Significant Improvement of Semiconducting Performance of the
Diketopyrrolopyrrole-Quaterthiophene Conjugated Polymerthrough Side-Chain Engineering via Hydrogen-Bonding
Jingjing Yao, Chenmin Yu, Zitong Liu,* Hewei Luo, Yang Yang, Guanxin Zhang, Deqing Zhang*
Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
E-mail: dqzhang@iccas.ac.cn

1. Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) Curves S2
2. Cyclic Voltammograms S2
3. Synthesis and Characterization of pDPP4T, pDPP4T-A, pDPP4T-B and pDPP4T-C S3
4. HOMO/LUMO Energies and Band Gaps of pDPP4T-A, pDPP4T-B and pDPP4T-C S5
5. Fabrication of FET Devices S6
6. Transfer and Output Curves of BGBC and BGTC Devices with Thin Films of pDPP4T-1, pDPP4T-2, pDPP4T-3, pDPP4T, pDPP4T-A, pDPP4T-B and pDPP4T-CS8
7. Devices Stability Data S10
8. 1-D GIXRD Patterns S10
9. AFM Images of pDPP4T-A, pDPP4T-B and pDPP4T-C S12
10. Fabrication of Organic Photovoltaic Cells S12
11. $J-V$ Curves and IPCE Spectra of pDPP4T-A, pDPP4T-B and pDPP4T-C with $\mathrm{PC}_{71} \mathrm{BM}$ S13
12. ${ }^{1} \mathrm{HNMR}$ and ${ }^{13} \mathrm{CNMR}$ Spectra S14
13. Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) Curves

Figure S1. (a-b) TGA curves of pDPP4T-1, pDPP4T-2, pDPP4T-3, pDPP4T, pDPP4T-A, pDPP4T-B and pDPP4T-C: heating rate: $10^{\circ} \mathrm{C} / \mathrm{min}$. From $25^{\circ} \mathrm{C}$ to $550^{\circ} \mathrm{C}$ under nitrogen atmosphere; (c-d) DSC curves (endo up) of pDPP4T-1, pDPP4T-2, pDPP4T-3, pDPP4T, pDPP4T-A, pDPP4T-B and pDPP4T-C recorded at a heating and cooling rate $\left(0-250{ }^{\circ} \mathrm{C}\right)$ of $10^{\circ} \mathrm{C} / \mathrm{min}$ under nitrogen.

2. Cyclic Voltammograms

Figure S2. Cyclic voltammograms of pDPP4T-1, pDPP4T-2, pDPP4T-3, pDPP4T, pDPP4T-A, pDPP4T-B and pDPP4T-C films at a scan rate of $100 \mathrm{mVs}^{-1}$. Pt was used as working electrode and counter electrode and $\mathrm{Ag} / \mathrm{AgCl}$ (saturated KCl) as reference electrode; $n-\mathrm{Bu}_{4} \mathrm{NPF}_{6}(0.1 \mathrm{M})$ in $\mathrm{CH}_{3} \mathrm{CN}$ as supporting electrolyte. For calibration, the redox potential of ferrocene/ferrocenium $\left(\mathrm{Fc}_{\mathrm{Fc}}{ }^{+}\right)$was measured under the same conditions.
3. Synthesis and Characterization of pDPP4T, pDPP4T-A, pDPP4T-B and pDPP4T-C

