm): $\delta = 20.6$ (2C, dd, ${}^{1}J_{CP} = 46.8$ Hz, ${}^{2}J_{CP} = 15.7$ Hz, C1), 7.8 (2C, dd, ${}^{1}J_{CP} = 18.0 \text{ Hz}, {}^{2}J_{CP} = 2.8 \text{ Hz}, \text{ C2}; {}^{31}P{}^{1}H} \text{ NMR (CD_{2}Cl_{2}, 300 \text{ K, in ppm}): AX spin$ system: $\delta(P_X) = 37.5$ (d, ${}^{1}J_{PP} = -219.5$ Hz), $\delta(P_A) = -56.5$ (d, ${}^{1}J_{PP} = -219.5$ Hz). Data is consistent with that presented in ref. [15].

2.2. Synthesis of Tetraethyldiphosphane monosulfide $(1_s^{(Et)})$

a) Using $(Me_3Si)_2S$ as a source of sulfide:

 $(Me_3Si)_2S$ (446.1 mg, 2.50 mmol) was added to a solution of Et_2PCl (662.8 mg, 5.00 mmol) in CH₃CN (10 mL) and was stirred for 12 hours at rt. All volatiles were removed *in vacuo* affording $\mathbf{1}_{S}^{(Et)}$ as a colorless liquid.

Yield: 495 mg (94%).

b) Using Na₂S as a source of sulfide:

Et₂PCl (124.6 mg, 1.00 mmol) was added to a suspension of Na₂S (39.0 mg, 0.50 mmol) in CH₃CN (5 mL) and was stirred for 12 h at rt. The suspension was filtered and the filtrate was concentrated in vacuo. To the resulting pale yellow oil n-pentane (0.5 mL) was added and the mixture was stored over night at -30 °C forming colorless cystals. The supernatant was decanted at -30 °C. The crystals melt at rt, yielding a colorless oil after removement of all volatiles *in vacuo*.

Yield: 93.5 mg (89%).

Raman (32 mW, 600 scans, 300 K, in cm⁻¹): 2966(10), 2934(100), 2905(28), 2876(28), 2734(6), 1459(17), 1409(7), 1040(9), 981(6), 672(7), 633(12), 591(20), 460(24), 273(16), 166(6); **IR** (300 K, ATR, [cm⁻¹]): 2967(vw), 1200(s), 1144(vs), 1039(vw), 764(vw), 674(vw), 638(m), 626(vw); ¹H NMR (CD₂Cl₂, 300 K, in ppm): $\delta = 2.03-1.84$ (4H, m, C1–H), 1.83–1.70 (2H, m, ³*J*_{HH} = 7.58 Hz, C3–H), 1.65 (2H, nonet of d, ³*J*_{HH} = 7.58 Hz, ²*J*_{HP} = 6.85 Hz, ³*J*_{HP} = 1.79 Hz, C3–H) 1.22 (3H, t, ³*J*_{HH} = 7.58 Hz, C4–H), 1.19 (3H, t, ³*J*_{HH} = 7.58 Hz, C4–H), 1.18 (3H, t, ³*J*_{HH} = 7.72 Hz, C2–H), 1.15 (3H, t, ³*J*_{HH} = 7.72 Hz, C2–H); ¹³C{¹H} NMR (CD₂Cl₂, 300 K, in ppm): $\delta = 25.1$ (2C, dd, ¹*J*_{CP} = 42.0 Hz, ²*J*_{CP} = 11.9 Hz, C1), 15.9 (2C, dd, ¹*J*_{CP} = 15.8 Hz, ²*J*_{CP} = 2.6 Hz, C3), 11.6 (2C, dd, ²*J*_{CP} = 9.0 Hz, ³*J*_{CP} = 8.4 Hz, C2), 7.3 (2C, t, ²*J*_{CP} = 5.3 Hz, C4); ³¹P{¹H} NMR (CD₂Cl₂, 300 K, in ppm): AX spin system: δ (P_X) = 54.9 (d, ¹*J*_{PP} = -249.6 Hz, ¹*J*_{CP} = 41.8 Hz), δ (P_A) = -34.7 (d, ¹*J*_{PP} = -249.6 Hz).

2.3. Synthesis of Tetramethyldiphosphane monoselenide (1_{Se}^(Me))

Using $(Me_3Si)_2S$ as a source of sulfide:

(Me₃Si)₂Se (125.0 μ L, 0.50 mmol) was added to a solution of Me₂PCl (79.2 μ L, 1.00 mmol) in CH₃CN (3 mL) and was stirred for one hour at rt. All volatiles were removed *in vacuo* affording $\mathbf{1}_{Se}^{(Me)}$ as a colorless powder.

Yield: 74.9 mg (75%).

b) Using Na₂S as a source of sulfide:

Me₂PCl (96.5 mg, 1.00 mmol) was added to a suspension of Na₂Se (62.5 mg, 0.50 mmol) in CH₃CN (4 mL) and was stirred for 12 h at rt. The suspension was filtered and the filtrate was concentrated *in vacuo*. The resulting colorless solid was washed with *n*-pentane (3 mL) and dried *in vacuo* affording $\mathbf{1}_{Se}^{(Me)}$ as a colorless powder.

Yield: 89.5 mg (89%).

Mp.: 98-99 °C; **Raman (35 mW, 500 scans, 300 K, in cm⁻¹):** 2964(40), 2894(100), 1408(11), 751(4), 712(15), 670(11), 499(21), 385(94), 297(19), 271(13), 234(34), 198(7), 126(46), 78(12); **IR (CsI, nujol mull, in cm⁻¹):** 1412(w), 1280(m), 952(w), 930(w), 879(m),

747(w), 706(v), 668(vw), 500(m); ¹H NMR (CD₃CN, 300 K, in ppm): $\delta = 1.87$ (dd, ³*J*_{HP} = 12.2 Hz, ²*J*_{HP} = 5.8 Hz, 6H), 1.09 (dd, ³*J*_{HP} = 18.2 Hz, ²*J*_{HP} = 4.1 Hz, 6H); ¹³C{¹H} NMR (CD₃CN, 300 K, in ppm): $\delta = 19.6$ (dd, ¹*J*_{CP} = 41.3 Hz, ²*J*_{CP} = 15.3 Hz), 8.5 (dd, ¹*J*_{CP} = 18.3 Hz, ²*J*_{CP} = 3.1 Hz); ³¹P{¹H} NMR (CD₃CN, 300 K, in ppm): AX spin system: $\delta(P_X) = 21.6$ (d, ¹*J*_{PP} = -228.0 Hz, ¹*J*_{PSe} = -694 Hz), $\delta(P_A) = -56.6$ (d, ¹*J*_{PP} = -228.0 Hz, ²*J*_{PSe} = 21 Hz); ⁷⁷Se NMR (CD₃CN, 300 K, in ppm): $\delta = -371.1$ (dd, ¹*J*_{SeP} = -694 Hz, ²*J*_{SeP} = 21 Hz).

2.4. Synthesis of Tetraethyldiphosphane monoselenide $(1_{Se}^{(Et)})$

a) Using $(Me_3Si)_2Se$ as a source of selenide:

 $(Me_3Si)_2Se$ (291.3 mg, 1.29 mmol) was added to a solution of Et₂PCl (322.0 mg, 2.58 mmol) in CH₃CN (5 mL) and was stirred for 12 hours at rt. All volatiles were removed *in vacuo* affording $\mathbf{1}_{Se}^{(Et)}$ as a light yellow liquid.

Yield: 295.1 mg (90%).

 $\mathbf{1}_{\mathrm{Se}}^{(\mathrm{Et})}$

b) Using Na₂Se as a source of selenide:

 Et_2PCl (124.6 mg, 1.00 mmol) was added to a suspension of Na₂Se (62.5 mg, 0.50 mmol) in CH₃CN (5 mL) and was stirred for 12 h at rt. The suspension was filtered and the filtrate was concentrated *in vacuo*, yielding a light yellow liquid.

Yield: 121.7 mg (95%).

Raman (32 mW, 600 scans, 300 K, in cm⁻¹): 2966(12), 2933(100), 2903(25), 2875(24), 2733(6), 1459(18), 1408(7), 1379(11), 1041(9), 980(8), 633(10), 433(16), 270(22), 82(29); **IR** (300 K, ATR, in cm⁻¹): 2967(vw), 1456(vw), 1202(s), 1147(vs), 759(vw), 638(m), 626(w); ¹H NMR (CD₂Cl₂, 300 K, in ppm): $\delta = 2.18-1.96$ (4H, m, C1–H), 1.82–1.69 (2H, m, ³*J*_{HH} = 7.61 Hz, C3–H), 1.65 (2H, nonet of d, ³*J*_{HH} = 7.61 Hz, ²*J*_{HP} = 7.61 Hz, ³*J*_{HP} = 1.75 Hz, C3–H), 1.25 (3H, t, ³*J*_{HH} = 7.61 Hz, C4–H), 1.22 (3H, t, ³*J*_{HH} = 7.61 Hz, C4–H), 1.20 (3H, t, ³*J*_{HH} = 7.61 Hz, C2–H), 1.18 (3H, t, ³*J*_{HH} = 7.61 Hz, C2–H); ¹³C{¹H} NMR (CD₂Cl₂, 300 K, in ppm): $\delta = 24.0$ (2C, dd, ¹*J*_{CP} = 36.1 Hz, ²*J*_{CP} = 11.7 Hz, C1), 16.6 (2C, dd, ¹*J*_{CP} = 17.2 Hz, ²*J*_{CP} = 2.4 Hz, C3), 10.8 (2C, dd, ²*J*_{CP} = 9.1 Hz, ³*J*_{CP} = 8.5 Hz, C2), 7.6 (2C, t, ²*J*_{CP} = 5.3 Hz, C4); ³¹P{¹H} NMR (CD₂Cl₂, 300 K, in ppm): AX spin system: δ (P_X) = 44.2 (d, ¹*J*_{PP} = -257.4 Hz, ¹*J*_{PC} = 35.4 Hz, ¹*J*_{PSe} = -691.0 Hz), δ (P_A) = -351.1 (dd, ¹*J*_{SeP} = -691 Hz, ²*J*_{SeP} = 22 Hz).

