Thermoresponsive Dendronized Polypeptides showing Switchable Recognition to Catechols

Jiatao Yan,* Kun Liu, Wen Li, Huang Shi, and Afang Zhang*

Laboratory of Polymer Chemistry, Department of Polymer Materials, College of Materials Science and Engineering, Shanghai University, Materials Building Room 447, Nanchen Street 333, Shanghai 200444, China. Emails: jiataoyan@shu.edu.cn (J.Y.), azhang@shu.edu.cn (A. Z.)

Table of Contents

Figure S1. ¹ H NMR spectra of P₄₄G1 and P₄₄G2 in d ₆ -DMSO	S3
Figure S2. AFM height images of P ₂₀₅ G1 (left) and P ₂₀₅ G2 (right) spin-coated on mica ·······	S3
Figure S3. The overlay of CD (top) and UV (bottom) spectra of P ₄₄ G1 at 20 °C without or	
with heating history (cooling from 50 °C)	S4
Figure S4. Plots of transmittance versus temperature for 0.1 wt% P ₅₆ G1 and P ₅₆ (G1 _{0.89} -co-	
$B_{0.11}$), and $P_{56}(G2_{0.88}$ - co - $B_{0.12}$) with or without ARS in pH 7 buffer	S4
Figure S5. (a) The CD (top) and UV (bottom) spectra of P ₅₆ ONH ₂ , P ₅₆ G1, and P ₅₆ (G1 _{0.89} -co-	
$B_{0.11}$) at 20 °C. (b) The CD (top) and UV (bottom) spectra of $P_{56}(G1_{0.89}-co-B_{0.11})$ at 20 and 50	
°C, or when recovered to 20 °C·····	S4
Figure S6. UV-vis spectra of ARS in the presence of P ₅₆ (G2 _{0.88} -co-B _{0.12}) (left) and MB (right)	S5
Figure S7. Fluorescence spectra of ARS without or with copolypeptides at 20 °C······	S5
Figure S8. Temperature-varied ¹ H NMR spectra of the complex ARS/P ₅₆ (G1 _{0.89} -co-B _{0.11}) in	
pH 7 buffer·····	S5
Figure S9. Temperature-varied fluorescence spectra of the complex ARS/P ₅₆ (G1 _{0.89} -co-B _{0.11})	
from 20 to 71 °C in pH 7 buffer	S6
Figure S10. ¹ H NMR spectra of dopamine, P ₅₆ (G1 _{0.89} -co-B _{0.11}), and their mixture in pH 7	
buffer	S6
Figure S11. Temperature-varied ¹ H NMR spectra of the complex dopamine/P ₅₆ (G1 _{0.89} -co-	
B _{0.11}) in pH 7 buffer	S7
Figure S12. ¹ H NMR spectrum of compound 1 in d_6 -DMSO	S 8
Figure S13. ¹³ C NMR spectrum of compound 1 in d ₆ -DMSO	S 8
Figure S14. ¹ H NMR spectrum of NCA monomer 2 in d_6 -DMSO	S9
Figure S15. ¹³ C NMR spectrum of NCA monomer 2 in d_6 -DMSO	S9
Figure S16. ¹ H NMR spectrum of P₄₄Boc in <i>d</i> ₆ -DMSO······	S10
Figure S17. 1 H NMR spectrum of $\mathbf{P}_{205}\mathbf{Boc}$ in d_{6} -DMSO	S10
Figure S18. ¹ H NMR spectrum of P_nONH₂ in <i>d</i> ₆ -DMSO	S11
Figure S19. ¹ H NMR spectrum of MB in pH 7 D ₂ O buffer	S11

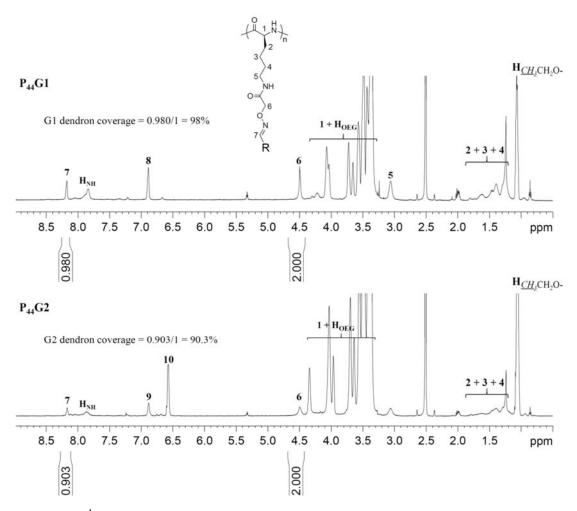


Figure S1. 1 H NMR spectra of **P**₄₄**G1** and **P**₄₄**G2** in d_6 -DMSO. The dendron coverage was calculated by comparing the integration of proton signal 7 with that of signal 6.

