Supporting Information

Accurate detection of adenylation domain functions in nonribosomal peptide synthetases by an enzyme-linked immunosorbent assay system using active site-directed probes for adenylation domains

Fumihiro Ishikawa, ${ }^{*}$ Kengo Miyamoto, Sho Konno, Shota Kasai, and Hideaki Kakeya*

Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto, 606-8501, Japan.
*Correspondence and request for materials should be directed via email to Fumihiro Ishikawa (fishika@pharm.kyoto-u.ac.jp) or Hideaki Kakeya (scseigyo-hisyo@pharm.kyoto-u.ac.jp).
Contents: Page
Supplementary Figure S1 S3
Supplementary Figure S2 S3
Supplementary Figure S3 S4
Supplementary Figure S4 S4
Supplementary Figure S5 S5
Supplementary Figure S6 S5
Supplementary Figure S7 S6
Supplementary Figure S8 S6
Supplementary Figure S9 S7
Supplementary Figure S10 S7
Supplementary Figure S11 S8
Supplementary Table S1 S9
Supplementary Table S2 S10
Supplementary Table S3 S11
General methods S12
References S31
Copies of ${ }^{1} \mathrm{H}$-NMR and ${ }^{13} \mathrm{C}$-NMR spectra S33-S49

Figure S1. Full gel depicting the purification of recombinant AusA2. Gel lanes depict fractions taken during Ni-sepharose chromatography and are as follows: $\mathrm{L} 1=20 \mathrm{mM}$ imidazole wash, $\mathrm{L} 2=40 \mathrm{mM}$ imidazole wash, $\mathrm{L} 3=80 \mathrm{mM}$ imidazole wash, $\mathrm{L} 4=100 \mathrm{mM}$ imidazole wash, $\mathrm{L} 5=150 \mathrm{mM}$ imidazole wash, $\mathrm{L} 6=200 \mathrm{mM}$ imidazole wash, $\mathrm{L} 7=250 \mathrm{mM}$ imidazole wash, L8 = 500 mM imidazole wash, and L9 = SDS-PAGE standards, broad range (Bio-Rad Laboratories, Inc.). The target protein was collected and used from L1-L4. The gel was stained with Coomassie Brilliant Blue (CBB).

Figure S2. Full gel depicting the purification of recombinant EntE. Gel lanes depict fractions taken during Ni-sepharose chromatography and are as follows: L1 = SDS-PAGE standards, broad range (Bio-Rad Laboratories, Inc.), L2 $=$ flow through, L3 $=5 \mathrm{mM}$ imidazole wash, $\mathrm{L} 4=10 \mathrm{mM}$ imidazole wash, $\mathrm{L} 5=20 \mathrm{mM}$ imidazole wash, $\mathrm{L} 6=40 \mathrm{mM}$ imidazole wash, $\mathrm{L} 7=80 \mathrm{mM}$ imidazole wash, $\mathrm{L} 8=100 \mathrm{mM}$ imidazole wash, and $\mathrm{L} 9=150 \mathrm{mM}$ imidazole wash. The target protein was collected and used from L4-L6 and used in subsequent experiments. The gel was stained with Coomassie Brilliant Blue (CBB).

Figure S3. Full gel depicting the purification of recombinant EntE (S240C). Gel lanes depict fractions taken during Ni-sepharose chromatography and are as follows: $\mathrm{L} 1=20 \mathrm{mM}$ imidazole wash, $\mathrm{L} 2=40 \mathrm{mM}$ imidazole wash, $\mathrm{L} 3=80 \mathrm{mM}$ imidazole wash, $\mathrm{L} 4=100 \mathrm{mM}$ imidazole wash, $\mathrm{L} 5=150 \mathrm{mM}$ imidazole wash, $\mathrm{L} 6=200 \mathrm{mM}$ imidazole wash, $\mathrm{L} 7=250 \mathrm{mM}$ imidazole wash, $\mathrm{L} 8=500 \mathrm{mM}$ imidazole wash, and $\mathrm{L} 9=$ SDS-PAGE standards, broad range (Bio-Rad Laboratories, Inc.). The target protein was collected and used from L1-L5 and used in subsequent experiments. The gel was stained with Coomassie Brilliant Blue (CBB).

Figure S4. Inhibitory activities of recombinant AusA2 by L-Tyr-AMS-biotin 4 and L-Tyr-AMS 9. (a) Inhibition of apo-AusA2 by 4. The reactions contained 635 nM apo-AusA2, 1 mM L-Tyr, standard assay buffer [20 mM Tris (pH 8.0), 2.5 mM ATP, $1 \mathrm{mM} \mathrm{MgCl} 2,1 \mathrm{mM}$ TCEP, 150 mM hydroxylamine $(\mathrm{pH} 7.0), 0.1 \mathrm{U}$ purine nucleoside phosphorylase, 0.04 U inorganic pyrophosphatase, and 0.2 mM MesG]. (b) Inhibition of AusA2 by 9. The reactions contained 635 nM apo-AusA2, 1 mM L-Tyr, and the standard assay buffer.

Figure S5. Inhibitory activities of recombinant EntE by DHB-AMS-biotin 5 and Sal-AMS 10. (a) Inhibition of EntE by 5. The reactions contained 200 nM EntE, $50 \mu \mathrm{M} \mathrm{DHB}$, standard assay buffer [20 mM Tris (pH 8.0), 2.5 mM ATP, 1 mM MgCl , 1 mM TCEP, 150 mM hydroxylamine (pH 7.0), 0.1 U purine nucleoside phosphorylase, 0.04 U inorganic pyrophosphatase, and 0.2 mM MesG]. (b) Inhibition of EntE by 10. The reactions contained 400 nM EntE, $50 \mu \mathrm{M} \mathrm{DHB}$, and the standard assay buffer.

Figure S6. Inhibitory activities of recombinant AusA2 by L-Phe-AMS-biotin 1 and L-Phe-AMS 7. (a) Inhibition of apo-AusA2 by 1. The reactions contained 635 nM apo-AusA2, 1 mM L-Tyr, standard assay buffer [20 mM Tris (pH 8.0), 2.5 mM ATP, $1 \mathrm{mM} \mathrm{MgCl}{ }_{2}, 1 \mathrm{mM}$ TCEP, 150 mM hydroxylamine $(\mathrm{pH} 7.0), 0.1 \mathrm{U}$ purine nucleoside phosphorylase, 0.04 U inorganic pyrophosphatase, and 0.2 mM MesG]. (b) Inhibition of AusA2 by 7. The reactions contained 635 nM apo-AusA2, 1 mM L-Tyr, and the standard assay buffer.

Figure S7. Inhibitory activity of recombinant TycB1 by L-Pro-AMS-biotin 3. Inhibition of holo-TycB1 by 3. The reactions contained 400 nM holo-TycB1, 1 mM L-Pro, standard assay buffer [20 mM Tris (pH 8.0), 2.5 mM ATP, 1 mM MgCl , 1 mM TCEP, 150 mM hydroxylamine $(\mathrm{pH} 7.0), 0.1 \mathrm{U}$ purine nucleoside phosphorylase, 0.04 U inorganic pyrophosphatase, and 0.2 mM MesG].

Figure S8. Steady-state kinetics of AusA2. (a) Each reaction contained 635 nM apo-AusA2, 20 mM Tris (pH 8.0), 2.5 mM ATP, $1 \mathrm{mM} \mathrm{MgCl}_{2}, 1 \mathrm{mM}$ TCEP, 150 mM hydroxylamine (pH 7.0), 0.1 U purine nucleoside phosphorylase, 0.04 U inorganic pyrophosphatase, 0.2 mM MesG, and $200-1000 \mu \mathrm{M}$ L-Tyr. (b) The reactions contained 635 nM apo-AusA2 and $188-3000 \mu \mathrm{M}$ L-Phe. Velocities were fit to the Michaelis-Menten equation.