2.5 Synthesis of Tetraethoxydiphosphane monosulfide $(1s^{(EtO)})$

(EtO)₂PCl (7.83 g, 50.00 mmol) was added to a suspension of Na₂S (1.95 g, 25.0 mmol) and 15-crown-5 (989.0 μ L, 5.00 mmol) in CH₃CN (200 mL) and was stirred for 24 h at rt. The suspension was filtered and the filtrate was concentrated *in vacuo*, giving a colorless liquid. The

crude product was contaminated by impurities (9%, determined by ³¹P NMR spectroscopy). Separation by distillation failed.

Yield of crude product: 94% (contains 9% impurities)

¹**H** NMR (CD₂Cl₂, 300 K, in ppm): $\delta = 7.85-7.67$ (8H, m, C1–H/C3–H), 4.88 (12H, t, ³*J*_{HH} = 7.1 Hz, C2–H/C4–H); ³¹P{¹H} NMR (CD₂Cl₂, 300 K, in ppm): AX spin system: $\delta(P_X) = 159.0$ (d, ¹*J*_{PP} = -320.1 Hz), $\delta(P_A) = 98.5$ (d, ¹*J*_{PP} = -320.1 Hz). Data is consistent with that presented in ref.^[16].

Figure S2.5.1. ³¹P{¹H} NMR spectrum of the crude product of $\mathbf{1}_{S}^{(EtO)}$ (CD₂Cl₂, 300 K); unidentified side products are marked with asterisks (*).

Figure S2.5.2. ³¹P{¹H} NMR spectrum $\mathbf{1}_{S}^{(EtO)}$ after destillation at 78°C, 10^{-2} mbar (CD₂Cl₂, 300 K); unidentified side products are marked with asterisks (*).

2.6 Thermal induced isomerization of ${\bf 1_S}^{(EtO)}$ to ${\bf 2_S}^{(EtO)}$

 $\mathbf{1}_{S}^{(EtO)}$ was heated at 100 °C for 2 h, resulting in a partial isomerization of $\mathbf{1}_{S}^{(EtO)}$ to $\mathbf{2}_{S}^{(EtO)}$. NMR shifts are consistent with that presented in ref.^[16].

unidentified side products are marked with asterisks (*).

2.7 Reaction of (EtO)₂PCl with (Me₃Si)₂S

(Me₃Si)₂S (21.1 μ L, 0.10 mmol) was added to a solution of (EtO)₂PCl (31.3 mg, 0.20 mmol) in CH₃CN (2 mL) and the clear solution was stirred for 24 hours at room temperature. The ³¹P{¹H} NMR spectrum of the reaction mixture shows the formation of $\mathbf{1}_{S}^{(EtO)}$ as the major product and many unidentified side products, which may form *via Arbuzov*-type reactions.

unidentified side products, which may form *via Arbuzov* -type reactions (CDCl₃, 300 K).

2.8 Synthesis of Tetraethoxydiphosphane monoselenide $(1_{Se}^{(EtO)})$

 $(EtO)_2PCl$ (31.3 mg, 0.20 mmol) was added to a suspension of Na₂Se (13.0 mg, 0.10 mmol) in CH₃CN (4 mL) and was stirred for 12 h at rt. The suspension was filtered and the filtrate was concentrated *in vacuo*, giving a colorless liquid. The crude product was contaminated by

impurities ($\mathbf{1}_{Se}^{(EtO)}$: 26%, determined by ³¹P NMR spectroscopy). Isolation of the product was not attempted.

¹H NMR (CD₂Cl₂, 300 K, in ppm): $\delta = 7.94-7.59$ (8H, m, C1–H), 4.98–4.79 (12H, m, C2–H); ³¹P{¹H} NMR (CD₂Cl₂, 300 K, in ppm): AX spin system: $\delta(P_X) = 158.0$ (d, ${}^{1}J_{PP} = -342.6$ Hz), $\delta(P_X) = 102.8$ (d, ${}^{1}J_{PP} = -342.6$ Hz).

Figure S2.8.1. ³¹P{¹H} NMR spectrum of the reaction mixtrue to yield $\mathbf{1}_{Se}^{(EtO)}$ (CD₂Cl₂, 300 K); unidentified side products are marked with asterisks(*).

a) Using $(Me_3Si)_2S$ as a source of sulfide:

2.9 Synthesis of Tetraphenyldiphosphane monosulfide (1s^(Ph))

 $(Me_3Si)_2S$ (180.0 µL, 0.50 mmol) was added to a solution of Ph₂PCl (105.0 µL, 1.00 mmol) in CH₃CN (6 mL). After 10 minutes the clear solution turned to a colorless suspension, which was stirred for 4 hours at rt. All volatiles were removed *in vacuo*, resulting in a colorless powder, which was washed with *n*-pentane (3 x 2 mL) and dried *in*

vacuo.

Yield: 188.0 mg (94%).

b) Using Na₂S as a source of sulfide:

Me₃SiCl (63.6 μ L, 0.50 mmol) was added to a suspension of Na₂S (195.1 mg, 2.50 mmol) in CH₃CN (20 mL). Ph₂PCl (898.0 μ L, 5.00 mmol) was added and the resulting colorless suspension was stirred for 16 h at rt. The supernatant was decanted and to the residue CH₂Cl₂ (10 mL) was added to dissolve the formed product. The suspension was filtered over Celite and the filtrate was concentrated *in vacuo*. The resulting colorless solid was recrystallized from CH₂Cl₂ / *n*-pentane at -30 °C and dried *in vacuo*.

Yield: 840.0 mg (84%).

Mp.: 137 °C; ¹**H NMR** (**CD**₂**Cl**₂, **300 K**, **in ppm):** $\delta = 7.95$ (4H, dd, ³*J*_{HH} = 10.1 Hz, ³*J*_{HP} = 6.2 Hz, C2–H), 7.50 (4H, m, ³*J*_{HH} = 6.3 Hz, ³*J*_{HP} = 6.3 Hz, C6–H), 7.46 (2H, m,

C4–H/C8–H), 7.40 (4H, m, C3–H), 7.35 (2H, ${}^{3}J_{HH} = 5.9$ Hz, C4–H/C8–H), 7.25 (4H, m, C3–H); ${}^{13}C{}^{1}H$ **NMR** (**CD**₂**Cl**₂, **300 K**, **in ppm**): $\delta = 135.0$ (4C, dd, ${}^{2}J_{CP} = 20.0$ Hz, ${}^{3}J_{CP} = 7.1$ Hz, C6), 133.3 (2C, dd, ${}^{1}J_{CP} = 68.8$ Hz, ${}^{2}J_{CP} = 14.0$ Hz, C1/C5), 132.2 (4C, dd, ${}^{2}J_{CP} = 9.2$ Hz, ${}^{3}J_{CP} = 2.5$ Hz, C4), 131.5 (2C, dd, ${}^{4}J_{CP} = 3.2$ Hz, C4/C8), 130.7 (2C, dd, ${}^{1}J_{CP} = 16.1$ Hz, ${}^{2}J_{CP} = 3.6$ Hz, C1/C5), 130.1 (2C, dd, ${}^{4}J_{CP} = 2.1$ Hz, C4/C8), 128.6 (4C, d, ${}^{3}J_{CP} = 11.6$ Hz, C3), 128.4 (4C, dd, ${}^{3}J_{CP} = 7.7$ Hz, C7); ${}^{31}P{}^{1}H{}$ NMR (CD₂Cl₂, 300 K, in ppm): AX spin system: $\delta(P_X) = 44.7$ (d, ${}^{1}J_{PP} = -252.4$ Hz), $\delta(P_A) = -13.2$ (d, ${}^{1}J_{PP} = -252.4$ Hz). Data is consistent with that presented in ref.^[17].

2.10 Synthesis of Tetra(p-tolyl)diphosphane monosulfide ($1_8^{(Tol)}$)

a) Using $(Me_3Si)_2S$ as a source of sulfide:

 $(Me_3Si)_2S$ (187.4 mg, 1.00 mmol) was added to a solution of $(p-Tol)_2PCl$ (497.4 mg, 2.00 mmol) in CH₃CN (6 mL). After 5 minutes the clear solution turned to a colorless suspension, which was stirred for 10 hours at rt. The supernatant was decanted and the residue was dried *in vacuo*. The resulting colorless powder was washed with *n*-pentane (2 x 4 mL) and dried *in vacuo*.

Yield: 403.0 mg (88%).

b) Using Na₂S as a source of sulfide:

Me₃SiCl (101.5 μ L, 0.80 mmol) was added to a suspension of Na₂S (156.1 mg, 2.00 mmol) in CH₃CN (25 mL). (*p*-Tol)₂PCl (994.8 mg, 4.00 mmol) was added and the resulting colorless suspension was stirred for 13 h at rt. The supernatant was decanted and to the residue CH₂Cl₂ (10 mL) was added to dissolve the formed product. The suspension was filtered over Celite and the filtrate was concentrated *in vacuo*. The resulting colorless solid was recrystallized in CH₂Cl₂ / *n*-pentane at -30 °C and dried *in vacuo*.

Yield: 365.5 mg (40%).