Synthesis of pDPP4T. Compound $2(101.9 \mathrm{mg}, 0.10 \mathrm{mmol})$, compound $3(49.2 \mathrm{mg}$, $0.10 \mathrm{mmol}), \mathrm{P}(o-\text { tol })_{3}(4.9 \mathrm{mg}, 0.016 \mathrm{mmol})$ and $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(1.8 \mathrm{mg}, 0.0020 \mathrm{mmol})$ were used. The purified polymer was collected to give deep green solid ($83.3 \mathrm{mg}, 81 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (500 MHz, 1,1,2,2-tetrachloroethane- $d_{2}, 100^{\circ} \mathrm{C}$): δ 8.98-8.92 (m, br, 2H), 7.31-6.94 (m, br, $6 \mathrm{H}), 4.09-4.02(\mathrm{~m}, \mathrm{br}, 4 \mathrm{H}), 2.18-2.03(\mathrm{~m}, \mathrm{br}, 10 \mathrm{H}), 1.30(\mathrm{~s}, 56 \mathrm{H}), 0.92(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, solid): $\delta 160.09,140.33,136.05,128.04,123.69,107.94,45.24,38.36,32.08$, $30.09,23.05,14.41 ; M_{\mathrm{w}} / M_{\mathrm{n}}(\mathrm{GPC})=40.2 / 18.8 \mathrm{~kg} \mathrm{~mol}^{-1}$. Anal. calcd for $\left(\mathrm{C}_{62} \mathrm{H}_{90} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{4}\right)_{\mathrm{n}}: \mathrm{C}$, $72.75 ; \mathrm{H}, 8.86 ; \mathrm{N}, 2.74 ; \mathrm{S}, 12.53$. Found: C, 72.50; H, 8.92; N, 2.78; S, 12.39.

Synthesis of pDPP4T-A. Compound $\mathbf{6}(2.6 \mathrm{mg}, 0.0033 \mathrm{mmol})$, compound $2(101.9 \mathrm{mg}$, $0.10 \mathrm{mmol})$, compound $3(50.7 \mathrm{mg}, 0.10 \mathrm{mmol}), \mathrm{P}(o-\mathrm{tol})_{3}(5.0 \mathrm{mg}, 0.016 \mathrm{mmol})$ and $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(1.9 \mathrm{mg}, 0.0021 \mathrm{mmol})$ were used. The purified polymer was collected to give deep green solid ($86.7 \mathrm{mg}, 82 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 1,1,2,2$-tetrachloroethane- d_{2}, $\left.100{ }^{\circ} \mathrm{C}\right): \delta 8.85$ (s, br, 2H), 7.07-6.91 (m, br, 6H), 4.09 (s, br, 4H), 2.25-2.08 (m, br, 10H),
1.67-1.32 (m, br, 56H), 0.93 (s, 12H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , solid): $\delta 160.91,140.94,137.32$, $129.00,124.76,108.64,45.08,38.79,37.63,32.66,30.58,23.56,14.88 . M_{\mathrm{w}} / M_{\mathrm{n}}(\mathrm{GPC})=$ $211.6 / 74.0 \mathrm{~kg} \mathrm{~mol}^{-1}$. Anal. calcd. for $\left(\mathrm{C}_{1936} \mathrm{H}_{2878} \mathrm{~N}_{62} \mathrm{O}_{62} \mathrm{~S}_{124}\right)_{\mathrm{n}}$: C, $72.69 ; \mathrm{H}, 9.07 ; \mathrm{N}, 2.71 ; \mathrm{S}$, 12.43. Found: C, $72.27 ; \mathrm{H}, 8.57 ; \mathrm{N}, 2.82 ; \mathrm{S}, 12.51$.