Figure S9. Steady-state kinetics of EntE. (a) Each reaction contained 250 nM EntE, 20 mM Tris (pH 8.0), 2.5 mM ATP, $1 \mathrm{mM} \mathrm{MgCl} 2,1 \mathrm{mM}$ TCEP, 150 mM hydroxylamine (pH 7.0), 0.1 U purine nucleoside phosphorylase, 0.04 U inorganic pyrophosphatase, 0.2 mM MesG, and $3.125-$ $120 \mu \mathrm{M}$ DHB. (b) The reactions contained 250 nM EntE and $20-320 \mu \mathrm{M}$ Sal. Velocities were fit to the Michaelis-Menten equation.

Figure S10. Steady-state kinetics of EntE (S240C). (a) Each reaction contained 500 nM EntE (S240C), 20 mM Tris (pH 8.0), 2.5 mM ATP, $1 \mathrm{mM} \mathrm{MgCl}_{2}, 1 \mathrm{mM}$ TCEP, 150 mM hydroxylamine $(\mathrm{pH} 7.0), 0.1 \mathrm{U}$ purine nucleoside phosphorylase, 0.04 U inorganic pyrophosphatase, 0.2 mM MesG, and $62.5-2000 \mu \mathrm{M}$ DHB. (b) The reactions contained 500 nM EntE (S240C) and 10-320 $\mu \mathrm{M}$ Sal. Velocities were fit to the Michaelis-Menten equation.

Figure S11. Close-up view of the residues in the active site of DhbE involved in the specificity conferring code. ${ }^{1}$ The ligands DHB and AMP are shown as ball and stick models, with the following color code: nitrogen, blue; oxygen, red; phosphate, orange; carbon, white. Modified from PDB code 1MD9 using using PyMOL.

Table S1. Inhibition constants of probes 1-6 and the cognate competitors $\mathbf{7 - 1 0}$ of the probes. ${ }^{\text {a }}$

compounds	$K_{\mathrm{i}}{ }^{\text {app. }}(\mathrm{nM})$			
	GrsA	TycB1	AusA2	EntE
probe 1	$34.0 \pm 2.8{ }^{\text {b }}$		413 ± 31	
probe 2		6380 ± 880		
probe 3				
probe 4			220 ± 37	
probe 5				13.6 ± 2.1
probe 6				
L-Phe-AMS 7	$1.20 \pm 0.14^{\text {b }}$		807 ± 138	
L-Pro-AMS 8		$431 \pm 42^{\text {c }}$		
L-Tyr-AMS 9			471 ± 69	
Sal-AMS 10				10.7 ± 2.4

${ }^{\text {a }}$ Apparent K_{i} values were determined by a coupled hydroxamate-MesG continuous spectrophotometric assay. ${ }^{2}$ Errors were given as the standard deviation of multiple independent measurements.
${ }^{\mathrm{b}}$ Ishikawa, F; Kakeya, H. Bioorg. Med. Chem. Lett. 2014, 24, 865-869.
${ }^{\text {c} K o n n o, ~ S ; ~ I s h i k a w a, ~ F . ; ~ S u z u k i, ~ T . ; ~ D o h m a e, ~ N . ; ~ B u r k a r t, ~ M . ~ D . ; ~ K a k e y a, ~ H . ~ C h e m . ~ C o m m u n . ~}$ 2015, 51, 2262-2265.

Table S2. Kinetic parameters of the A-domains of NRPS enzymes. ${ }^{\text {a }}$

protein	substrate	$k_{\text {cat }}\left(\mathrm{min}^{-1}\right)$	$K_{\mathrm{m}}(\mu \mathrm{M})$	$k_{\text {cat }} / K_{\mathrm{m}}\left(\mathrm{mM}^{-1} \mathrm{~min}^{-1}\right)$
GrsA	L-Phe $^{\text {b }}$	500 ± 12	24.8 ± 2.3	20161 ± 5217
GrsA	(S) - β-Phe	67.2 ± 3.6	522 ± 74	129 ± 74.3
TycB1	L-Pro $^{\text {b }}$	6.36 ± 0.28	125 ± 24	50.8 ± 11.6
AusA2	L-Phe	1.15 ± 0.047	244 ± 40	4.71 ± 1.18
AusA2	L-Tyr	3.21 ± 0.25	445 ± 83	7.21 ± 3.01
EntE	DHB	2.64 ± 0.17	2.02 ± 0.76	1311 ± 229
EntE	Sal	11.4 ± 0.91	27.6 ± 7.8	412 ± 117
EntE (S240C)	DHB	10.1 ± 0.42	364 ± 44	27.6 ± 9.6
EntE (S240C)	Sal	12.2 ± 0.33	54 ± 4.2	226 ± 7.7

${ }^{\text {a }}$ Kinetic parameters were determined by a coupled hydroxamate-MesG continuous spectrophotometric assay. ${ }^{2}$ Errors were given as the standard deviation of multiple independent measurements.
${ }^{\mathrm{b}}$ Kasai, S.; Konno, S.; Ishikawa, F.; Kakeya, H. Chem. Commun. (2015) DOI: 10.1039/C5CC04953A.

Table S3. Comparison of the 10 -residue specificity codes for aryl acid adenylating enzymes. ${ }^{1}$

	substrate	23^{3}	2^{3}	20^{0}	$\hat{\imath}$		3^{8}	3^{3}	3^{3}	33^{00}	S20
EntE	OH	N	Y	S	A	Q	G	v	v	N	K
DhbE	COCOCO	N	Y	S	A	Q	G	v	v	N	K
BasE	DHB	N	F	S	S	Q	G	v	v	N	K
YbtE		N	F	C	A	Q	G	v	L	C	K
MbtA	H	N	F	C	A	Q	G	v	L	N	K
PchD	Sal	N	F	C	A	Q	G	V	1	C	K

Chemical Synthetic Procedures

Scheme S1. Syntehtic route to L-Pro-AMS-biotin 3. Reagents and conditions: [a] 1) EZ-link NHS-Peg ${ }_{12}$-Biotin, DIEA, DMF, rt; 2) 80% aqueous TFA, rt, 45%, over two steps.

Scheme S2. Synthetic route to (S)- β-Phe-AMS-biotin 2 and L-Tyr-AMS-biotin 4. Reagents and conditions: [a] EDC, NHS, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}$; [b] $\mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{DMF}$, rt; [c] $\mathrm{Pd} / \mathrm{C}, \mathrm{EtOH}, \mathrm{H}_{2}, \mathrm{rt}: 32 \%$ (S5a), over two steps; 37\% (S5b), over two steps; [d] EZ-link NHS-Peg ${ }_{12}$-Biotin, DIEA, DMF, rt: 96\% (S6a); 92\% (S6b); [e] 80\% aqueous TFA, rt: 53\% (2); a mixture of 90:5:5 (v/v) of TFA, $\mathrm{H}_{2} \mathrm{O}$, and TIS, rt, 75% (4).

Scheme S3. Synthetic route to DHB-AMS-biotin 5 and Sal-AMS-biotin 6. Reagents and conditions: [a] $\mathrm{NaH}, \mathrm{MEMCl}, \mathrm{THF}, 0^{\circ} \mathrm{C} \rightarrow \mathrm{rt}, 73 \%$; [b] 1 M NaOH aq., $\mathrm{MeOH}, 70{ }^{\circ} \mathrm{C}, 47 \%$; [c] NHS, EDC, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt; [d] $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, DMF, rt: 79\% (S10a); 70\% (S10b); [e] Pd/C, H_{2}, EtOH, rt: 31\% (S11a); 88\% (S11b); [f] 80\% aqueous TFA, rt: 61\% (S12a); 43\% (S12b); [g] EZ-link NHS-Peg ${ }_{12}$-Biotin, DIEA, DMF, rt: 41\% (5); 66\% (6).