Mp.: 168-170 °C; **Raman (35 mW, 600 scans, 300 K, in cm⁻¹):** 3049(38), 3033(14), 2976(5), 2948(7), 2918(27), 2863(6), 1597(57), 1494(5), 1375(11), 1213(16), 1194(11), 1090(62), 796(18), 682(8), 639(9), 523(8), 464(16), 380(5), 345(5), 323(6), 295(7), 201(20), 179(15), 84(100); **IR (300 K, ATR, in cm⁻¹):** 3541(vw), 3403(vw), 3068(w), 3046(w), 3019(vw), 2947(vw), 2913(vw), 2860(vw), 2582(vw), 2163(vw), 2071(vw), 2035(vw), 2008(vw), 1977(w), 1903(vw), 1821(vw), 1654(vw), 1637(vw), 1596(m), 1559(vw),

1541(vw), 1493(s), 1444(w), 1395(m), 1376(vw), 1308(m), 1242(vw), 1212(vw), 1184(s), 1120(w), 1092(vs), 1033(w), 1020(m), 950(vw), 847(vw), 837(w), 803(vs), 709(s), 682(vs), 637(vs); ¹**H NMR (CD₂Cl₂, 300 K, in ppm):** δ = 7.81 (4H, dd, ³*J*_{HH} = 12.3 Hz, ³*J*_{HP} = 4.5 Hz, C2–H), 7.41 (4H, d, ³*J*_{HH} = 8.1 Hz, ³*J*_{HP} = 1.2 Hz, C7–H), 7.21 (4H, dd, ³*J*_{HH} = 8.1 Hz, ⁴*J*_{HP} = 2.7 Hz, C3–H), 7.08 (4H, d, ³*J*_{HH} = 7.4 Hz, C8–H), 2.36 (6H, s, C5–H), 2.32 (6H, s, C10–H); ¹³C{¹H} **NMR (CD₂Cl₂, 300 K, in ppm):** δ = 142.4 (2C, dd, ⁴*J*_{CP} = 3.1 Hz, ⁵*J*_{CP} = 1.1 Hz, C4), 140.8 (2C, d, ⁴*J*_{CP} = 2.8 Hz, C9), 135.4 (4C, dd, ²*J*_{CP} = 20.2 Hz, ³*J*_{CP} = 7.0 Hz, C7), 132.5 (4C, dd, ³*J*_{CP} = 9.4 Hz, ⁴*J*_{CP} = 2.9 Hz, C2), 130.9 (2C, dd, ¹*J*_{CP} = 70.8 Hz, ³*J*_{CP} = 14.4 Hz, C1), 129.6 (4C, d, ³*J*_{CP} = 12.3 Hz, C3), 129.6 (4C, dd, ³*J*_{CP} = 7.8 Hz, C8), 127.7 (2C, dd, ¹*J*_{CP} = 15.0 Hz, ²*J*_{CP} = 3.1 Hz, C6), 21.7 (2C, d, ⁵*J*_{CP} = 1.6 Hz, C5), 21.7 (2C, m, C10); ³¹P{¹H} **NMR (CD₂Cl₂, 300 K, in ppm):** AX spin system: δ (P_X) = 42.9 (d, ¹*J*_{PP} = -253.6 Hz, ¹*J*_{CP} = 70.0 Hz), δ (P_A) = -16.0 (d, ¹*J*_{PP} = -253.6 Hz); **elemental analysis**: calculated for C₂₈H₂₈P₂S: C 73.34, H: 6.16, N: -, S: 6.99, found: C: 73.18, H: 6.19, N: 0.1, S: 7.09.

2.11 Synthesis of Tetraphenyldiphosphane monoselenide (1_{Se}^(Ph))

a) Using (Me₃Si)₂Se as a source of sulfide:

(Me₃Si)₂Se (125.0 μ L, 0.50 mmol) was added to a solution of Ph₂PCl (180.0 μ L, 1.00 mmol) in CH₃CN (4 mL). After 10 minutes the clear solution turned to a colorless suspension, which was stirred for 3 hours at rt. CH₂Cl₂ (3 mL) was added to dissolve the formed product. The volume of the solution was reduced slowly *in vacuo* yielding **1**_{Se}^(Ph) as

crystalline material, which was washed with CH_3CN (1 mL) and *n*-pentane (2 x 2 mL). All volatiles were removed in vacuo, resulting crystalline material. The product was contaminated with Ph_4P_2 (6%, determined by ${}^{31}P{}^{1}H$) NMR spectroscopy).

Crude yield: 203.0 mg (90%).

b) Using Na₂Se as a source of selenide:

Ph₂PCl (88.3 mg, 0.40 mmol) was added to a suspension of Na₂Se (25.0 mg, 0.20 mmol) in CH₃CN (4 mL) and was stirred for 12 h at rt. In the ³¹P{H} NMR spectrum of the reaction mixture the formation of $\mathbf{1}_{Se}^{(Ph)}$ (66 %), Ph₄P₂ (23%) and Ph₂P(S)P(S)Ph₂ (10%) was observed. The isolation of $\mathbf{1}_{Se}^{(Ph)}$ was not attempted.

The characterization of $\mathbf{1}_{Se}^{(Ph)}$ was conducted with the crude product from the reaction using method *a*), which was contaminated with Ph₄P₂(6%).

Mp: 112-114 °C; **Raman (35 mW, 400 scans, 300 K, in cm⁻¹):** 3055(37), 1584(39), 1571(4), 1183(6), 1158(5), 1087(18), 1028(20), 999(45), 618(6), 564(6), 517(8), 446(8), 409(5), 326(14), 269(5), 257(12), 234(6), 207(24), 138(23), 89(100); ¹**H NMR (CD₂Cl₂, 300 K, in ppm):** $\delta = 7.94$ (4H, dd, ³*J*_{HH} = 8.13 Hz, ³*J*_{HP} = 12.77 Hz, C2–H), 7.49 (4H, m, ³*J*_{HH} = 8.0 Hz, ³*J*_{HP} = 8.0 Hz, C6–H), 7.45–7.35 (16H, m, C3–H, C4–H, C8–H), 7.26 (4H, t, ³*J*_{HH} = 7.00 Hz, C7–H); ¹³C{¹H} **NMR (CD₂Cl₂, 300 K, in ppm):** $\delta = 135.3$ (4C, dd, ²*J*_{CP} = 20.0 Hz, ³*J*_{CP} = 7.1 Hz, C6), 133.4 (4C, dd, ²*J*_{CP} = 6.5 Hz, ³*J*_{CP} = 2.5 Hz, C4), 132.5 (2C, d, ¹*J*_{CP} = 13.4 Hz, C1/C5), 131.9 (2C, dd, ⁴*J*_{CP} = 2.0 Hz, ⁵*J*_{CP} = 1.0 Hz, C4/C8), 131.3 (2C, dd, ¹*J*_{CP} = 16.6 Hz, ²*J*_{CP} = 11.7 Hz, C3), 128.8 (4C, dd, ³*J*_{CP} = 7.3 Hz, ⁴*J*_{CP} = 1.0 Hz, C7); ³¹P{¹H} **NMR (CD₂Cl₂, 300 K, in ppm):** $\delta = -750.2$ Hz), $\delta(P_A) = -12.5$ (d, ¹*J*_{PP} = -260.9 Hz); ⁷⁷Se NMR (CD₂Cl₂, 300 K, in ppm): $\delta = -335.5$ (d, ¹*J*_{SeP} = -750 Hz, ²*J*_{SeP} = 29 Hz).

2.12 Synthesis of Tetra(*p*-tolyl)diphosphane monoselenide (1_{Se}^(Tol))

 $(Me_3Si)_2Se$ (112.7 mg, 0.50 mmol) was added to a solution of $(p-Tol)_2PCl$ (248.7 mg, 1.00 mmol) in CH₃CN (5 mL). After 5 minutes the clear solution turned to a colorless suspension., which was stirred for 12 hours at rt. The supernatant was decanted and the residue was dried *in vacuo*. The resulting colorless powder was washed with *n*-pentane (2 x 4 mL) and dried *in vacuo*. The product was contaminated with Tol₄P₂ (7%, determined by ³¹P{¹H} NMR

spectroscopy).

Crude yield: 196.5 mg (78%).

¹H NMR (CD₂Cl₂, 300 K, in ppm): $\delta = 7.78$ (4H, dd, ³*J*_{HH} = 12.20 Hz, ³*J*_{HP} = 5.63 Hz, C2–H), 7.39 (4H, d, ³*J*_{HH} = 7.86 Hz, ³*J*_{HP} = 7.66 Hz, C7–H), 7.20 (4H, dd, ³*J*_{HH} = 8.42 Hz, ⁴*J*_{HP} = 2.46 Hz, C3–H), 7.08 (4H, d, ³*J*_{HH} = 7.71 Hz, C8–H), 2.37 (6H, s, C5–H), 2.36 (6H, s, C10–H); ¹³C{¹H} NMR (CD₂Cl₂, 300 K, in ppm): $\delta = 142.5$ (2C, dd, ⁴*J*_{CP} = 3.2 Hz, ⁵*J*_{CP} = 1.0 Hz, C4), 141.0 (2C, d, ⁴*J*_{CP} = 2.6 Hz, C9), 135.2 (4C, dd, ²*J*_{CP} = 20.5 Hz, ³*J*_{CP} = 7.0 Hz, C7), 133.3 (4C, dd, ³*J*_{CP} = 9.5 Hz, ⁴*J*_{CP} = 6.3 Hz, C2), 129.6 (4C, d, ³*J*_{CP} = 12.0 Hz, C3), 129.6 (4C, d, ³*J*_{CP} = 7.9 Hz, ⁴*J*_{CP} = 1.3 Hz, C8), 129.3 (2C, dd, ¹*J*_{CP} = 62.7 Hz, ²*J*_{CP} = 13.5 Hz C1), 127.9 (2C, dd, ¹*J*_{CP} = 15.5 Hz, ²*J*_{CP} = 3.1 Hz, C6), 21.7 (2C, m, C10), 21.7 (2C, ⁵*J*_{CP} = 1.5 Hz, C5); ³¹P{¹H} NMR (CD₂Cl₂, 300 K, in ppm): AX spin system: $\delta(P_X) = 33.8$ (d, ¹*J*_{PP} = -260.9 Hz, ¹*J*_{PSe} = -741.0 Hz, ¹*J*_{CP} = 62.7 Hz), $\delta(P_A) = -14.6$ (d, ¹*J*_{PP} = -260.9 Hz).