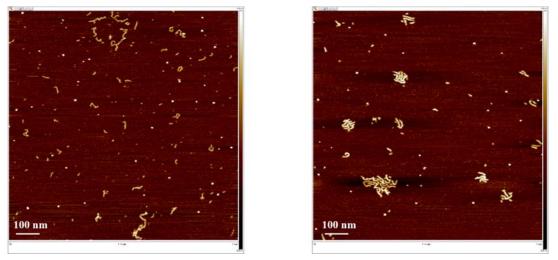


Figure S2. AFM height images of $P_{205}G1$ (left) and $P_{205}G2$ (right) spin-coated on mica.

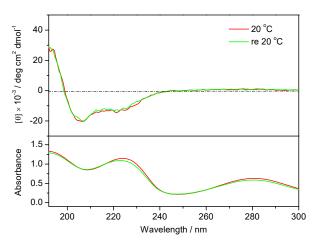


Figure S3. The overlay of CD (top) and UV (bottom) spectra of **P**₄₄**G1** at 20 °C without or with heating history (cooling from 50 °C).

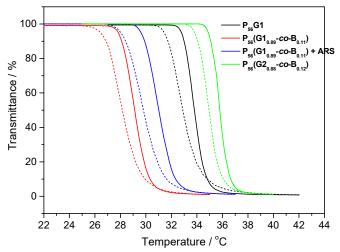


Figure S4. Plots of transmittance versus temperature for 0.1 wt% $P_{56}G1$, $P_{56}(G1_{0.89}$ -co- $B_{0.11}$), and $P_{56}(G2_{0.88}$ -co- $B_{0.12}$) with or without ARS in pH 7 buffer. [ARS] = 50 μ M.

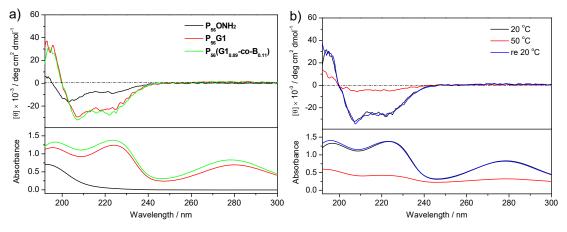


Figure S5. (a) The CD (top) and UV (bottom) spectra of $P_{56}ONH_2$, $P_{56}G1$, and $P_{56}(G1_{0.89}-co-B_{0.11})$ at 20 °C. (b) The CD (top) and UV (bottom) spectra of $P_{56}(G1_{0.89}-co-B_{0.11})$ at 20 and 50 °C, or when recovered to 20 °C.

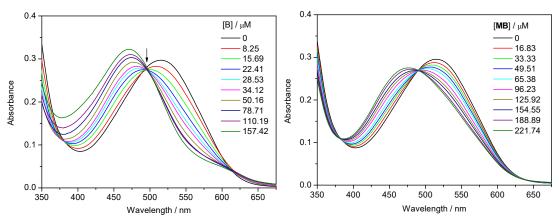


Figure S6. UV-vis spectra of ARS in the presence of $P_{56}(G2_{0.88}\text{-}co\text{-}B_{0.12})$ (left) and MB (right). [ARS] = 50 μ M, pH = 7. [B] represents the concentration of phenylboronic acid unit in copolypeptides.

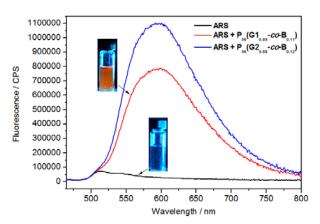


Figure S7. Fluorescence spectra of ARS without or with copolypeptides at 20 $^{\circ}$ C. Inserted photos were taken under blue light. [ARS] = [B] = 50 μ M, pH = 7.

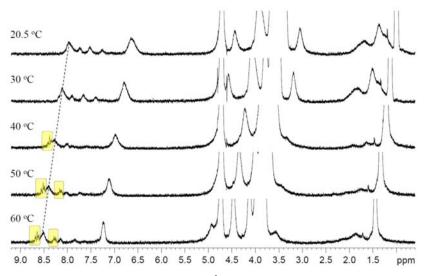


Figure S8. Temperature-varied 1 H NMR spectra of the complex ARS/ $P_{56}(G1_{0.89}$ -co- $B_{0.11})$ in pH 7 buffer. The proton signals marked in yellow come from decomplexed ARS during phase transition.