General Synthetic Methods: All commercial reagents were used as provided unless otherwise indicated. S1 ${ }^{3}$ (Scheme S1), S2 ${ }^{4}$ (Schemes S2 and S3), S9b ${ }^{5}$ (Scheme S3), L-Phe-AMS-biotin $\mathbf{1},{ }^{4}$ L-Phe-AMS 7, ${ }^{4}$ L-Pro-AMS 8, ${ }^{3}$ L-Tyr-AMS 9, ${ }^{5}$ and Sal-AMS $\mathbf{1 0}{ }^{6}$ are known compounds. These compounds were prepared according to published literature procedures. All reactions were carried out under an atmosphere of nitrogen in dry solvents with oven-dried glassware and constant magnetic stirring unless otherwise noted. High performance liquid chromatography (HPLC) was performed on a Prominence CBM-20A (Shimadzu) system equipped with a Prominence SPD-20A UV/VIS detector (Shimadzu). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were recorded at 500 MHz. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were recorded at 125 MHz on JEOL NMR spectrometers and standardized to the NMR solvent signal as reported by Gottlieb. ${ }^{7}$ Multiplicities are given as $\mathrm{s}=$ singlet, $d=$ doublet, $t=$ triplet, $q=$ quartet, $d d=$ doublet of doublets, $d d d=$ doublet of doublet of doublets, dddd $=$ doublet of doublet of doublet of doublets, $\mathrm{br}=$ broad signal, $\mathrm{m}=$ multiplet using integration and coupling constant in Hertz. TLC analysis was performed using Silica Gel 60 F254 plates (Merck) and visualization was accomplished with ultraviolet light ($\lambda=254 \mathrm{~nm}$) and/or the appropriate stain [phosphomolybdic acid, iodine, ninhydrin, and potassium permanganate]. Silica gel chromatography was carried out with SiliaFlash F60 230-400 mesh (Silicycle), according to the method of Still. ${ }^{8}$ Mass spectral data were obtained using a LCMS-IT-TOF mass spectrometer (Shimadzu).

Chemical Synthesis of L-Pro-AMS-biotin 2. Compound number in bold refers to the structures shown in Scheme S1.

L-Pro-AMS-biotin (2)

EZ-link NHS-Peg ${ }_{12}$-Biotin (Thermo Fisher Scientific Inc.) ($16 \mathrm{mg}, 0.017 \mathrm{mmol}$) and DIEA (3 $\mu \mathrm{L}, 0.017 \mathrm{mmol})$ were added to a solution of compound $\mathbf{S 1}(10 \mathrm{mg}, 0.014 \mathrm{mmol})$ in DMF (2 mL). The solution was stirred at room temperature for 12 h . The reaction mixture was concentrated under reduced pressure. HRMS (ESI-): $[\mathrm{M}-\mathrm{H}]^{-}$calcd for $\mathrm{C}_{67} \mathrm{H}_{118} \mathrm{~N}_{11} \mathrm{O}_{24} \mathrm{~S}_{2} \mathrm{Si}$, 1552.7562; found, 1552.7785. The residue was dissolved in a $4: 1(\mathrm{v} / \mathrm{v})$ mixture of TFA and $\mathrm{H}_{2} \mathrm{O}$ at room temperature. After 12 h , the flask was placed on the rotary evaporator and the TFA and
$\mathrm{H}_{2} \mathrm{O}$ were removed at reduced pressure. The residue was purified by flash chromatography (9:1 $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ to MeOH) to afford compound $\mathbf{3}$ as a colorless oil ($8.4 \mathrm{mg}, 45 \%$, over two steps). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 8.52(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}), 6.18(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.52-4.44$ (m, 3H), $4.35(\mathrm{dd}, J=6.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.33-4.28(\mathrm{~m}, 2 \mathrm{H}), 3.75-3.68(\mathrm{~m}, 2 \mathrm{H}), 3.66-3.58(\mathrm{~m}$, $51 \mathrm{H}), 3.54(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.24-3.18(\mathrm{~m}, 1 \mathrm{H}), 3.13(\mathrm{t}, J=6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.92(\mathrm{dd}, J=12.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.05-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.39(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): δ 176.1, 174.7, 173.8, 166.1, 157.3, 154.1, 150.8, 141.1, 120.2, 87.6, 84.7, 83.6, 71.6, 71.51, $71.48,71.4,71.3,71.2,71.0,70.6,69.1,68.3,63.8,63.4,61.6,57.0,47.3,41.1,40.3,40.0,37.6$, 36.8, 30.8, 29.8, 29.5, 27.9, 26.92, 26.85, 24.9. HRMS (ESI-): [M-H] ${ }^{-}$calcd for $\mathrm{C}_{56} \mathrm{H}_{96} \mathrm{~N}_{11} \mathrm{O}_{22} \mathrm{~S}_{2}$, 1388.6173; found, 1388.6238.

Chemical Synthesis of (S)- β-Phe-AMS-biotin 2. Compound number in bold refers to the structures shown in Scheme S2.
((2R,3R,4R,5R)-5-(6-Amino-9H-purin-9-yl)-4-(4-aminobutoxy)-3-((tert-butyldimethylsilyl)o xy)tetrahydrofuran-2-yl)methyl ((S)-3-((tert-butoxycarbonyl)amino)-3-phenylpropanoyl) sulfamate (S5a)

1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride ($109 \mathrm{mg}, 0.57 \mathrm{mmol}$) and N-hydroxysuccinimide (66 mg, 0.57 mmol$)$ were added to a solution of (S)-3-(Boc-amino)-3-phenylpropionic acid ($100 \mathrm{mg}, 0.38 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The solution was stirred at room temperature for 13 h . The reaction mixture was washed with 5% citric acid, $5 \% \mathrm{NaHCO}_{3}$, and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness to afford Boc-(S)- β-Phe-OSu as a colorless oil ($130 \mathrm{mg}, 94 \%$). A solution of $\mathbf{S} 2$ (80 mg , 0.14 mmol), Boc- $(S)-\beta-\mathrm{Phe}-\mathrm{OSu}(130 \mathrm{mg}, 0.36 \mathrm{mmol})$, and cesium carbonate ($176 \mathrm{mg}, 0.38$ mmol) in DMF (10 mL) was stirred at room temperature for 12 h . The reaction mixture was
then filtered through a pad of Celite. The filtrate was concentrated under reduced pressure. HRMS (ESI +): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{34} \mathrm{H}_{53} \mathrm{~N}_{10} \mathrm{O}_{9} \mathrm{SSi}$, 805.3487; found, 805.3438. To a solution of S4a in EtOH (10 mL) was added $10 \% \mathrm{Pd} / \mathrm{C}(40 \mathrm{mg})$. The resulting suspension was hydrogenated under an atmosphere of H_{2} at room temperature for 14 h . The reaction mixture was filtered through a pad of Celite, which was further washed with EtOH (10 mL). The combined filtrate was concentrated under reduced pressure. The residue was purified by flash chromatography $\left(80: 20: 1 \mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{Et}_{3} \mathrm{~N}\right)$ to afford compound $\mathbf{S 5 a}$ as a white solid (35 mg , 32%, over two steps). ${ }^{1}$ H NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 8.59-8.54(\mathrm{~m}, 1 \mathrm{H}), 8.20(\mathrm{~s}, 1 \mathrm{H}), 7.36-$ $7.10(\mathrm{~m}, 5 \mathrm{H}), 6.17(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.62-4.51(\mathrm{~m}, 2 \mathrm{H}), 4.32-4.19(\mathrm{~m}, 2 \mathrm{H}), 4.16-4.09(\mathrm{~m}$, $1 \mathrm{H}), 3.60-3.53(\mathrm{~m}, 1 \mathrm{H}), 3.52-3.43(\mathrm{~m}, 1 \mathrm{H}), 3.40-3.32(\mathrm{~m}, 1 \mathrm{H}), 2.85(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.70-$ $2.50(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.50(\mathrm{~m}, 4 \mathrm{H}), 1.44-1.34(\mathrm{~m}, 9 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H}), 0.18(\mathrm{~s} 3 \mathrm{H}), 0.17(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right): ~ \delta 180.3,179.3,157.4,154.0,150.9,141.1,129.5,129.3,128.3$, $127.9,127.4,127.3,120.1,86.9,86.1,83.5,83.4,73.1,70.7,69.0,58.3,47.1,40.5,28.8,27.5$, 26.3, 25.3, 19.0, -4.36, -4.45. HRMS (ESI-): $[\mathrm{M}-\mathrm{H}]^{-}$calcd for $\mathrm{C}_{34} \mathrm{H}_{53} \mathrm{~N}_{8} \mathrm{O}_{9} \mathrm{SSi}$, 777.3425; found, 777.3408.
($2 R, 3 R, 4 R, 5 R$)-5-(6-Amino-9H-purin-9-yl)-3-((tert-butyldimethylsilyl)oxy)-4-((6,46-dioxo-50-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)-9,12,15,18,21,24,27,30,33 ,36,39,42-dodecaoxa-5,45-diazapentacontyl)oxy)tetrahydrofuran-2-yl)methyl ((S)-3-((tert-Butoxycarbonyl)amino)-3-phenylpropanoyl)sulfamate triethylammonium salt (S6a)