2.13 Reaction of Ph₂PCl and (Me₃Si)₂Te yielding tetraphenyldiphosphane Ph₄P₂

 $(Me_3Si)_2Te$ (27.40 mg, 0.10 mmol) was added to a solution of Ph₂PCl (44.13 mg, 0.20 mmol) in CH₃CN (2 mL), resulting in a black precipitate, which forms a metallic mirror on the glass wall. The ³¹P NMR spectrum of the solution shows quantitative formation to Ph₄P₂.

³¹P{¹H} NMR (CDCl₃, 300 K, in ppm): $\delta = -15.5$ (s). Data is consistent with that presented in ref.^[18].

2.14 Synthesis of Tetraphenyldiphosphane monosulfide irontetracarbonyl (7)

 $1_{\rm S}^{\rm (Ph)}$ (80.4 mg, 0.20 mmol) was added to a suspension of Fe₂(CO)₉ (72.8 mg, 0.20 mmol) in THF (4 mL) and the resulting brown solution was stirred at rt for 12 h in the dark. All volatiles were removed *in vacuo* affording a brown oil. *N*-pentane (3 mL) was added and the reaction mixture was stirred for 10 minutes. The formed brown precipitation were recrystallized in CH₃CN at –31 °C,

yielding crystalline material, which was dried *in vacuo*. ${}^{31}P{}^{1}H$ NMR analysis of the crystalline material shows high purity of **7** (~95% by ${}^{31}P{}^{1}H$ NMR spectroscopy), accompanied by minor unidentified side products, which can not be separated by recrystallization.

Yield: 80.9 mg (71%).

Mp.: Decomp. 149 °C; **Raman (32 mW, 600 scans, 300 K, in cm⁻¹):** 3058(50), 2076(6), 2061(6), 2045(13), 1972(38), 1944(25), 1934(13), 1583(44), 1189(6),1162(6), 1087(25), 1029(31), 1000(69), 644(6), 616(6), 541(6), 490(13), 435(25), 353(6), 319(6), 263(6), 224(6), 198(25), 136(6), 109(100), 93(19), 75(31); **IR (300K, ATR, in cm⁻¹):** 3055(vw), 2988(w), 2901(vw), 2045(m), 1973(w), 1931(vs), 1692(vw), 1582(vw), 1552(vw), 1535(vw), 1512(vw), 1479(w), 1435(m), 1314(w), 1250(vw), 1188(w), 1161(w), 1085(m), 1027(vw),

997(w), 861(vw), 743(s), 689(s), 644(w), 619(s); ¹H NMR (CDCl₃, 300 K, in ppm): $\delta = 7.68$ (m, 8H), 7.50 (m, 4H), 7.37 (m, 8H); ¹³C{¹H} NMR (CDCl₃, 300 K, in ppm): $\delta = 134.5$ (4C, dd, ² $J_{CP} = 9.8$ Hz, ³ $J_{CP} = 2.5$ Hz, C6), 133.5 (4C, d, ² $J_{CP} = 9.7$ Hz, C2), 132.5 (2C, d, ⁴ $J_{CP} = 3.1$ Hz, C4/C8), 131.6 (2C, m, C4/C8), 131.2 (2C, dd, ¹ $J_{CP} = 34.1$ Hz, ² $J_{CP} = 3.3$ Hz, C1/C5), 129.2 (2C, dd, ¹ $J_{CP} = 67.7$ Hz, ² $J_{CP} = 11.3$ Hz, C1/C5), 128.5 (4C, d, ³ $J_{CP} = 12.5$ Hz, C7/C3), 128.3 (4C, d, ³ $J_{CP} = 10.0$ Hz, C7/C3); ³¹P{¹H} NMR (CD₂Cl₂, 300 K, in ppm): AM spin system: $\delta(P_M) = 79.1$ (d, ¹ $J_{PP} = -138.9$ Hz), $\delta(P_A) = 48.8$ (d, ¹ $J_{PP} = -138.9$ Hz); elemental analysis: calculated for C₂₈H₂₀FeO₄P₂S: C 58.97, H: 3.53, N: -, S: 5.62, found: C: 58.46, H: 3.52, N: 0.02 S: 5.10.

2.15 Reaction of (*i*Pr)₂PCl and (Me₃Si)₂S

(Me₃Si)₂S (21.1 µL, 0.10 mmol) was added to a solution of *i*Pr₂PCl (31.8 µL, 0.20 mmol) in CH₃CN (3 mL) and the clear solution was stirred for 12 hours at room temperature. The ³¹P NMR spectrum of the reaction mixture shows the formation of approximately 85% to $({}^{i}Pr)_{2}P(S)P({}^{i}Pr)_{2} (\mathbf{1}_{S}{}^{(iPr)})$ and 15% to $(iPr_{2}P)_{2}S (\mathbf{2}_{S}{}^{(iPr)})$; ³¹P{¹H} NMR (CDCl₃, 300 K, in ppm): $\delta = 69.3$ (s, $\mathbf{2}_{S}{}^{(iPr)}$, (Lit.: $67.0^{[19]}$)), 68.5 (d, ${}^{1}J_{PP} = -309.0$ Hz, $\mathbf{1}_{S}{}^{(iPr)}$ (Lit.: 69.0, ${}^{1}J_{PP} = -305.0$ Hz^[19])), -4.1 (d, ${}^{1}J_{PP} = -309.0$ Hz, $\mathbf{1}_{S}{}^{(iPr)}$ ((Lit.: -6.3, ${}^{1}J_{PP} = -305.0$ Hz^[19])). Data is consistent with that presented in ref.^[19]. Separation of the products was not attempted.

side product is marked with (*).

2.16 Synthesis of tetra-*tert*-butyldiphosphanylsulfane $(2s^{(tBu)})$

 $tBu \sim S \sim P^{-1}$ tBu tBu tBu $2s^{(tBu)}$

 $(tBu)_2PCl$ (5.36 g, 29.65 mmol) was added to a suspension of Na₂S (1.22 g, 15.60 mmol) in CH₃CN (50 mL) and was stirred for 12 h at rt. CH₂Cl₂ (50 mL) was added to the suspension to dissolve the formed product. The suspension was filtered over Celite and the filtrate was concentrated *in*

vacuo. The resulting colorless precipitation was recrystallized from CH_2Cl_2 / CH_3CN , resulting in colorless cystals, which were dried *in vacuo*.

Yield: 3.98 g (83%)

Mp.: 75-76 °C; Raman (50 mW, 500 scans, 300 K, in cm⁻¹): 2976(40), 2945(72), 2896(100), 2864(63), 2767(9), 2702(14), 1468(36), 1456(31), 1444(26), 1207(24), 1194(20),

1175(37), 1017(10), 938(25), 808(61), 593(23), 570(60), 526(20), 488(10), 294(18), 200(18), 135(52), 100(30); **IR** (**300K, ATR, in cm⁻¹**): 2975(w), 2942(m), 2891(w), 2858(m), 1478(vw), 1465(w), 1446(vw), 1387(w), 1361(vs), 1173(m), 1016(w), 934(w), 806(s), 690(vs); ¹H NMR (**CD₂Cl₂, 300 K, in ppm**): $\delta = 1.30$ (36H, m, ³*J*_{HP} = 5.72 Hz, C2–H); ¹³C{¹H} NMR (**CD₂Cl₂, 300 K, in ppm**): $\delta = 36.0$ (4C, t, ¹*J*_{CP} = 14.6 Hz, C1), 29.7 (12C, t, ²*J*_{CP} = 7.8 Hz, C2); ³¹P{¹H} NMR (**CD₂Cl₂, 300 K, in ppm**): $\delta = 86.6$ (s); elemental analysis: calculated for C₁₆H₃₆P₂S: C 59.59, H: 11.25, N: -, S: 9.94, found: C: 59.22, H: 10.86, N:0.07, S: 9.72.

2.17 Synthesis of tetramesityldiphosphanylsulfane (2s^(Mes))

a) Using $(Me_3Si)_2S$ as a source of sulfide:

 $(Me_3Si)_2S$ (105.0 µL, 0.50 mmol) was added to a solution of $(Mes)_2PCl$ (305.0 mg, 1.00 mmol) in CH₃CN (5 mL). After 15 min the solution turned into a colorless suspension, which was stirred for 3 h at rt. The supernatant was decanted and the residue was

washed with cold CH₃CN (2 x 3 mL, -30 °C). All volatiles were removed *in vacuo*, resulting in a colorless solid.

Yield: 255.3 mg (89%).

b) Using Na₂S as a source of sulfide:

Mes₂PCl (304.8 mg, 1.00 mmol) was added to a suspension of Na₂S (39.02 mg, 0.50 mmol) in CH₃CN (3 mL) and was stirred for 5 h at rt. CH_2Cl_2 (2 mL) was added to the suspension to dissolve the formed product. The suspension was filtered over Celite and the filtrate was dried *in vacuo*. The resulting colorless precipitation washed with CH₃CN, and was dried *in vacuo*. **Yield:** 245.4 mg, 86%;

Mp.: 138-139 °C; **IR** (**300 K, ATR, in cm⁻¹):** 3018(vw), 2964(w), 2918(vw), 2853(vw), 1601(w), 1552(vw), 1465(w), 1435(vw), 1405(w), 1373(w), 1288(w), 1263(w), 1029(w), 886(vw). 848(vs), 738(s), 704(w), 615(w); **Raman** (**35 mW, 450 scans, 300 K, in cm⁻¹):** 3020(24), 2982(12), 2916(88), 2853(16), 2730(12), 1603(100), 1466(10), 1438(7), 1377(40), 1290(69), 1051(36), 1013(14), 706(9), 573(33), 555(14), 539(12), 493(17); ¹H NMR (CD₂Cl₂, **300 K, in ppm):** δ = 6.74 (8H, s, C3–H), 2.29 (24H, s, C5–H), 2.21 (12H, s, C6–H); ¹³C{¹H} NMR (CD₂Cl₂, **300 K, in ppm):** δ = 141.8 (8C, m, ²*J*_{CP} = 8.6 Hz, C2), 138.5 (4C, s, C4), 133.8 (4C, m, C1), 130.1 (8C, s, C3), 23.0 (8C, m, ³*J*_{CP} = 7.3 Hz, C5), 20.7 (4C, s, C6);

³¹P{¹H} NMR (CD₂Cl₂, 300 K, in ppm): $\delta = 22.5$ (s); elemental analysis: calculated for C₃₆H₄₄P₂S: C 75.76, H: 7.77, N: -, S: 5.62, found: C: 75.93, H: 7.86, N: 0.02, S: 6.60.