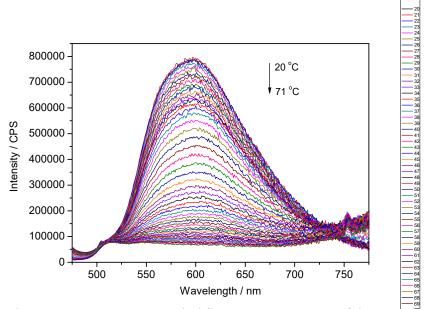


Figure S9. Temperature-varied fluorescence spectra of the complex ARS/ $P_{56}(G1_{0.89}$ -co- $B_{0.11})$ from 20 to 71 °C in pH 7 buffer. The interval of temperature change is 1 °C.

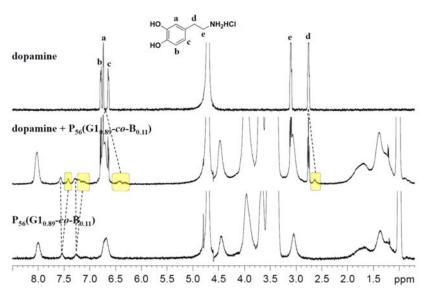


Figure S10. ¹H NMR spectra of dopamine, P₅₆(G1_{0.89}-co-B_{0.11}), and their mixture in pH 7 buffer. The peaks marked in yellow correspond to the new formed boronate.

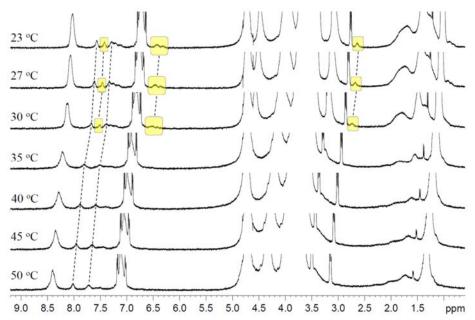


Figure S11. Temperature-varied 1 H NMR spectra of the complex dopamine/ $P_{56}(G1_{0.89}-co-B_{0.11})$ in pH 7 buffer. The proton signals from boronate (marked in yellow) gradually disappear with the increase of solution temperature.

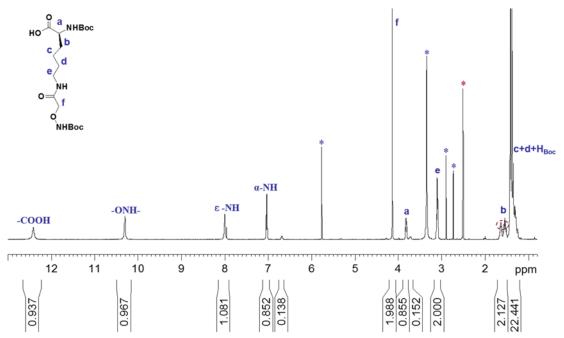


Figure S12. 1 H NMR spectrum of compound 1 in d_6 -DMSO. Signals from residual solvents (DMSO, DMF, and dichloromethane) are marked with asterisks.

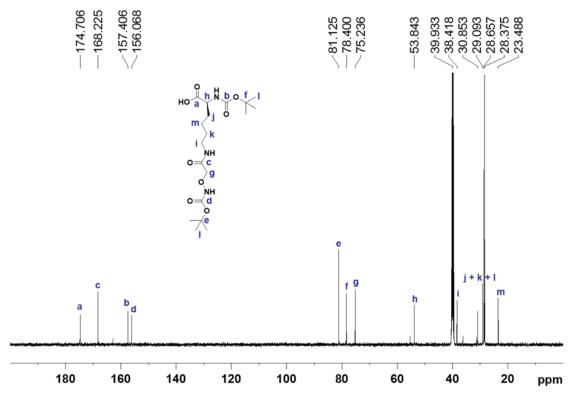


Figure S13. ¹³C NMR spectrum of compound 1 in d₆-DMSO.

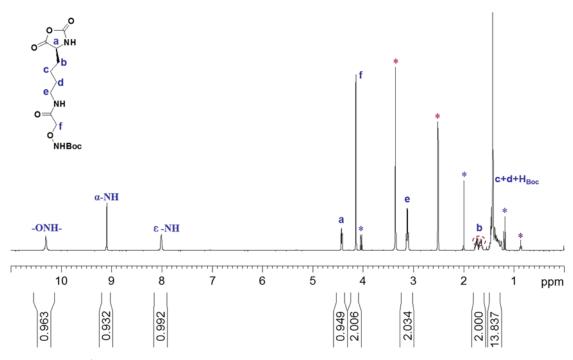


Figure S14. ¹H NMR spectrum of NCA monomer **2** in *d*₆-DMSO. Signals from residual solvents (DMSO and ethyl acetate) are marked with asterisks.