EZ-link NHS-Peg ${ }_{12}$-Biotin (Thermo Fisher Scientific Inc.) ($21 \mathrm{mg}, 0.022 \mathrm{mmol}$) and DIEA (4.7 $\mu \mathrm{L}, 0.027 \mathrm{mmol}$) were added to a solution of compound S5a (14 mg, 0.018 mmol) in DMF (2 mL). The solution was stirred at room temperature for 12 h . The reaction mixture was concentrated under reduced pressure. The residue was purified by flash chromatography (86:14:1 $\mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{Et}_{3} \mathrm{~N}$) to afford compound $\mathbf{S 6 a}$ as a colorless oil ($28 \mathrm{mg}, 96 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 8.57(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{~s}, 1 \mathrm{H}), 7.36-7.20(\mathrm{~m}, 5 \mathrm{H}), 6.16(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 1 \mathrm{H})$, 4.63-4.46 (m, 4H), 4.34-4.19 (m, 3H), 4.12 (dddd, $J=12.5,12.5,12.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.65-3.59$ $(\mathrm{m}, 52 \mathrm{H}), 3.36(\mathrm{t}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.20(\mathrm{q}, J=7.3 \mathrm{~Hz}, 18 \mathrm{H}), 3.10-3.01(\mathrm{~m}, 2 \mathrm{H}), 2.96-2.89(\mathrm{~m}$, $2 \mathrm{H}), 2.70(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.80-1.33(\mathrm{~m}$,
$19 \mathrm{H}), 1.30(\mathrm{t}, J=7.3 \mathrm{~Hz}, 27 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H}), 0.18(\mathrm{~s}, 3 \mathrm{H}), 0.17(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta 180.0,179.0,176.1,175.0,173.8,166.1,157.3,154.0,150.9,141.3,129.5,129.3$, $128.1,127.8,127.5,127.3,120.2,93.0,87.1,86.0,83.4,72.9,71.5,71.4,71.30,71.27,70.6$, 68.9, 68.3, 63.4, 61.6, 59.4, 57.0, 47.9, 46.9, 41.1, 40.4, 40.0, 37.7, 36.7, 29.8, 29.5, 28.8, 28.2, 26.9, 26.4, 26.3, 19.1, 9.21, -4.34, -4.45. HRMS (ESI-): $[\mathrm{M}-\mathrm{H}]^{-}$calcd for $\mathrm{C}_{71} \mathrm{H}_{120} \mathrm{~N}_{11} \mathrm{O}_{24} \mathrm{~S}_{2} \mathrm{Si}$, 1602.7718; found, 1602.7710.

(S)- β-Phe-AMS-biotin triethylammonium salt (2)

Compound S6a ($14 \mathrm{mg}, 0.0088 \mathrm{mmol}$) was dissolved in a $4: 1(\mathrm{v} / \mathrm{v})$ mixture of TFA and $\mathrm{H}_{2} \mathrm{O}$ at room temperature. After 12 h , the flask was placed on the rotary evaporator and the TFA and $\mathrm{H}_{2} \mathrm{O}$ were removed at reduced pressure. The residue was purified by flash chromatography (86:14:1 to 80:20:1 $\mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{Et}_{3} \mathrm{~N}$) to afford compound 2 as a colorless oil ($6.5 \mathrm{mg}, 53 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 8.57(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}), 7.49-7.34(\mathrm{~m}, 5 \mathrm{H}), 6.18(\mathrm{~d}, \mathrm{~J}=5.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.70-4.63(\mathrm{~m}, 1 \mathrm{H}), 4.53-4.41(\mathrm{~m}, 3 \mathrm{H}), 4.36-4.22(\mathrm{~m}, 4 \mathrm{H}), 3.70-3.52(\mathrm{~m}, 52 \mathrm{H}), 3.36(\mathrm{t}$, $J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.25-3.17(\mathrm{~m}, 1 \mathrm{H}), 3.14\left(\mathrm{q}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Et}_{3} \mathrm{~N}-\mathrm{CH}_{2}\right), 2.96-2.88(\mathrm{~m}, 2 \mathrm{H})$, $2.80-2.73(\mathrm{~m}, 1 \mathrm{H}), 2.73-2.64(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.81-$ $1.40(\mathrm{~m}, 10 \mathrm{H}), 1.29\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{Et}_{3} \mathrm{~N}-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 180.5$, $177.8,176.1,173.9,166.1,157.3,154.0,150.8,141.2,130.24,130.20,128.4,128.2,120.4,87.6$, $84.8,83.8,71.5,71.4,71.30,71.26,71.0,70.6,68.9,68.3,63.4,61.6,57.0,54.0,47.8,43.2$, 41.1, 40.4, 40.0, 37.7, 36.7, 29.8, 29.5, 27.8, 26.9, 26.85, 9.39. HRMS (ESI-): [M-H] calcd for $\mathrm{C}_{60} \mathrm{H}_{98} \mathrm{~N}_{11} \mathrm{O}_{22} \mathrm{~S}_{2}, 1388.6329$; found, 1388.6135.

Chemical Synthesis of L-Tyr-AMS-biotin 4. Compound number in bold refers to the structures shown in Scheme S2.
((2R,3R,4R,5R)-5-(6-Amino-9H-purin-9-yl)-4-(4-aminobutoxy)-3-((tert-butyldimethylsilyl)o xy)tetrahydrofuran-2-yl)methyl ((S)-3-(4-(tert-butoxy)phenyl)-2-((tert-butoxycarbonyl) amino)propanoyl)sulfamate triethylammonium salt (S5b)