2.18 Synthesis of tetrakis(di-*iso*-propylamino)diphosphanylsulfane $(2s^{(N(iPr)_2)})$

15-crown-5 (33.1 mg, 0.15 mmol) was added to a suspension of Na₂S (75.1 mg, 1.00 mmol) in CH₃CN (8 mL). $((iPr)_2N)_2PCl$ (533.6 mg, 2.00 mmol) was added to the colorless suspension, which was stirred for 24 hours at rt. The supernatant was decanted and to the residue

 CH_2Cl_2 (6 mL) was added to dissolve the formed product. The suspension was filtered over Celite and the filtrate was concentrated *in vacuo*. The resulting colorless solid was washed with CH_3CN (5 mL, -30 °C) and dried *in vacuo*. **Yield**: 382.5 mg (77%).

Mp.: 108-110 °C; Raman (40 mW, 400 scans, 300 K, in cm⁻¹): 2968(42), 2931(100), 2867(7), 2702(10), 2283(4), 2244(4), 2185(6), 2158(4), 2117(7), 2077(4), 2062(6), 1984(6), 1457(28), 1392(6), 1352(10), 1316(7), 1115(13), 966(7), 930(10), 867(18), 620(27), 552(13), 499(4), 403(8), 282(11), 188(4), 128(6), 79(45); **IR** (300K, ATR, in cm⁻¹): 2964(s), 2928(w), 2868(vw), 2353(w), 1692(w), 1642(vw), 1552(vw), 1535(vw), 1454(w), 1387(w), 1359(m), 1308(vw), 1250(vw), 1180(m), 1156(w), 1113(s), 1066(w), 1018(m), 948(vs), 863(m), 844(w), 635(w), 618(w); ¹H NMR (CD₂Cl₂, 300 K, in ppm): δ = 3.65 (8H, sept., ³*J*_{HH} = 6.48 Hz, C2–H), 1.26 (24H, d, ³*J*_{HH} = 6.62 Hz, C1–H), 1.24 (24H, d, ³*J*_{HH} = 6.74 Hz, C3–H), ¹³C{¹H} NMR (CD₂Cl₂, 300 K, in ppm): δ = 47.6 (8C, t, ²*J*_{CP} = 6.2 Hz, C2), 24.5 (8C, t, ³*J*_{CP} = 2.8 Hz, C3), 23.04 (8C, t, ³*J*_{CP} = 6.2 Hz, C1); ³¹P{¹H} NMR (CD₂Cl₂, 300 K, in ppm): δ = 89.1 (s); Data is consistent with that presented in ref.^[20].

2.19 Synthesis of tetrakis(pentafluorophenyl)diphosphanylsulfane $(1_S^{(C_6F_5)})$

 $F_{5}C_{6} \xrightarrow{F} S \xrightarrow{F} F$ $F_{5}C_{6} \xrightarrow{F} S \xrightarrow{F} F$ $F_{5}C_{6} \xrightarrow{F} S \xrightarrow{F} F$ $\mathbf{2}_{5}^{(C_{6}F_{5})}$

 $(Me_3Si)_2S$ (446.1 mg, 2.50 mmol) was added to a solution of $(C_6F_5)_2PCl$ (2.00 g, 5.00 mmol) in CH₃CN (10 mL) and was stirred for 12 h at rt. All volatiles were removed *in vacuo*. The resulting colorless solid was recrystallized in CH₂Cl₂ / *n*-pentane at -30 °C and dried *in vacuo*.

Yield: 240.0 mg (67%)

Mp.: Decomp.: 119 °C; **Raman (32 mW, 600 scans, 300 K, in cm⁻¹):** 1642(75), 1393(24), 1385(9), 1291(9), 1142(4), 833(26), 713(5), 637(3), 587(60), 500(65), 466(3), 446(43), 428(6), 389(33), 362(3), 339(8), 321(3), 284(7), 236(6), 145(14), 100(9), 72(100); **IR (300 K, ATR, in cm⁻¹):** 1641(w), 1515(m), 1467(vs), 1382(w), 1290(m), 1266(vw), 1141(vw), 1085(s), 1016 (w), 973(vs), 842(w), 764(vw), 745(w), 727(w), 635(w); ¹⁹F NMR (CD₂Cl₂, **300 K, in ppm):** $\delta = -128.8$ (8F, dd, ³*J*_{FP} = 18.8 Hz, ³*J*_{FF} = 19.8 Hz, ¹*J*_{FC} = 252.0 Hz, C2–F), – 148.5 (4F, t, ³*J*_{FF} = 19.8 Hz, ¹*J*_{FC} = 261.0 Hz, C4–F), –160.4 (8F, t, ³*J*_{FF} = 19.8 Hz, ¹*J*_{FC} = 251.6 Hz, C3–F); ¹³C{¹H} NMR (CD₂Cl₂, **300 K, in ppm):** $\delta = 147.2$ (8C, dm, ¹*J*_{CF} = 251.5 Hz, C2), 143.3 (4C, dm, ¹*J*_{CF} = 261.3 Hz, C4), 137.8 (8C, dm, ¹*J*_{CF} = 251.6 Hz, C3), 108.9 (4C, m, C1); ³¹P{¹H} NMR (CD₂Cl₂, **300 K, in ppm):** $\delta = -9.0$ (nonett, ³*J*_{FF} = 18.8 Hz); **elemental analysis**: calculated for C₂₄F₂₀P₂S: C: 37.82, H: –, N: –, S: 4.21, found: C: 38.22, H: 0.39, N: 0.11, S: 4.54.

2.20 Synthesis of tetra-tert-butyldiphosphanylselane (2_{Se}^(tBu))

 $tBu_{P} Se_{P} \stackrel{1}{\xrightarrow{}} tBu_{Bu} \stackrel{1}{\xrightarrow{}} tBu_{$

for 12 h, resulting in yellow needles, which were filtered and washed with CH_3CN (2 x 3 mL, -30 °C). Solvent was removed *in vacuo* resulting in a crystalline solid.

Yield: 408.8 mg (74%).

b) Using Na₂Se as a source of selenide:

 $(tBu)_2PCl$ (180.7 mg, 1.00 mmol) was added to a suspension of Na₂Se (124.9 mg, 0.50 mmol) in CH₃CN (3 mL) and was stirred for 12 h at rt. CH₂Cl₂ (2 mL) was added to the suspension to dissolve the formed product. The suspension was filtered over Celite and the filtrate was concentrated *in vacuo*. The resulting yellow precipitation was recrystallized in CH₂Cl₂ and CH₃CN, resulting in yellow needles, which were dried *in vacuo*.

Yield: 126.0 mg (68%).

Mp.: 75-76 °C; **Raman (40 mW, 400 scans, 300 K, in cm⁻¹):** 2994(15), 2976(10), 2953(60), 2914(15), 2893(65), 2858(53), 2767(8), 2702(19), 1468(31), 1442(10), 1387(6), 1362(8), 1208(21), 1174(39), 1020(16), 936(42), 807(100), 590(18), 569(85), 472(24), 445(6), 367(11), 300(16), 245(19), 194(21); **IR (300 K, ATR, in cm⁻¹):** 2993(vw), 2974(w),

2939(m), 2890(w), 2857(w), 1471(w), 1462(w), 1443(vw), 1386(w), 1361(vs), 1204(vw), 1172(m), 1149(vs), 1015(w), 933(w), 806(s), 639(vw); ¹H NMR (CD₂Cl₂, 300 K, in ppm): $\delta = 1.24$ (36H, m, C2–H); ¹³C{¹H} NMR (CD₂Cl₂, 300 K, in ppm): $\delta = 35.4$ (4C, t, ${}^{1}J_{CP} = 16.1$ Hz, C1), 30.5 (12C, t, ${}^{2}J_{CP} = 7.2$ Hz, C2); ³¹P{¹H} NMR (CD₂Cl₂, 300 K, in ppm): $\delta = 94.7$ (s, ${}^{1}J_{PSe} = -211$ Hz); ⁷⁷Se NMR (CD₃CN, 300 K, in ppm): $\delta = -30.1$ (t, ${}^{1}J_{SeP} = -211$ Hz); elemental analysis: calculated for C₁₆H₃₆P₂Se: C 52.03, H: 9.82, N: -, S: -, found: C: 51.67, H: 9.60, N:-, S: 0.44.

2.21 Synthesis of tetramesityldiphosphanylselane $(2_{Se}^{(Mes)})$

a) $Using (Me_3Si)_2Se$ as a source of sulfide:

 $(Me_3Si)_2Se$ (66.6 µL, 0.25 mmol) was added to a solution of $(Mes)_2PCl$ (152.4 mg, 0.50 mmol) in CH₃CN (4 mL). After 2 min the solution turned into a colorless suspension, which was stirred for 2 h at rt. The supernatant was decanted and the residue was

washed with cold CH₃CN (2 x 2 mL, -30 °C). All volatiles were removed *in vacuo*, resulting in a colorless solid.

Yield: 126.0 mg (81%).