Synthesis of pDPP4T-B. Compound $\mathbf{6}(4.0 \mathrm{mg}, 0.0050 \mathrm{mmol})$, compound $2(101.9 \mathrm{mg}$, $0.10 \mathrm{mmol})$, compound $3(51.8 \mathrm{mg}, 0.11 \mathrm{mmol}), \mathrm{P}(o-\text { tol })_{3}(5.1 \mathrm{mg}, 0.017 \mathrm{mmol})$ and $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(1.9 \mathrm{mg}, 0.0021 \mathrm{mmol})$ were used. The purified polymer was collected to give deep green solid ($88.7 \mathrm{mg}, 83 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (500 MHz, , 1,1,2,2-tetrachloroethane- d_{2}, $\left.100{ }^{\circ} \mathrm{C}\right): \delta 8.89(\mathrm{~s}, \mathrm{br}, 2 \mathrm{H}), 7.08-6.93(\mathrm{~m}, \mathrm{br}, 6 \mathrm{H}), 4.09(\mathrm{~s}, \mathrm{br}, 4 \mathrm{H}), 2.25-2.07(\mathrm{~m}, \mathrm{br}, 10 \mathrm{H})$, 1.69-1.32 (m, br, 56H), 0.93 (s, 12H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , solid): $\delta 160.87,141.25,136.74$, $128.59,124.29,108.37,45.46,38.73,32.67,30.72,23.62,14.94 . M_{\mathrm{w}} / M_{\mathrm{n}}(\mathrm{GPC})=$ 190.9/91.5 kg mol ${ }^{-1}$. Anal. calcd. for $\left(\mathrm{C}_{1306} \mathrm{H}_{1938} \mathrm{~N}_{42} \mathrm{O}_{42} \mathrm{~S}_{84}\right)_{\mathrm{n}}: \mathrm{C}, 72.64 ; \mathrm{H}, 9.05 ; \mathrm{N}, 2.72 ; \mathrm{S}$, 12.47. Found: C, $71.89 ; \mathrm{H}, 8.68 ; \mathrm{N}, 2.80 ; \mathrm{S}, 12.49$.

Synthesis of pDPP4T-C. Compound $6(8.0 \mathrm{mg}, 0.010 \mathrm{mmol})$, compound $2(101.9 \mathrm{mg}$, $0.10 \mathrm{mmol})$, compound $3(54.1 \mathrm{mg}, 0.11 \mathrm{mmol}), \mathrm{P}(o-\mathrm{tol})_{3}(5.4 \mathrm{mg}, 0.018 \mathrm{mmol})$ and $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(2.0 \mathrm{mg}, 0.0022 \mathrm{mmol})$ were used. The purified polymer was collected to give deep green solid ($92.2 \mathrm{mg}, 82 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (500 MHz, , 1, 1,2,2-tetrachloroethane- d_{2}, $\left.100^{\circ} \mathrm{C}\right): \delta 8.99-8.90(\mathrm{~m}, \mathrm{br}, 2 \mathrm{H}), 7.14-6.97(\mathrm{~m}, \mathrm{br}, 6 \mathrm{H}), 4.11-4.00(\mathrm{~s}, \mathrm{br}, 4 \mathrm{H}), 2.10-2.06(\mathrm{~m}$, br, 10H), 1.47-1.33 (m, br, 56H), $0.92(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, solid): δ 160.21, $140.49,136.35,128.20,123.69,108.09,45.09,38.55,31.93,30.14,23.05,14.39 . M_{\mathrm{w}} / M_{\mathrm{n}}$
$(G P C)=207.8 / 94.6 \mathrm{~kg} \mathrm{~mol}^{-1}$. Anal. calcd. for $\left(\mathrm{C}_{666} \mathrm{H}_{958} \mathrm{~N}_{22} \mathrm{O}_{22} \mathrm{~S}_{44}\right)_{\mathrm{n}}: \mathrm{C}, 72.48 ; \mathrm{H}, 8.75 ; \mathrm{N}$, 2.79; S, 12.78. Found: C, 72.46; H, 8.75; N, 2.50; S, 12.88.
4. HOMO/LUMO Energies and Band Gaps of pDPP4T-A, pDPP4T-B and pDPP4T-C

Table S1. Absorption, Onset Redox Potentials, HOMO/LUMO Energies and Band Gaps of pDPP4T-A, pDPP4T-B and pDPP4T-C.