1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride ($127 \mathrm{mg}, 0.66 \mathrm{mmol}$) and N-hydroxysuccinimide ($76 \mathrm{mg}, 0.66 \mathrm{mmol}$) were added to a solution of $\operatorname{Boc}-\mathrm{Tyr}(\mathrm{tBu})-\mathrm{OH}(100$ $\mathrm{mg}, 0.30 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The solution was stirred at room temperature for 12 h . The reaction mixture was washed with 5% citric acid, $5 \% \mathrm{NaHCO}_{3}$, and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness to afford Boc- $\operatorname{Tyr}(\mathrm{tBu})-\mathrm{OSu}$ S3b as a colorless oil ($97 \mathrm{mg}, 75 \%$). Boc- $\mathrm{Tyr}(\mathrm{tBu})-\mathrm{OSu}(41 \mathrm{mg}, 0.11 \mathrm{mmol})$ and cesium carbonate (90 $\mathrm{mg}, 0.27 \mathrm{mmol}$) were added to a solution of compound $\mathbf{S} 2(50 \mathrm{mg}, 0.090 \mathrm{mmol})$ in DMF (10 mL). The solution was stirred at room temperature for 12 h . The reaction mixture was then filtered through a pad of Celite. The filtrate was concentrated under reduced pressure to afford S4b as a yellow oil. HRMS (ESI +): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{38} \mathrm{H}_{61} \mathrm{~N}_{10} \mathrm{O}_{10} \mathrm{SSi}$, 877.4062; found, 877.4031. To a solution of S4b in $\mathrm{EtOH}(10 \mathrm{~mL})$ was added $10 \% \mathrm{Pd} / \mathrm{C}(40 \mathrm{mg})$. The resulting suspension was hydrogenated under an atmosphere of H_{2} at room temperature for 12 h . The reaction mixture was filtered through a pad of Celite, which was further washed with EtOH (10 $\mathrm{mL})$. The combined filtrate was concentrated under reduced pressure. The residue was purified by flash chromatography ($87.5: 12.5: 1 \mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{Et}_{3} \mathrm{~N}$) to afford compound $\mathbf{S 5 b}$ as a white solid ($28 \mathrm{mg}, 37 \%$, over two steps). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 8.54(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{~s}, 1 \mathrm{H})$, $7.13(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.18(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.63-4.53(\mathrm{~m}, 2 \mathrm{H})$, $4.31-4.19(\mathrm{~m}, 4 \mathrm{H}), 3.61-3.54(\mathrm{~m}, 1 \mathrm{H}), 3.51-3.40(\mathrm{~m}, 1 \mathrm{H}), 3.20-3.13(\mathrm{~m}, 1 \mathrm{H}), 3.10(\mathrm{q}, J=7.3$ $\left.\mathrm{Hz}, 4 \mathrm{H}, \mathrm{Et}_{3} \mathrm{~N}-\mathrm{CH}_{2}\right), 2.92-2.78(\mathrm{~m}, 3 \mathrm{H}), 1.68-1.47(\mathrm{~m}, 4 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H}), 1.27(\mathrm{~s}, 9 \mathrm{H}$, overlapping with $\left.\mathrm{Et}_{3} \mathrm{~N}-\mathrm{CH}_{3}\right), 0.96(\mathrm{~s}, 9 \mathrm{H}), 0.172(\mathrm{~s}, 3 \mathrm{H}), 0.166(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta 179.9,157.4,157.2,154.9,154.0,150.9,141.1,134.3,131.2,125.0,120.1,86.9$, $86.1,83.5,80.0,79.3,73.2,70.7,69.2,59.1,47.7,40.5,39.7,29.2,28.8,27.5,26.3,25.5,19.0$, 9.48, -4.36, -4.45. HRMS (ESI +): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{38} \mathrm{H}_{63} \mathrm{~N}_{8} \mathrm{O}_{10} \mathrm{SSi}, 851.4157$; found,
((2S,3S,4S,5S)-5-(6-Amino-9H-purin-9-yl)-4-((6,46-dioxo-50-((3aS,4S,6aR)-2-oxohexahydr o-1H-thieno[3,4-d]imidazol-4-yl)-9,12,15,18,21,24,27,30,33,36,39,42-dodecaoxa-5,45-diazap entacontyl)oxy)-3-hydroxytetrahydrofuran-2-yl)methyl (L-tyrosyl)sulfamate triethylammonium salt ($\mathbf{(6 6 b}$)

EZ-link NHS-Peg ${ }_{12}$-Bbiotin (Thermo Fisher Scientific Inc.) ($21 \mathrm{mg}, 0.022 \mathrm{mmol}$) and DIEA ($4.7 \mu \mathrm{~L}, 0.027 \mathrm{mmol}$) were added to a solution of compound $\mathbf{~ S 5 b}$ ($14 \mathrm{mg}, 0.017 \mathrm{mmol}$) in DMF $(2 \mathrm{~mL})$. The solution was stirred at room temperature for 12 h . The reaction mixture was concentrated under reduced pressure. The residue was purified by flash chromatography (86:14:1 $\mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{Et}_{3} \mathrm{~N}$) to afford compound $\mathbf{S 6 b}$ as a colorless oil ($24 \mathrm{mg}, 90 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 8.60(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{~s}, 1 \mathrm{H}), 7.13$ (d, $\left.J=8.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.83$ (d, $J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 6.17$ (d, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.64-4.52(\mathrm{~m}, 2 \mathrm{H}), 4.49(\mathrm{dd}, J=7.8,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.34-4.17$ (m, 5H), 3.69-3.52 (m, 52H), 3.46-3.39 (m, 1H), 3.36 (t, $J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.19$ (q, $J=7.2 \mathrm{~Hz}$, $10 \mathrm{H}, \mathrm{Et}_{3} \mathrm{~N}-\mathrm{CH}_{2}$), $3.05(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.92(\mathrm{dd}, J=12.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~d}, J=12.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.39(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.80-1.38(\mathrm{~m}, 10 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H}), 1.27(\mathrm{~s}$, 9 H , overlapping with $\mathrm{Et}_{3} \mathrm{~N}-\mathrm{CH}_{3}$), 0.97 (s, 9 H), 0.18 ($\mathrm{s}, 3 \mathrm{H}$), 0.17 ($\mathrm{s}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta 179.6,176.1,175.3,173.7,166.1,157.3,157.1,154.9,154.0,150.9,141.3,134.4$, $131.2,124.9,120.1,87.0,86.1,83.4,79.9,79.3,73.0,71.5,71.4,71.29,71.26,70.6,69.1,68.3$, $63.4,61.6,59.0,57.0,47.8,41.1,40.4,40.0,39.7,37.7,36.7,29.8,29.5,29.2,28.8,28.2,26.9$, 26.4, 26.3, 19.1, 9.24, -4.34, -4.46. HRMS (ESI-): $[\mathrm{M}-\mathrm{H}]^{-}$calcd for $\mathrm{C}_{75} \mathrm{H}_{128} \mathrm{~N}_{11} \mathrm{O}_{25} \mathrm{~S}_{2} \mathrm{Si}$, 1674.8294; found, 1674.8287.

L-Tyr-AMS-biotin triethylammonium salt (4)

Compound S6b (13 mg, 0.0089 mmol) was dissolved in a 90:5:5 (v/v) mixture of TFA, $\mathrm{H}_{2} \mathrm{O}$, and TIS at room temperature. After 12 h , the flask was placed on the rotary evaporator and the TFA and $\mathrm{H}_{2} \mathrm{O}$ were removed at reduced pressure. The residue was purified by flash chromatography $\left(80: 20: 1 \mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{Et}_{3} \mathrm{~N}\right)$ to afford compound 4 as a colorless oil $(9.4 \mathrm{mg}$, 75%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 8.55(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.73$ $(\mathrm{d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.18(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.52-4.46(\mathrm{~m}, 3 \mathrm{H}), 4.38-4.28(\mathrm{~m}, 4 \mathrm{H}), 3.88-3.81$ $(\mathrm{m}, 1 \mathrm{H}), 3.70-3.53(\mathrm{~m}, 52 \mathrm{H}), 3.36(\mathrm{t}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.22-3.11(\mathrm{~m}, 3 \mathrm{H}$, overlapping with $\left.\mathrm{Et}_{3} \mathrm{~N}-\mathrm{CH}_{2}\right), 2.94-2.89(\mathrm{~m}, 1 \mathrm{H}), 2,71(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.78-1.40(\mathrm{~m}, 10 \mathrm{H}), 1.29\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 10.5 \mathrm{H}, \mathrm{Et}_{3} \mathrm{~N}-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta 176.1,175.6,175.3,173.9,166.1,158.0,157.2,154.0,150.7,141.2,131.8,127.0$, $120.1,116.7,87.7,84.7,83.7,71.5,71.4,71.32,71.25,71.0,70.6,68.9,68.3,63.4,61.6,58.5$, $57.0,47.8,41.1,40.4,39.9,37.9,37.7,36.7,29.8,29.5,27.8,26.9,26.2,9.31$. HRMS (ESI-): $[\mathrm{M}-\mathrm{H}]^{-}$calcd for $\mathrm{C}_{60} \mathrm{H}_{98} \mathrm{~N}_{11} \mathrm{O}_{23} \mathrm{~S}_{2}, 1404.6278$; found, 1404.6089.