Using Na₂Se as a source of selenide:

 Mes_2PCl (914.4 mg, 3.00 mmol) was added to a suspension of Na_2Se (187.4 mg, 1.50 mmol) in CH_3CN (10 mL) and was stirred for 12 h at rt. CH_2Cl_2 (10 mL) was added to the suspension to dissolve the formed product. The suspension was filtered over Celite and the filtrate was dried *in vacuo*. The resulting colorless precipitation washed with CH_3CN , and was dried *in vacuo*.

Yield: 796.8 mg, (86%).

Mp.: Decomp. 129 °C; **IR** (**300 K, ATR, in cm⁻¹**): 3017(vw), 2956(w), 2917(w), 1601(m), 1553(w), 1465(w), 1440(m), 1400(w), 1377(w), 1289(w), 1243(vw), 1192(vw), 1027(w), 1012(w), 892(vw), 875(w), 843(vs), 712(w), 635(w), 614(w); **Raman (40 mW, 400 scans, 300 K, in cm⁻¹**): 3019(14), 2960(14), 2912(100), 2851(17), 2728(10), 1604(98), 1558(4), 1466(14), 1442(12), 1377(47), 1290(79), 1263(5), 1179(9), 1050(42), 1015(14), 956(5), 616(5), 602(4), 574(47), 553(14), 538(13), 431(29), 413(6), 389(17), 341(14); ¹H NMR (CD₂Cl₂, 300 K, in ppm): δ = 6.76 (8H, s, C3–H), 2.30 (24H, s, C5–H), 2.21 (12H, s, C6–H); ¹³C{¹H} NMR (CD₂Cl₂, 300 K, in ppm): δ = 142.0 (8C, t, ²J_{CP} = 8.2 Hz, C2), 138.6 (4C, s, 120).

C4), 134.0 (4C, d, ${}^{1}J_{CP} = 16.4$ Hz, C1), 130.2 (8C, d, ${}^{2}J_{CP} = 2.8$ Hz, C3), 23.5 (8C, m, ${}^{3}J_{CP} = 7.4$ Hz, C5), 20.9 (4C, s, C6); ${}^{31}P{}^{1}H$ NMR (CD₂Cl₂, 300 K, in ppm): $\delta = 15.7$ (s, ${}^{1}J_{PSe} = -192$ Hz); ${}^{77}Se$ NMR (CD₂Cl₂, 300 K, in ppm): $\delta = -246.1$ (t, ${}^{1}J_{SeP} = -192$ Hz); elemental analysis: calculated for C₃₆H₄₄P₂Se: C 70.01, H: 7.18, N: -, S: -, found: C: 69.69, H: 7.28, N: 0.00, S: 0.13.

2.22 Synthesis of tetrakis(di-*iso*-propylamino)diphosphanylselane $(2_{Se}^{(N(iPr)_2)})$

(6 mL) was added to dissolve the formed product. The suspension was filtered over Celite and the filtrate was concentrated *in vacuo*. The resulting colorless solid was washed with cold CH₃CN (2 x 5 mL, -30 °C) and dried *in vacuo*.

Yield: 180 mg (83%).

Mp.: 140-141 °C; **Raman (21 mW, 700 scans, 300 K, in cm⁻¹):** 2964(69), 2923(100), 2867(39), 2701(10), 2186(6), 2138(6), 1454(39), 1391(82), 1351(14), 1316(10), 1115(20), 965(8), 931(18), 865(31), 621(37), 533(12), 377(16), 346(20), 276(24), 181(20), 128(18), 84(76); **IR (300 K, ATR, in cm⁻¹):** 3586(vs), 2960(w), 2924(w), 2866(m), 2703(vs), 2605(vs), 2351(s), 2326(s), 2164(vs), 2069(vs), 2048(vs), 2008(vs), 1977(vs), 1670(vs), 1636(vs), 1587(vs), 1542(vs), 1508(vs), 1453(m), 1360(w), 1306(s), 1194(w), 1177(w), 1158(vw), 1112(vw), 947(w), 845(w), 636(w), 618(m); ¹H NMR (CD₂Cl₂, 300 K, in ppm): $\delta = 3.60$ (8H, sept., ³*J*_{HH} = 6.55 Hz, C2–H), 1.23 (24H, d, ³*J*_{HH} = 6.55 Hz, C1–H), 1.20 (24H, d, ³*J*_{HH} = 6.55 Hz, C3–H), ¹³C{¹H} NMR (CD₂Cl₂, 300 K, in ppm): $\delta = 49.3$ (8C, t, ²*J*_{CP} = 5.7 Hz, C2), 24.5 (8C, t, ³*J*_{CP} = 2.6 Hz, C3), 24.0 (8C, t, ³*J*_{CP} = 6.4 Hz, C1); ³¹P{¹H} NMR (CD₂Cl₂, 300 K, in ppm): $\delta = 96.8$ (s, ¹*J*_{PSe} = -264.4 Hz). Data is consistent with that presented in ref.^[20].

2.23 Synthesis of tetrakis(pentafluorophenyl)diphosphanylselane $(1_{Se}^{(C_6F_5)})$

 $(Me_3Si)_2Se$ (225.3 mg, 1.00 mmol) was added to a solution of $(C_6F_5)_2PCl$ (800.0 mg, 2.00 mmol) in CH₃CN (10 mL) and was stirred for 12 h at rt. All volatiles were removed *in vacuo*. The resulting colorless solid was recrystallized in CH₂Cl₂ / *n*-pentane at -30 °C and dried *in vacuo*.

Mp.: decomp.: 108 °C; **Raman (37 mW, 700 scans, 300 K, in cm⁻¹):** 1641(100), 1396(40), 1385(14), 1291(19), 1142(5), 846(12), 832(49), 585(70), 506(40), 446(44), 432(74), 419(5), 395(42), 384(9), 370(7), 359(22), 315(12), 284(7), 240(12), 221(16), 153(26), 97(30), 77(93); **IR (300 K, ATR, in cm⁻¹):** 2924(vw), 2432(vw), 2222(vw), 1979(vw), 1730(vw), 1641(m), 1589(vw), 1515(m), 1466(vs), 1384(m), 1291(s), 1144(w), 1084(vs), 1031(w), 1010(w), 971(vs), 845(m), 830(w), 764(w), 751(vw), 727(w), 634(w), 626(vw); ¹⁹F{¹H} NMR (**CD₂Cl₂, 300 K, in ppm):** δ = −127.9 (8F, m, ³*J*_{FF} = 21.3 Hz, C2−F), −148.7 (4F, t, ³*J*_{FF} = 21.3 Hz, C4−F), −160.4 (8F, t, ³*J*_{FF} = 21.3 Hz, C3−F); ¹³C{¹H} NMR (**CD₂Cl₂, 300 K, in ppm):** δ = 147.2 (8C, dm, ¹*J*_{CF} = 246.8 Hz, C2), 143.2 (4C, dm, ¹*J*_{CF} = 258.4 Hz, C4), 137.7 (8C, dm, ¹*J*_{CF} = 253.2 Hz, C3), 108.4 (4C, m, C1); ³¹P{¹H} NMR (**CD₂Cl₂, 300 K, in ppm):** δ = 17.9 Hz); ⁷⁷Se NMR (**CD₂Cl₂, 300 K, in ppm):** δ = 304.5 (t of nonetts, ¹*J*_{SeF} = 30 Hz); **elemental analysis**: calculated for C₂₄F₂₀P₂Se: C: 35.63, H: −, N: −, found: C: 35.24, H: <0.10, N: <0.10.

2.24 Synthesis of tetrakis(di-*iso*-propylamino)diphosphanyltellane $(2_{Te}^{(N(iPr)_2)})$

 $((iPr)_2N)_2PCl$ (1.33 g, 5.00 mmol) was added to a suspension of Na₂Te (434.0 mg, 2.50 mmol) in CH₃CN (25 mL) and the orange suspension was stirred for 3 h at rt. CH₂Cl₂ (25 mL) was added to dissolve the product. The suspension was filtered over Celite and the volume of the filtrate was reduced *in vacuo*. The saturated solution

was layered with CH₃CN (12 mL) and stored at -30 °C, yielding orange crystals, which were dried *in vacuo*. ³¹P{¹H}NMR analysis of the solid shows purity of 90%, accompanied by a side product, which might be the intermediate [((*i*Pr)₂N)P)Te]⁻ (³¹P{¹H} NMR (CD₂Cl₂, 300 K, in ppm): $\delta = 102.6$ (s, ¹*J*_{PTe(125)} = -485 Hz), indicating incomplete reaction.

¹H NMR (CD₂Cl₂, 300 K, in ppm): 3.54 (8H, sept., ${}^{3}J_{HH} = 6.37$ Hz, C2–H), 1.21 (24H, d, ${}^{3}J_{HH} = 6.37$ Hz, C1–H), 1.20 (24H, d, ${}^{3}J_{HH} = 6.37$ Hz, C3–H), ${}^{13}C{}^{1}H$ NMR (CD₂Cl₂, 300 K, in ppm): $\delta = 51.0$ (8C, t, ${}^{2}J_{CP} = 5.5$ Hz, C2), 24.5 (8C, t, ${}^{3}J_{CP} = 2.9$ Hz, C1/C3), 22.6 (8C, t, ${}^{3}J_{CP} = 6.4$ Hz, C1/C3); ${}^{31}P{}^{1}H$ NMR (CD₂Cl₂, 300 K, in ppm): $\delta = 92.5$ (s, ${}^{1}J_{PTe(125)} = -558$ Hz, ${}^{1}J_{PTe(129)} = -463$ Hz); Data is consistent with that presented in ref.^[20].

Figure S2.24.1. ³¹P{¹H} NMR spectrum of the reaction mixtrue to yield $\mathbf{1}_{Te}^{(N(PT)_2)}$; contains ~10% of a si product, which might be the intermediate $[((iPr)_2N)P)Te]^{-}(CD_2Cl_2, 300 \text{ K}).$

2.25 Synthesis of tetramesityldiphosphanyltellane $(2_{Te}^{(Mes)})$

recrystallized in toluene / CH₃CN, resulting in orange cystals, which were dried in vacuo.