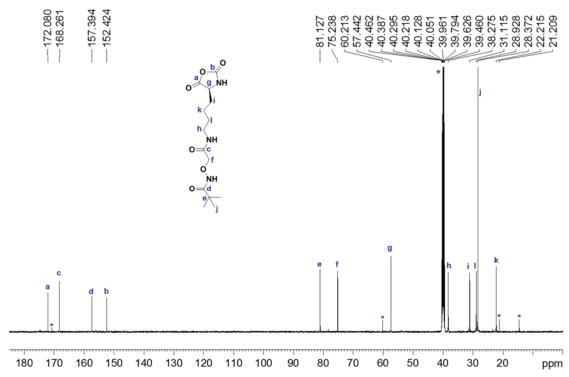


Figure S15. 13 C NMR spectrum of NCA monomer **2** in d_6 -DMSO. Solvent signals are marked with asterisks.

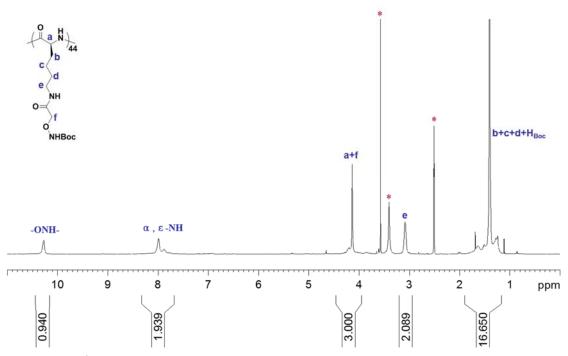


Figure S16. ¹H NMR spectrum of **P₄₄Boc** in *d*₆-DMSO. Solvent signals are marked with asterisks.

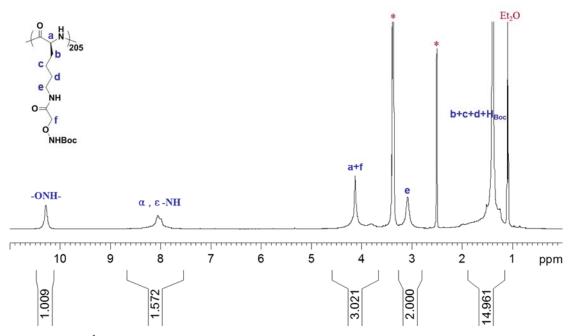


Figure S17. 1 H NMR spectrum of $P_{205}Boc$ in d_{6} -DMSO. Solvent signals are marked with asterisks.

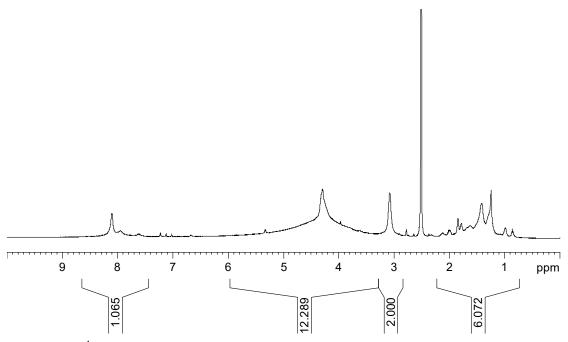


Figure S18. 1 H NMR spectrum of $P_{n}ONH_{2}$ in d_{6} -DMSO.

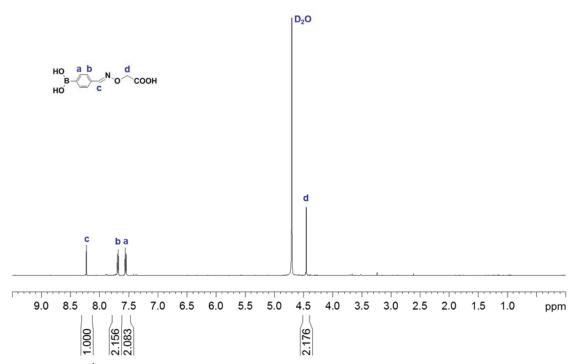


Figure S19. ^{1}H NMR spectrum of \boldsymbol{MB} in pH 7 D₂O buffer.