Chemical Synthesis of Dhb-AMS-biotin 5. Compound number in bold refers to the structures shown in Scheme S3.

Methyl 2,3-bis((2-methoxyethoxy)methoxy)benzoate (S7)

To a solution of methyl 2,3-dihydroxybenzoate ($1 \mathrm{~g}, 5.95 \mathrm{mmol}$) in THF (300 mL) was added $\mathrm{NaH}(950 \mathrm{mg}$ of $60 \% \mathrm{NaH}$ dispersion in mineral oil, 23.8 mmol). The solution was stirred at $0^{\circ} \mathrm{C}$ for 1 h and $\mathrm{MEMCl}(2.02 \mathrm{~mL}, 17.9 \mathrm{mmol})$ was added. After 12 h , the reaction mixture was diluted with EtOAc. The mixture was washed with saturated NaHCO_{3} and brine. The organic
layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. The residue was purified by flash chromatography (1:1 EtOAc/hexane) to afford compound $\mathbf{S 7}$ as a colorless oil ($1.48 \mathrm{~g}, 73 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.41(\mathrm{dd}, J=16.0,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{dd}, J=16.0,3.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.07(\mathrm{dd}, \mathrm{J}=16.0,16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 2 \mathrm{H}), 5.23(\mathrm{~s}, 2 \mathrm{H}), 3.97-3.93(\mathrm{~m}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H})$, $3.85-3.81(\mathrm{~m}, 2 \mathrm{H}), 3.58-3.83(\mathrm{~m}, 4 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.5,151.0,146.4,126.7,124.3,124.2,120.5,98.6,94.4,71.8,71.6,69.1,68.1,59.2,52.3$. HRMS (ESI+): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NaO}_{8}, 367.1369$; found, 367.1363.

Methyl 2,3-bis((2-methoxyethoxy)methoxy)benzoic acid (S8)

To a solution of $\mathbf{S 7}(716 \mathrm{mg}, 2.08 \mathrm{mmol})$ in $\mathrm{MeOH}(10 \mathrm{~mL})$ was added 8 mL of a 1 M NaOH solution at room temperature. Stirring was continued at $70^{\circ} \mathrm{C}$ for 2 h . The flask was then placed on a rotary evaporator and the MeOH was removed at reduced pressure. The residue was diluted with $\mathrm{H}_{2} \mathrm{O}$ and washed with $\mathrm{Et}_{2} \mathrm{O}$. The aqueous layer was acidified with a 1 M aqueous HCl and back extracted with EtOAc. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to dryness to afford 2,3-bis((2-methoxyethoxy)methoxy)benzoic acid S8 as a yellow oil ($323 \mathrm{mg}, 47 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.76(\mathrm{dd}, J=16.0,3.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.43(\mathrm{dd}, J=16.0,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{dd}, J=16.0,16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~s}, 2 \mathrm{H}), 5.32(\mathrm{~s}, 2 \mathrm{H})$, 3.92-3.87 (m, 2H), 3.86-3.82(m, 2H), 3.59-3.52 (m, 4H), $3.37(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.6,149.8,146.0,125.5,125.0,124.0,121.4,99.6,94.5,71.7,71.6$, 70.4, 68.3, 59.2. HRMS (ESI+): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NaO}_{8}, 353.1212$; found, 353.1201.
((2R,3R,4R,5R)-5-(6-Amino-9H-purin-9-yl)-4-(4-azidobutoxy)-3-((tert-butyldimethylsilyl) oxy)tetrahydrofuran-2-yl)methyl (2,3-bis((2-methoxyethoxy)methoxy)benzoyl)sulfamate triethylammonium salt (S10a)

1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride ($109 \mathrm{mg}, 0.57 \mathrm{mmol}$) and
N-hydroxysuccinimide ($66 \mathrm{mg}, 0.57 \mathrm{mmol}$) were added to a solution of $\mathbf{S 8}(173 \mathrm{mg}, 0.52 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The solution was stirred at room temperature for 14 h . The reaction mixture was washed with 5% citric acid, $5 \% \mathrm{NaHCO}_{3}$, and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness to afford N-hydroxysuccinimidyl 2,3-bis((2-methoxyethoxy)methoxy)benzoate S9a as a colorless oil (198 mg, 89\%). A solution of S2 $(150 \mathrm{mg}, 0.26 \mathrm{mmol})$, S9a $(198 \mathrm{mg}, 0.46 \mathrm{mmol})$, and cesium carbonate $(254 \mathrm{mg}, 0.78$ mmol) in DMF (10 mL) was stirred at room temperature for 12 h . The reaction mixture was then filtered through a pad of Celite. The filtrate was concentrated under reduced pressure. The residue was purified by flash chromatography ($90: 10: 1 \quad \mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{Et}_{3} \mathrm{~N}$) to afford compound S10a as a colorless oil ($160 \mathrm{mg}, 79 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 8.60(\mathrm{~s}, 1 \mathrm{H})$, $8.21(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{ddd}, J=8.6,8.6,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{dd}, J=7.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{dd}, J=$ $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~s}, 2 \mathrm{H}), 5.25-5.20(\mathrm{~m}, 2 \mathrm{H}), 4.68(\mathrm{dd}, J=4.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{dd}, J=6.9$, $4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{dddd}, J=11.3,11.3,11.3,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.32-4.29(\mathrm{~m}, 1 \mathrm{H}), 3.99-3.93(\mathrm{~m}$, $2 \mathrm{H}), 3.83-3.80(\mathrm{~m}, 2 \mathrm{H}), 3.58-3.52(\mathrm{~m}, 6 \mathrm{H}), 3.34-3.29(\mathrm{~m}, 6 \mathrm{H}$, overlapping with MeOH$), 3.17$ $\left(\mathrm{q}, J=7.2 \mathrm{~Hz}, 10 \mathrm{H}, \mathrm{Et}_{3} \mathrm{~N}-\mathrm{CH}_{2}\right), 3.11(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.54-1.39(\mathrm{~m}, 4 \mathrm{H}), 1.27(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $\left.15 \mathrm{H}, \mathrm{Et}_{3} \mathrm{~N}-\mathrm{CH}_{3}\right), 0.97(\mathrm{~s}, 9 \mathrm{H}), 0.18(\mathrm{~s}, 3 \mathrm{H}), 0.16(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 175.8$, $157.4,154.0,151.7,150.9,145.1,141.3,137.2,125.0,123.4,120.2,118.7,99.2,95.5,87.2$, $86.1,83.4,73.0,72.8,71.2,69.9,69.3,69.1,68.8,59.1,59.0,52.1,47.8,28.0,26.6,26.3,19.0$, 9.18, -4.42, -4.53. HRMS (ESI-): $[\mathrm{M}-\mathrm{H}]^{-}$calcd for $\mathrm{C}_{35} \mathrm{H}_{54} \mathrm{~N}_{9} \mathrm{O}_{13} \mathrm{SSi}$, 868.3331; found, 868.3336.
((2R,3R,4R,5R)-5-(6-Amino-9H-purin-9-yl)-4-(4-aminobutoxy)-3-((tert-butyldimethylsilyl) oxy)tetrahydrofuran-2-yl)methyl (2,3-bis((2-methoxyethoxy)methoxy)benzoyl)sulfamate triethylammonium salt (S11a)