polymer	$\begin{gathered} \lambda_{\max }{ }^{\mathrm{a}}(\mathrm{~nm}) \\ \left(\varepsilon_{\max }, \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)^{\mathrm{b}} \end{gathered}$		$E_{\text {redl }}{ }^{\text {onset }}$ $(\mathrm{V})^{c}$	$\begin{gathered} E_{\mathrm{LUMO}} \\ (\mathrm{eV})^{d} \end{gathered}$	$E_{\text {oxl }}{ }^{\text {onset }}$ $(\mathrm{V})^{c}$	$E_{\text {номо }}$ $(\mathrm{eV})^{d}$	$\begin{aligned} & E_{\mathrm{g}}^{\mathrm{cv}} \\ & (\mathrm{eV})^{e} \end{aligned}$	$\begin{aligned} & E_{\mathrm{g}}{ }^{\mathrm{ptt}} \\ & (\mathrm{eV})^{f} \end{aligned}$
	solution	film						
pDPP4T-A	784(80000)	726,784	-1.28	-3.52	0.47	-5.27	1.75	1.33
pDPP4T-B	788(82000)	726,790	-1.26	-3.54	0.46	-5.26	1.71	1.32
pDPP4T-C	800(83000)	726,790	-1.26	-3.54	0.46	-5.26	1.72	1.32

${ }^{a}$ Absorption maxima in CHCl_{3} solution $\left(1.0 \times 10^{-5} \mathrm{M}\right.$ for each polymer) and the spin-coated thin film; ${ }^{b}$ Molar extinction coefficient ($\varepsilon_{\text {max }}, \mathrm{M}^{-1} \mathrm{~cm}^{-1}$); ${ }^{c}$ Onset potentials ($\mathrm{V} \mathrm{vs} \mathrm{Fc} / \mathrm{Fc}^{+}$) for reduction $\left(E_{\text {redl }}{ }^{\text {onset }}\right)$ and oxidation ($\left.E_{\text {oxi }}{ }^{\text {onset }}\right) ;{ }^{d}$ Estimated with the following equation: $E_{\text {Номо }}=-\left(E_{\text {oxl }}{ }^{\text {onset }}+4.8\right) \mathrm{eV}, E_{\text {LUMO }}=-\left(E_{\text {redl }}{ }^{\text {onset }}+4.8\right) \mathrm{eV} ;{ }^{e}$ Based on redox potentials; ${ }^{f}$ Based on the absorption spectral data.

Figure S3. Normalized UV-vis absorption spectra of pDPP4T-A, pDPP4T-B and pDPP4T-C in $\mathrm{CHCl}_{3}\left(1.0 \times 10^{-5} \mathrm{M}\right)(\mathrm{A})$ and their thin films (B).

5. Fabrication of FET Devices

Solutions of conjugated polymers were prepared by dissolving the copolymers in chloroform at a concentration of $7.0 \mathrm{mg} / \mathrm{mL}$ except pDPP4T-C $(3.0 \mathrm{mg} / \mathrm{mL}$ in 1,1,2,2-tetrachloroethane). The typical polymer film thickness (around $40-45 \mathrm{~nm}$) was measured on profilometer (Ambios Tech. XP-2). Bottom-Gate/Bottom-Contact FETs were fabricated. A heavily doped n-type Si wafer and a layer of dry oxidized $\mathrm{SiO}_{2}(300 \mathrm{~nm}$, with roughness lower than 0.1 nm and capacitance of $11 \mathrm{nF} \mathrm{cm}^{-2}$) were used as a gate electrode and gate dielectric layer, respectively. The drain-source $(D-S)$ gold contacts (28 nm) were fabricated by photo-lithography. The substrates were first cleaned by sonication in acetone and water for 5.0 min and immersed in Piranha solution (2:1 mixture of sulfuric acid and 30% hydrogen peroxide) for 20 min . This was followed by rinsing with deionized water and isopropyl alcohol for several times, and it was blow-dried with nitrogen. Then, the surface was modified with n-octadecyltrichlorosilane (OTS). After that, the substrates were cleaned in n-hexane, CHCl_{3} and isopropyl alcohol. The films of conjugated polymers were fabricated by spin-coating their solutions at 3000 rpm . The annealing process was carried out in vacuum for 1.0 h at each temperature.