Yield: 179.6 mg, 54%; **mp.:** Decomp. 125 °C; **IR** (**300 K, ATR, in cm⁻¹**): 2958(vw), 2916(w), 2361(vw), 2089(vw), 1987(vw), 1954(vw), 1724(w), 1600(w), 1550(w), 1443(s), 1400(w), 1372(w), 1288(w), 1237(vw), 1026(m), 880(vw), 845(vs), 730(vw), 710(w), 616(w); **Raman** (**25 mW, 700 scans, 300 K, in cm⁻¹**): 2913(61), 1603(80), 1461(14),

1380(21), 1289(61), 1178(7), 1048(52), 617(8), 601(14), 574(20), 554(10), 412(25), 327(17), 171(20), 91(100); ¹H NMR (C₆D₆, 300 K, in ppm): $\delta = 6.66$ (8H, s, C3–H), 2.49 (24H, s, C5–H), 2.06 (12H, s, C6–H); ¹³C{¹H} NMR (C₆D₆, 300 K, in ppm): $\delta = 142.2$ (8C, t, ²*J*_{CP} = 8.2 Hz, C2), 138.2 (4C, s, C4), 134.4 (4C, t, ¹*J*_{CP} = 18.6 Hz, C1), 130.6 (8C, s, C3), 24.7 (8C, t, ³*J*_{CP} = 7.4 Hz, C5), 21.2 (4C, s, C6); ³¹P{¹H} NMR (C₆D₆, 300 K, in ppm): $\delta = -$ 18.5 (s, ¹*J*_{PTe(125)} = -413 Hz, ¹*J*_{PTe(123)} = -344 Hz); ¹²⁵Te NMR (C₆D₆, 300 K, in ppm): $\delta = 527.1$ (t, ¹*J*_{PTe(125)} = -413 Hz); elemental analysis: calculated for C₃₆H₄₄P₂Te: C 64.90, H: 6.66, N: -, S: - found: C: 64.71, H: 6.45, N: 0.10, S. 0.19.

2.26 Synthesis of the Ag-Complex 8[OTf]₂

AgOTf (257.0 mg, 1.0 mmol) was added to a solution of $2_{s}^{(rBu)}$ in CH₂Cl₂ (4 mL) and the colorless solution was stirred for 2 h at rt. All volatiles were removed *in vacuo*, yielding a colorless solid, which was recrystallized in fluorobenzene / CH₂Cl₂ at -30 °C.

Yield: 981.4 mg, (82%).

Mp.: Decomp. 140 °C; **IR** (**300K**, **ATR:** in cm⁻¹): 2949(vw), 2867(vw), 1590(vw), 1474(w), 1394(w), 1369(w), 1283(m), 1237(w), 1219(w), 1169(vw), 1147(m), 1023(s), 938(vw), 804(w), 767(w), 754(vw), 689(vw), 634(vs); ¹**H NMR** (**CD**₂**Cl**₂, **300 K**, in **ppm**): $\delta = 1.57$ (36H, m); ¹³C{¹H} **NMR** (**CD**₂**Cl**₂, **300 K**, in **ppm**): $\delta = 121.4$ (2C, q, ¹*J*_{CF} = 322.8 Hz, CF₃), 42.5 (8C, s, C1), 30.9 (24C, s, C2); ³¹P{¹H} **NMR** (**CD**₂**Cl**₂, **300 K**, in **ppm**): $\delta = 123.2$ -119.8 (m); **Raman (40 mW, 400 scans, 300 K, in cm⁻¹):** 2905(17), 2905(49), 2867(14), 2781(11), 2721(11), 1471(31), 1443(14), 1396(9), 1372(9), 1211(9), 1174(23), 1026(86), 1001(11), 938(29), 805(86), 757(31), 599(11), 575(100), 518(9), 484(9), 384(9), 348(29); elemental **analysis**: calculated for C₃₇H₈₀Ag₂F₆O₆P₄S₄^{*}0.5 C₆H₅F: C 38.41, H: 6.65, N: -, S: 10.25, found: C: 38.44, H: 5.97, N: 0.04, S: 10.33.

Condensation Reactions of Chlorophosphanes with Chalcogenides

Figure S2.26.1. ³¹P{¹H} NMR spectra of **8**[OTf]₂ at different temperatures (CD₂Cl₂, 185–295 K; 245 K is excluded).

2.27 Synthesis of 6[OTf]

³¹P{¹H} NMR (CD₂Cl₂, 300 K, in ppm): AM spin system: $\delta(P_M) = 38.2$ (d, ${}^1J_{PP} = -46.1$ Hz), $\delta(P_A) = 16.2$ (d, ${}^1J_{PP} = -46.1$ Hz). Data is consistent with that presented in ref.^[21]. Isolation of the product was not attempted.

product are marked with asterisks (*).

3 Crystallographic Details

	$1_{\mathrm{Se}}^{(\mathrm{Me})}$	$1_{\mathrm{Se}}^{(\mathrm{Ph})}$	$2_{\mathrm{S}}^{(t\mathrm{Bu})}$	
formula	$C_4H_{12}P_2Se$	$C_{24}H_{20}P_2Se$	$C_{16}H_{36}P_{2}S$	
$M_{\rm r}$ in g mol ⁻¹	201.04	449.30	322.45	
color, habit	colorless, block	yellow, plate	colorless, prism	
crystal system	tetragonal	monoclinic	orthorhombic	
space group	$P4_2/mbc$	$P2_{1}/c$	$P2_{1}2_{1}2_{1}$	
a in Å	12.5722(6)	9.2358(6)	8.8297(3)	
b in Å	12.5722(6)	13.6734(9)	14.8981(6)	
c in Å	10.7752(5)	16.3139(10)	15.2255(6)	
$lpha$ in $^{\circ}$	90	90	90	
eta in $^\circ$	90	91.974(2)	90	
γin °	90	90	90	
$V \text{ in } \text{\AA}^3$	1703.1(1)	2059.0(2)	2002.84(13)	
Z	8	4	4	
T in K	153(2)	153(2)	123.01(10)	
crystal size in mm ³	0.24 x 0.21 x 0.18	0.31 x 0.30 x 0.29	0.1 x 0.05 x 0.05	
$\rho_{\rm c}$ in g cm ⁻³	1.568	1.449	1.069	
F(000)	800	912	712.0	
$\lambda_{ m XKlpha}$ in Å	0.71073	0.71073	1.54184	
$ heta_{ m min}$ in $^\circ$	2.29	1.94	4.152	
$ heta_{ m max}$ in $^\circ$	27.86	22.88	73.431	
	$-16 \le h \le 16$	$-12 \leq h \leq 12$	$-10 \leq h \leq 7$	
index range	$-16 \le k \le 16$	$-17 \le k \le 17$	$-18 \le k \le 15$	
win mm ⁻¹	$-14 \le 1 \le 14$	$-18 \le 1 \le 21$	$-18 \le 1 \le 1/$	
μ in mm	4.689	1.985	2.834	
absorption correction	multi-scan	multi-scan	multi-scan	
reflections collected	15850	16724	9558	
reflections unique	1077	4896	3710	
$R_{\rm int}$	0.0391	0.0265	0.0460	
reflection obs. [F> 2σ (F)]	1046	4342	3422	
residual density in e Å ⁻³	1.06, -0.70	0.58, -0.24	1.185, -0.291	
parameters	40	244	172	
GOOF	1.083	1.083	1.071	
R_1 [I>2 σ (I)]	0.0272	0.0291	0.0665	
wR_2 (all data)	0.0783	0.0855	0.1787	
CCDC	1059838	1059830	1059834	

Table 3.1 Crystallographic data and details of the structure refinements of
compounds $\mathbf{1}_{Se}^{(Me)}$, $\mathbf{1}_{Se}^{(Ph)}$ and $\mathbf{2}_{S}^{(tBu)}$.

-	$2_{se}^{(tBu)}$	2 ^(Mes)	$2_{se}^{(Mes)}$
formula	C ₁₆ H ₃₆ P ₂ Se	$C_{77}H_{100}P_4S_2$	C36H44P2Se
M_r in g mol ⁻¹	369.35	1213.56	617.61
color, habit	colorless, plate	colorless, block	colorless, block
crystal system	monoclinic	triclinic	triclinic
space group	$P2_1$	<i>P</i> –1	<i>P</i> –1
a in Å	8.8123(5)	11.7496(2)	10.8068(6)
b in Å	15.0897(8)	11.9819(2)	11.3444(7)
c in Å	15.0874(8)	13.2734(3)	13.3042(6)
$lpha$ in $^{\circ}$	90	84.780(1)	81.832(2)
eta in $^\circ$	91.709(2)	82.927(1)	80.203(2)
γ in $^{\circ}$	90	70.046(1)	83.225(2)
V in Å ³	2005.35(19)	1740.71(6)	1583.59(15)
Z	4	1	2
T in K	153(2)	153.15	100.01
crystal size in mm ³	0.33 x 0.31 x 0.29	$0.30 \times 0.22 \times 0.20$	0.37 x 0.28 x 0.14
$ ho_{ m c}$ in g cm ⁻³	1.223	1.158	1.295
F(000)	784	654	648.0
$\lambda_{{ m XK}lpha}$ in Å	0.71073	0.71073	0.71073
$ heta_{\min}$ in $^\circ$	1.91	3.097	1.565
$ heta_{ m max}$ in $^\circ$	27.88	29.133	30.018
	$-11 \leq h \leq 11$	$-16 \leq h \leq 16$	$-15 \leq h \leq 15$
index range	$-19 \le k \le 19$ -19 < 1 < 19	$-16 \le k \le 16$ -18 < 1 < 18	$-15 \le k \le 15$ $-18 \le 1 \le 18$
μ in mm ⁻¹	2 022	0.210	1 310
absorption correction	multi-scan	multi-scan	multi-scan
reflections collected	25077	24051	63643
reflections unique	9535	9304	9191
$R_{\rm int}$	0.0274	0.0201	0.0314
reflection obs. [F> $2\sigma(F)$]	9051	7674	7920
residual density in e Å ⁻³	0.44, -0.34	1.405, -0.427	0.766, -0.456
parameters	367	439	364
GOOF	1.098	1.029	1.158
R_1 [I>2 σ (I)]	0.0264	0.0582	0.0282
wR_2 (all data)	0.0724	0.1686	0.0789
CCDC	1059831	1059835	1059836