To a solution of S10a ($128 \mathrm{mg}, 0.16 \mathrm{mmol}$) in EtOH (10 mL) was added $10 \% \mathrm{Pd} / \mathrm{C}(80 \mathrm{mg})$. The resulting suspension was hydrogenated under an atmosphere of H_{2} at room temperature for 12 h . The reaction mixture was filtered through a pad of Celite, which was further washed with $\mathrm{EtOH}(10 \mathrm{~mL})$. The combined filtrate was concentrated under reduced pressure. The residue was purified by flash chromatography $\left(90: 10: 1 \mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{Et}_{3} \mathrm{~N}\right)$ to afford compound S11a as a colorless oil ($42 \mathrm{mg}, 31 \%$). ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$: $\delta 8.62(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{~s}, 1 \mathrm{H}), 7.20$
$(\mathrm{d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~s}, 2 \mathrm{H}), 5.21$ (ddd, $J=5.7,5.7,5.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.70-4.61(\mathrm{~m}, 2 \mathrm{H}), 4.41-4.35(\mathrm{~m}, 2 \mathrm{H}), 4.33-4.29(\mathrm{~m}, 1 \mathrm{H}), 3.95$ $(\mathrm{t}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{t}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.58-3.42(\mathrm{~m}, 6 \mathrm{H}), 3.35-3.27(\mathrm{~m}, 6 \mathrm{H}$, overlapping with MeOH), $3.14\left(\mathrm{q}, ~ J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Et}_{3} \mathrm{~N}-\mathrm{CH}_{2}\right), 2.82(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.67-1.44(\mathrm{~m}, 4 \mathrm{H})$, $1.27\left(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Et}_{3} \mathrm{~N}-\mathrm{CH}_{3}\right), 0.95(\mathrm{~s}, 9 \mathrm{H}), 0.15(\mathrm{~s}, 3 \mathrm{H}), 0.14(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta 176.0,157.4,154.0,151.7,150.9,145.1,141.1,137.1,125.1,123.5,120.1,118.9$, $99.2,95.5,87.0,86.2,83.2,73.4,73.0,72.8,70.6,69.9,69.3,69.1,59.1,59.0,47.7,40.4,27.4$, $26.3,25.2,19.0,9.30,-4.39,-4.49$. HRMS (ESI-): $[\mathrm{M}-\mathrm{H}]^{-}$calcd for $\mathrm{C}_{35} \mathrm{H}_{56} \mathrm{~N}_{7} \mathrm{O}_{13} \mathrm{SSi}$, 842.3426; found, 842.3428 .
($2 R, 3 R, 4 R, 5 R$)-5-(6-Amino-9H-purin-9-yl)-4-(4-aminobutoxy)-3-hydroxytetrahydrofuran-2-yl)methyl (2,3-dihydroxybenzoyl)sulfamate triethylammonium salt (S12a)

Compound S11a ($22 \mathrm{mg}, 0.026 \mathrm{mmol}$) was dissolved in a $4: 1(\mathrm{v} / \mathrm{v})$ mixture of TFA and $\mathrm{H}_{2} \mathrm{O}$ at room temperature. After 4 h , the flask was placed on the rotary evaporator and the TFA and $\mathrm{H}_{2} \mathrm{O}$ were removed at reduced pressure. The residue was purified by flash chromatography (67:33:1 to $\left.50: 50: 1 \mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{Et}_{3} \mathrm{~N}\right)$ to afford compound S 12 a as a white solid $(8.5 \mathrm{mg}, 61 \%) .{ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta 8.57(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{dd}, J=8.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{dd}$, $J=8.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{dd}, J=7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{t}, J=5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.53(\mathrm{dd}, J=5.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.41-4.36(\mathrm{~m}, 2 \mathrm{H}), 4.35-4.31(\mathrm{~m}, 1 \mathrm{H}), 3.67-3.61(\mathrm{~m}, 1 \mathrm{H})$, $3.60-3.54(\mathrm{~m}, 1 \mathrm{H}), 3.13\left(\mathrm{q}, J=7.5 \mathrm{~Hz}, 7 \mathrm{H}, \mathrm{Et}_{3} \mathrm{~N}-\mathrm{CH}_{2}\right), 2.96-2.88(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.57(\mathrm{~m}, 4 \mathrm{H})$, $1.27\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 10.5 \mathrm{H}, \mathrm{Et}_{3} \mathrm{~N}-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 175.3,157.3,154.0$, $150.8,150.7,146.8,140.9,121.9,120.8,120.1,119.4,118.6,87.3,85.5,83.6,71.4,71.0,69.5$, 47.8, 40.6, 27.4, 25.6, 9.29. HRMS (ESI-): $[\mathrm{M}-\mathrm{H}]^{-}$calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{7} \mathrm{O}_{9} \mathrm{~S}$, 552.1513; found, 552.1512.

DHB-AMS-biotin triethylammonium salt (5)

EZ-link NHS-Peg ${ }_{12}$-Biotin (Thermo Fisher Scientific Inc.) $(25 \mathrm{mg}, 0.027 \mathrm{mmol})$ and DIEA (5.2 $\mu \mathrm{L}, 0.030 \mathrm{mmol}$) were added to a solution of compound S12a ($8.5 \mathrm{mg}, 0.015 \mathrm{mmol}$) in DMF (2 mL). The solution was stirred at room temperature for 12 h . The reaction mixture was concentrated under reduced pressure. The residue was purified by flash chromatography (83:17:1 $\mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{Et}_{3} \mathrm{~N}$) to afford compound 5 as a colorless oil ($9.5 \mathrm{mg}, 41 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 8.58(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.63$ (ddd, $J=7.8,7.8,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.64-4.59(\mathrm{~m}, 1 \mathrm{H}), 4.54-4.45$ $(\mathrm{m}, 2 \mathrm{H}), 4.44-4.35(\mathrm{~m}, 2 \mathrm{H}), 4.34-4.27(\mathrm{~m}, 2 \mathrm{H}), 3.70-3.52(\mathrm{~m}, 52 \mathrm{H}), 3.38-3.33(\mathrm{~m}, 2 \mathrm{H}), 3.19$ (q, $J=7.5 \mathrm{~Hz}, 18 \mathrm{H}, \mathrm{Et}_{3} \mathrm{~N}-\mathrm{CH}_{2}$), 3.12-3.07 (m, 1H), 2.97-2.86 (m, 1H), 2.71 (br, 1H), $2.40(\mathrm{t}, J$ $=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.77-1.39(\mathrm{~m}, 10 \mathrm{H}), 1.30\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 27 \mathrm{H}, \mathrm{Et}_{3} \mathrm{~N}-\mathrm{CH}_{3}\right)$. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 176.1,175.2,173.9,166.1,157.3,154.0,150.9,150.7,146.9$, $141.2,121.9,120.9,120.1,119.4,118.6,87.3,85.3,83.4,71.5,71.4,71.28,71.25,70.6,69.5$, 68.3, 63.4, 61.6, 57.0, 47.8, 41.1, 40.4, 40.0, 37.7, 36.8, 29.8, 29.5, 27.9, 26.9, 26.3, 9.24. HRMS (ESI-): [M-H] calcd for $\mathrm{C}_{58} \mathrm{H}_{93} \mathrm{~N}_{10} \mathrm{O}_{24} \mathrm{~S}_{2}, 1377.5806$; found, 1377.5794.