The bottom-gate/top-contact devices with fabricated similarly except Au source/drain electrodes (50 nm) were deposited via thermal vacuum evaporation through a shadow mask after spin coating the semiconductor solution and then annealed at different temperatures in vacuum for 1.0 h . Field-effect characteristics of the devices were determined in nitrogen using a Keithley 4200 SCS semiconductor parameter analyzer.

Linear mobility was calculated according to the equation below:

$$
\begin{equation*}
I_{\mathrm{DS}}=(W / L) C_{\mathrm{i}} \mu\left(V_{\mathrm{GS}}-V_{\mathrm{Th}}\right) V_{\mathrm{DS}} \quad V_{\mathrm{DS}} \ll V_{\mathrm{GS}}-V_{\mathrm{Th}} \tag{1}
\end{equation*}
$$

The mobility of the OFETs in the saturation region was extracted from the following equation:

$$
\begin{equation*}
I_{D S}=\frac{\mathrm{W}}{2 L} \mu C_{i}\left(V_{G S}{ }^{-} V_{T h}\right)^{2} \tag{2}
\end{equation*}
$$

Where I_{DS} is the drain electrode collected current; L and W are the channel length and width, respectively; μ is the mobility of the device; C_{i} is the capacitance per unit area of the gate dielectric layer; V_{GS} is the gate voltage, and V_{Th} is the threshold voltage. The V_{Th} of the device was determined by extrapolating the $\left(I_{\mathrm{DS}, \mathrm{sat}}\right)^{1 / 2}$ vs. V_{GS} plot to $I_{\mathrm{DS}}=0$.

The contact resistance was determined in the following way (a. Luan, S.; Neudeck, G. W. J. Appl. Phys. 1992, 72, 766; b. Lefenfeld, M.; Blanchet, G.; Rogers, J. A. Adv. Mater. 2003, 15, 1188.). For a BGBC FET, the ON resistance, R_{ON}, in the linear operation regime (source-drain voltage <<gate voltage), can be expressed as follows:

$$
\begin{equation*}
R_{\mathrm{on}}=\frac{\partial V_{\mathrm{DS}}}{\partial I_{\mathrm{DS}}} \int_{V_{\mathrm{DS}} \rightarrow 0}^{V_{\mathrm{GS}}}=R_{c h}+R_{p}=\frac{L}{W \mu_{i} C_{i}\left(V_{G S}-\mathrm{V}_{\mathrm{Th}}\right)}+R_{p} \tag{3}
\end{equation*}
$$

where R_{ch} is the channel resistance, R_{p} is the parasitic resistance, and V_{GS} is the gate voltage. The parasitic resistance, R_{p}, which is associated with the contacts between S - D electrode and semiconductor layer, can be extracted by measuring the ON resistance, R_{ON}, from the linear region of the FET output characteristics. We got a plot of $R_{\text {ON }}$ as a function of L at the gate voltage of -30 V , and found that the relationship of R_{ON} vs L gives straight lines, indicating that the ON resistance is well expressed by Eq. (3). By extrapolating the relationship of R_{ON} vs L to $L=0$, the contact resistance values can be determined. The
contact resistances for BGBC devices with thin films of pDPP4T-1, pDPP4T-2, pDPP4T-3, pDPP4T, pDPP4T-A, pDPP4T-B and pDPP4T-C were determined to be $0.82 \mathrm{M} \Omega, 0.21 \mathrm{M} \Omega, 0.11 \mathrm{M} \Omega, 1.40 \mathrm{M} \Omega, 0.71 \mathrm{M} \Omega, 0.53 \mathrm{M} \Omega$ and $0.52 \mathrm{M} \Omega$, respectively.
6. Transfer and Output Curves of BGBC and BGTC Devices with Thin Films of pDPP4T-1, pDPP4T-2, pDPP4T-3, pDPP4T, pDPP4T-A, pDPP4T-B and pDPP4T-C