Table	3.2	Crystall	ographic	data	and	details	of	the	structure	refinements	of
compo	ound	s $2_{\mathrm{Se}}^{(t\mathrm{Bu})}$,	$2_{\rm S}^{\rm (Mes)}$ as	nd $2_{S_{\ell}}$	(Mes)						

	$2_{\text{Te}}^{(\text{Mes})}$	$2_{se}^{(N(iPr)_2)}$	$2_{s}^{(C_{6}F_{5})}$		
formula	$C_{36}H_{44}P_{2}Te$	$C_{24}H_{56}N_4P_2Se$	$C_{38}H_{16}F_{20}P_2S$		
$M_{\rm r}$ in g mol ⁻¹	666.25	541.62	946.52		
color, habit	orange, block	colorless, plate	colorless, prism		
crystal system	monoclinic	monoclinic	monoclinic		
space group	$P2_{1}/c$	C2/c	P2/n		
a in Å	20.1473(15)	23.7312(13)	11.5930(1)		
b in Å	15.0130(13)	7.6556(4)	7.37622(9)		
c in Å	22.7599(17)	17.9381(10)	21.8527(3)		
$lpha$ in $^{\circ}$	90	90	90		
β in $^{\circ}$	111.289(3)	109.237(6)	102.186(1)		
γin °	90	90	90		
V in Å ³	6414.4(9)	3077.0(3)	1826.57(4)		
Z	8	4	2		
T in K	153(2)	123	123.0(2)		
crystal size in mm ³	0.2 x 0.14 x 0.09	0.13 imes 0.07 imes 0.02	0.28 x 0.05 x 0.03		
$\rho_{\rm c}$ in g cm ⁻³	1.380	1.169	1.721		
F(000)	2736.0	1168:0	940		
$\lambda_{\rm XK\alpha}$ in Å	0.71073	1.54184	1.54184		
$ heta_{\min}$ in $^\circ$	2.17	3.946	4.012		
θ_{max} in $^{\circ}$	55.068	73.534	73.468		
index range	$-19 \le h \le 26$ $-19 \le k \le 16$ $-29 \le l \le 29$	$-28 \le h \le 29$ $-8 \le k \le 9$ $-22 \le l \le 21$	$-14 \le h \le 14$ $-9 \le k \le 7$ $-26 \le 1 \le 26$		
μ in mm ⁻¹	1.050	2.749	2.860		
absorption correction	multi-scan	analytical	analytical		
reflections collected	59652	13404	12231		
reflections unique	9535	3054	3597		
$R_{\rm int}$	0.0284	0.0340	0.0216		
reflection obs. [F> $2\sigma(F)$]	9051	2766	3263		
residual density in e Å ⁻³	0.51, -0.36	0.394, -0.296	0.264, -0.265		
parameters	727	141	276		
GOOF	1.025	1.040	1.043		
$R_1 [I > 2\sigma(I)]$	0.0285	0.0261	0.0276		
wR_2 (all data)	0.0687	0.0655	0.0765		
CCDC	1059832	1059837	1059833		

Table 3.3 Crystallographic data and details of the structure refinements of compounds $2_{Te}^{(Mes)}$, $2_{Se}^{(N(iPr)_2)}$ and $2_{S}^{(C_6F_5)}$.

	$2_{Se}^{(C_6F_5)}$	7	8 [OTf] ₂
formula	$C_{38}H_{16}F_{20}P_2Se$	$C_{28}H_{20}FeO_3P_2S$	$C_{40}H_{77}Ag_2F_7O_6P_4S_4$
$M_{\rm r}$ in g mol ⁻¹	993.41	570.29	1254.87
color, habit	colorless, block	yellow, plate	colorless, block
crystal system	monoclinic	monoclinic	monoclinic
space group	P2/n	$P2_{1}/n$	$P2_{1}/n$
a in Å	11.6006(5)	10.5488(2)	21.2723(7)
b in Å	7.3766(3)	16.6943(3)	12.0446(4)
c in Å	22.0520(10)	14.8681(3)	23.0396(8)
$lpha$ in $^{\circ}$	90	90	90
eta in $^\circ$	101.6672(17)	96.7590(10)	115.8090(10)
γin °	90	90	90
$V \text{ in } \text{\AA}^3$	1848.07(14)	2600.15(9)	5314.3(3)
Z	2	4	4
T in K	153(2)	153(2)	173.15
crystal size in mm ³	0.2 x 0.11 x 0.09	0.34 x 0.20 x 0.18	0.34 x 0.25 x 0.25
$ ho_{\rm c}$ in g cm ⁻³	1.785	1.457	1.568
F(000)	976.0	1168	2584
$\lambda_{{ m XK}lpha}$ in Å	0.71073	0.71073	0.71073
$ heta_{\min}$ in $^\circ$	4.376	1.84	1.089
$ heta_{ m max}$ in $^\circ$	58.398	27.88	29.177
index range	$-15 \le h \le 13$ $-9 \le k \le 10$ $-30 \le l \le 30$	$-13 \le h \le 11$ $-21 \le k \le 21$ $-19 \le 1 \le 19$	$-25 \le h \le 29$ $-9 \le k \le 16$ $-31 \le 1 \le 29$
μ in mm ⁻¹	1.234	0.816	1.080
absorption correction	multi-scan	multi-scan	multi-scan
reflections collected	13723	25897	43029
reflections unique	4941	6191	14352
$R_{ m int}$	0.0190	0.0426	0.0161
reflection obs. [F> $2\sigma(F)$]	4193	5042	12529
residual density in e Å ⁻³	0.31, -0.25	0.51, -0.61	0.83, -1.23
parameters	277	325	623
GOOF	1.033	1.181	1.181
R_1 [I>2 σ (I)]	0.0282	0.0358	0.0249
wR_2 (all data)	0.0702	0.1310	0.0858
CCDC	1059840	1059829	1059839

Table 3.4 Crystallographic data and details of the structure refinements of compounds $2_{se}^{(C_6F_5)}$, 6 and 7[OTf]2.

4 References

- [5] Bonnaventure, I.; Charette, A. B. J. Org. Chem. 2008, 73, 6330-6340.
- [6] (a) H. C. E. McFarlane, W. McFarlane, J. Nash, Dalton Trans. 1980, 240–244; (b) S.
- Aime, R. K. Harris, E. M. McVicker, M. Fild, *Dalton Trans.* 1976, 2144–2153; (c) M. A. M.
- Forgeron, M. Gee, R. E. Wasylishen, J. Phys. Chem. A 2004, 108, 4895–4908; (d) J. E. Del
- Bene, J. Elguero, I. Alkorta, J. Phys. Chem. A 2004, 108, 3662–3667.
- [7] W. McFarlane, J. A. Nash, Chem. Commun. 1969, 913-913.
- [8] (a) D. L. Pavia, G. M. Lampman, G. S. Kriz, J. R. Vyvvan, Introduction to Spectroscopy,
- 5th Ed., Brooks and Cole, Belmont USA, 2008, page 269ff; (b) M. Hesse, H. Meier, B. Zeeh,

Spektroskopische Methoden in der organischen Chemie, 8th Ed., Thieme, Stuttgart Germany, **2012**, page 92ff; (c) P. S. Kalsi, Spectroscopy of Organic Compounds, 6th Ed. New Age International, NewDehli India, **2005**, page 270ff.

- [9] CrysAlisPRO, Oxford Diffraction /Agilent Technologies UK Ltd, Yarnton, England.
- [10] Bruker (2007). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- [11] Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- [12] Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009),
 J. Appl. Cryst. 42, 339–341.
- [13] Sheldrick, G. M.. Acta Cryst., 2008, A64, 112-122.
- [14] Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- [15] Gruber, P. G. Jones, R. Schmutzler Chem. Ber. 1989, 6, 1313–1317.
- [16] V. L. Foss, A. Y. Veits, P. L. Khukhmisterov, V.A. Solodenko F. I. Lutsenko, *Zhurnal Obshchei Khimii* 1977, 47, 477–478.
- [17] H. Matschiner, F. Krech, A. Steinert, Z. Anorg. Allg. Chem., 1969, 371, 256-262.
- [18] M. Baudler, A. Zarkadas, Chem. Ber. 1972, 105, 3844-3849.
- [19] V. L. Foss, P. L. Khukhmisterov, F. I. Lutsenko, *Zhurnal Obshchei Khimii* 1982, 52, 1063–1067.
- [20] W. W. Du Mont, R. Hensel, W. McFarlane, I. J. Colquhoun, M. L. Ziegler, O. Serhadli, *Chem. Ber.* **1989**, *122*, 37-41.
- [21] J. J. Weigand, N. Burford, D. Mahnke, A. Decken, Inorg. Chem. 2007, 46, 7689–7691.

^[1] So, J.- H.; Boudjouk, P. Synthesis 1989, 306–307.

^[2] Mancino, G.; Ferguson, A. J.; Beeby, A.; Long, J. L.; Jones T. S. J. Am. Chem. Soc. 2006, 127, 524–525.

^[3] Dellinger, D. J.; Sheehan, D. M.; Christensen, N. K.; Lindberg, J. G.; Caruthers, M. H. J. Am. Chem. Soc. **2003**, *125*, 940–950.

^[4] Narsireddy, M.; Yamamoto, Y. J. Org. Chem. 2008, 73, 9698–9709.