Figure S4. The transfer and output curves of BGBC FETs with thin films of pDPP4T-1 (A, B), pDPP4T-2 (C, D), pDPP4T-3 (E, F), pDPP4T (G, H), pDPP4T-A (I, J), pDPP4T-B (K, L) and pDPP4T-C (M, N) after thermal annealing at $100^{\circ} \mathrm{C}$; the channel width (W) and length (L) were $1440 \mu \mathrm{~m}$ and $50 \mu \mathrm{~m}$, respectively.

Figure S5. The transfer and output curves of BGTC FETs with thin films of pDPP4T-1 (A, B), pDPP4T-2 (C, D), pDPP4T-3 (E, F), pDPP4T (G, H), pDPP4T-A (I, J), pDPP4T-B (K, L) and pDPP4T-C (M, N) after thermal annealing at $100^{\circ} \mathrm{C}$; the channel width (W) and length (L) were $3000 \mu \mathrm{~m}$ and $100 \mu \mathrm{~m}$, respectively.

Table S2. Hole Mobilities ($\mu \mathrm{h}$), Threshold Voltages (V_{Th}) and $I_{o n} / I_{\text {off }}$ Ratios for BGTC FETs with thin films of pDPP4T-1, pDPP4T-2, pDPP4T-3, pDPP4T, pDPP4T-A, pDPP4T-B and pDPP4T-C after Annealing at $100{ }^{\circ} \mathrm{C}$.

polymer	$\mu_{\mathrm{h}}{ }^{a} / \mathrm{cm}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}$	$V_{\mathrm{Th}, \mathrm{h}} / \mathrm{V}$	$I_{\text {on }} / I_{\text {off }}$
pDPP4T-1	$4.8 / 4.4$	$-3-10$	$10^{6}-10^{7}$
pDPP4T-2	$6.4 / 5.9$	$0-9$	$10^{7}-10^{8}$
pDPP4T-3	$8.8 / 7.1$	$-5-10$	$10^{6}-10^{7}$
pDPP4T-A	$3.7 / 3.1$	$-5-8$	$10^{5}-10^{6}$
pDPP4T-B	$4.1 / 3.5$	$-4-9$	$10^{5}-10^{6}$
pDPP4T-C	$2.6 / 2.1$	$-3-10$	$10^{5}-10^{6}$
pDPP4T	$2.6 / 2.2$	$-5-11$	$10^{7}-10^{8}$

${ }^{\text {a }}$ The mobilities were provided in "highest/average" form, and the performance data were obtained based on more than 10 different FETs.

7. Devices Stability Data

Figure S6. Variation of hole mobilities and $I_{\text {on }} / I_{\text {off }}$ ratios for BGBC FETs of pDPP4T-1, pDPP4T-2, pDPP4T-3 and pDPP4T after being left in air for 30 days.

8. 1-D GIXRD Patterns

Figure S7. 1-D GIXRD patterns in the out-of-plane direction for pDPP4T-1 (A), pDPP4T-2 (B), pDPP4T-3 (C), pDPP4T (D) and pDPP4T-A (E), pDPP4T-B (F) and pDPP4T-C (G) deposited on OTS-modified $\mathrm{SiO}_{2} / \mathrm{Si}$ substrates after thermal annealing at different temperatures.

Figure S8. 1-D GIXRD patterns in the in-plane direction for pDPP4T-1, pDPP4T-2, pDPP4T-3, pDPP4T, pDPP4T-A, pDPP4T-B, and pDPP4T-C deposited on OTS-modified $\mathrm{SiO}_{2} / \mathrm{Si}$ substrates after thermal annealing at $100{ }^{\circ} \mathrm{C}$.

Figure S9. 1-D out-of-plane X-ray diffraction patterns of pDPP4T-1, pDPP4T-2 and pDPP4T-3 after thermal annealing at $100^{\circ} \mathrm{C}$.

Figure S10. 1-D out-of-plane X-ray diffraction patterns of pDPP4T-1 and pDPP4T-A (A), pDPP4T-2 and pDPP4T-B (B) and pDPP4T-3 and pDPP4T-C (C) after thermal annealing at $100^{\circ} \mathrm{C}$.

9. AFM Images of pDPP4T-A, pDPP4T-B and pDPP4T-C

Figure S11. AFM height images of thin films of pDPP4T-A (A, D, G), pDPP4T-B (B, E, H) and pDPP4T-C (C, F, I) deposited on OTS-modified $\mathrm{SiO}_{2} / \mathrm{Si}$ substrates at room temperature ($u p$) and after thermal annealing at $100^{\circ} \mathrm{C}$ (middle) and $120^{\circ} \mathrm{C}$ (down).

10. Fabrication of Organic Photovoltaic Cells

OPVs were fabricated with ITO as the positive electrode and Al as the negative electrode.
The patterned indium tin oxide (ITO) glass (sheet resistance $=15 \Omega /$ square $)$ was precleaned in an ultrasonic bath in detergent, deionized water, acetone and isopropyl alcohol, then treated in an ultraviolet-ozone chamber (Jelight Company, USA) for 30 min . A thin layer (30 nm) of poly(3,4-ethylenedioxythi-ophene):poly(styrenesulfonate) (PEDOT:PSS, Baytron PVP AI 4083, Germany) was spin-coated onto the ITO glass and baked at $150{ }^{\circ} \mathrm{C}$ for 15 min . Blend solution were prepared in different solvents at a total concentration of $15-18 \mathrm{mg} / \mathrm{ml}$ (donor/acceptor weight ratio:1/2 or $1 / 1$) and stirred 2 hours for complete dissolution. Then, the pDPP4T, pDPP4T-1, pDPP4T-2, pDPP4T-3, pDPP4T-A, pDPP4T-B and pDPP4T-C/PC ${ }_{71} \mathrm{BM}$ blend solution was spin-coated. The thickness (ca.
$100-120 \mathrm{~nm}$) of the active layer was measured using an Ambios Technology XP-2 profilometer. Ca (ca. 20 nm) and aluminum layer (ca. 70 nm) were then evaporated onto the surface of the active layer under vacuum (ca. $10^{-5} \mathrm{~Pa}$) to form the negative electrode respectively. The active area of the device was $5.0 \mathrm{~mm}^{2}$. The $J-V$ curves were measured with a computer-controlled Keithley 236 Source Measure Unit. A xenon lamp coupled with AM 1.5 solar spectrum filters was used as the light source, and the optical power at the sample was $100 \mathrm{~mW} \mathrm{~cm}{ }^{-2}$. The incident photon to converted current efficiency (IPCE) spectra were performed at Solar Cell Spectral Response Measurement System QE-R3011 (EnliTechnololy Co. Ltd).

11. $J-V$ Curves and IPCE Spectra of pDPP4T-A, pDPP4T-B and pDPP4T-C with

 PC71BM

Figure S12. J-V curves (left) and IPCE spectra (right) of photovoltaic cells with the respective blend films of pDPP4T-A, pDPP4T-B and pDPP4T-C with PC $_{71}$ BM at 1:2 weight ratio under AM 1.5 illumination $\left(100 \mathrm{~mW} / \mathrm{cm}^{2}\right)$.

12. ${ }^{1}$ HNMR and ${ }^{13}$ CNMR Spectra

Compound 5

Compound 1

pDPP4T-1

pDPP4T-2

pDPP4T-3

pDPP4T

pDPP4T-A

pDPP4T-B

pDPP4T-C