Chemical Synthesis of Sal-AMS-biotin 6. Compound number in bold refers to the structures shown in Scheme S3.
((2R,3R,4R,5R)-5-(6-Amino-9H-purin-9-yl)-4-(4-azidobutoxy)-3-((tert-butyldimethylsilyl) oxy)tetrahydrofuran-2-yl)methyl (2-(methoxymethoxy)benzoyl)sulfamate triethylammonium salt (S10b)

A solution of S2 ($185 \mathrm{mg}, 0.33 \mathrm{mmol}$), N-hydroxysuccinimidyl 2-methoxymethoxybenzoate S9b ($140 \mathrm{mg}, 0.50 \mathrm{mmol}$), and cesium carbonate ($322 \mathrm{mg}, 0.99 \mathrm{mmol}$) in DMF (10 mL) was stirred at room temperature for 14 h . The reaction mixture was then filtered through a pad of Celite. The filtrate was concentrated under reduced pressure. The residue was purified by flash
chromatography ($90: 10: 1 \mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{Et}_{3} \mathrm{~N}$) to afford compound $\mathbf{S 1 0 b}$ as a white solid (167 $\mathrm{mg}, 70 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 8.60(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{dd}, J=14.9,3.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{ddd}, J=7.5,7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~d}, \mathrm{~J}$ $=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~s}, 2 \mathrm{H}), 4.69(\mathrm{dd}, J=4.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{dd}, J=6.3,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.41$ (dddd, $J=12.9,12.9,12.9,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.35-4.30(\mathrm{~m}, 1 \mathrm{H}), 3.60-3.54(\mathrm{~m}, 1 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H})$, $3.43-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.16\left(\mathrm{q}, J=7.5 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{Et}_{3} \mathrm{~N}-\mathrm{CH}_{2}\right), 3.11(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.57-1.39(\mathrm{~m}$, $4 \mathrm{H}), 1.26\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 13.5 \mathrm{H}, \mathrm{Et}_{3} \mathrm{~N}-\mathrm{CH}_{3}\right), 0.97(\mathrm{~s}, 9 \mathrm{H}), 0.18(\mathrm{~s}, 3 \mathrm{H}), 0.17(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 176.3,157.4,155.8,154.0,150.8,141.3,132.4,131.2,130.0,122.6$, $120.2,117.4,96.5,87.2,86.0,83.3,73.0,71.2,69.3,56.6,52.1,47.7,27.9,26.6,26.3,19.0$, 9.14, -4.43, -4.54. HRMS (ESI-): $[\mathrm{M}-\mathrm{H}]^{-}$calcd for $\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{~N}_{9} \mathrm{O}_{9} \mathrm{SSi}, 720.2595$; found, 720.2595 .
((2R,3R,4R,5R)-5-(6-Amino-9H-purin-9-yl)-4-(4-aminobutoxy)-3-((tert-butyldimethylsilyl) oxy)tetrahydrofuran-2-yl)methyl (2-(methoxymethoxy)benzoyl)sulfamate (S11b)

To a solution of S10b $(111 \mathrm{mg}, 0.15 \mathrm{mmol})$ in $\mathrm{EtOH}(5 \mathrm{~mL})$ was added $10 \% \mathrm{Pd} / \mathrm{C}(45 \mathrm{mg})$. The resulting suspension was hydrogenated under an atmosphere of H_{2} at room temperature for 16 h . The reaction mixture was filtered through a pad of Celite, which was further washed with EtOH $(10 \mathrm{~mL})$. The combined filtrate was concentrated under reduced pressure. The residue was purified by flash chromatography ($5: 1$ to $4: 1 \mathrm{CHCl}_{3} / \mathrm{MeOH}$) to afford compound $\mathbf{S 1 1 b}$ as a white solid ($91 \mathrm{mg}, 88 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 8.61(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{dd}, J$ $=14.9,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.19$ $(\mathrm{d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 2 \mathrm{H}), 4.68-4.64(\mathrm{~m}, 2 \mathrm{H}), 4.40(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.30-4.33(\mathrm{~m}$, $1 \mathrm{H}), 3.59-3.53(\mathrm{~m}, 1 \mathrm{H}), 3.51-3.46(\mathrm{~m}, 1 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 2.83(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.65-1.44(\mathrm{~m}$, $4 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}), 0.16(\mathrm{~s}, 3 \mathrm{H}), 0.15(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta 176.5,157.4$, $155.9,154.0,150.9,141.3,132.3,131.3,130.2,122.7,120.1,117.5,96.7,87.0,86.2,83.3,73.4$, $70.6,69.4,56.7,40.5,27.4,26.3,25.3,19.0,-4.40,-4.50$. HRMS $(\mathrm{ESI}+):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{29} \mathrm{H}_{46} \mathrm{~N}_{7} \mathrm{O}_{9} \mathrm{SSi}$, 696.2847; found, 696.2816.
((2R,3R,4R,5R)-5-(6-Amino-9H-purin-9-yl)-4-(4-aminobutoxy)-3-hydroxytetrahydrofuran-2-yl)methyl (2-hydroxybenzoyl)sulfamate triethylammonium salt (S12b)

Compound S11b ($30 \mathrm{mg}, 0.043 \mathrm{mmol}$) was dissolved in a $4: 1(\mathrm{v} / \mathrm{v})$ mixture of TFA and $\mathrm{H}_{2} \mathrm{O}$ at room temperature. After 4 h , the flask was placed on the rotary evaporator and the TFA and $\mathrm{H}_{2} \mathrm{O}$ were removed at reduced pressure. The residue was purified by flash chromatography (75:25:1 to $67: 33: 1 \mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{Et}_{3} \mathrm{~N}$) to afford compound $\mathbf{S 1 2 b}$ as a white solid ($10 \mathrm{mg}, 43 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 8.56$ (d, $J=3.4 \mathrm{~Hz}, 1 \mathrm{H}$), 8.17 ($\mathrm{s}, 1 \mathrm{H}$), 7.95 (dd, $J=16.0,3.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.29$ (ddd, $J=8.6,8.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.81-6.76(\mathrm{~m}, 2 \mathrm{H}), 6.19$ (d, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.61$ (dd, $J=16.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{dd}, J=7.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.41-4.37(\mathrm{~m}, 2 \mathrm{H}), 4.36-4.33(\mathrm{~m}, 1 \mathrm{H})$, $3.68-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.61-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.16\left(\mathrm{q}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Et}_{3} \mathrm{~N}-\mathrm{CH}_{2}\right), 2.92(\mathrm{t}, J=6.3 \mathrm{~Hz}$, $2 \mathrm{H}), 1.75-1.57(\mathrm{~m}, 4 \mathrm{H}), 1.29\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{Et}_{3} \mathrm{~N}-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): δ 175.2, 162.1, 157.3, 154.0, 150.8, 140.9, 134.5, 131.4, 120.5, 120.1, 119.3, 117.9, 87.4, 85.4, 83.6, 71.4, 71.1, 69.5, 47.8, 40.6, 27.4, 25.6, 9.27. HRMS (ESI-): $[\mathrm{M}-\mathrm{H}]^{-}$calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{7} \mathrm{O}_{8} \mathrm{~S}, 536.1564$; found, 536.1562.

Sal-AMS-biotin triethylammonium salt (6)

EZ-link NHS-Peg ${ }_{12}$-Biotin (Thermo Fisher Scientific Inc.) ($25 \mathrm{mg}, 0.027 \mathrm{mmol}$) and DIEA (6.0 $\mu \mathrm{L}, 0.035 \mathrm{mmol}$) were added to a solution of compound S12b ($10 \mathrm{mg}, 0.019 \mathrm{mmol}$) in DMF (2 $\mathrm{mL})$. The solution was stirred at room temperature for 12 h . The reaction mixture was concentrated under reduced pressure. The residue was purified by flash chromatography ($80: 20: 1 \mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{Et}_{3} \mathrm{~N}$) to afford compound 6 as a colorless oil ($17 \mathrm{mg}, 66 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 8.57(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 1 \mathrm{H})$, 6.83-6.76 (m, 2H), 6.17 (d, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}$), 4.61 (dd, $J=5.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{dd}, J=3.7,3.7$ $\mathrm{Hz}, 1 \mathrm{H}$), 4.49 (dd, $J=7.8,4.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.40 (dddd, $J=11.0,11.0,11.0,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.34-4.27$ (m, 2H), 3.70-3.52 (m, 52H), 3.36 (t, $J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.24-3.16(\mathrm{~m}, 1 \mathrm{H}), 3.13(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $15 \mathrm{H}, \mathrm{Et}_{3} \mathrm{~N}-\mathrm{CH}_{2}$), $2.92(\mathrm{dd}, J=12.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{t}, J=6.1 \mathrm{~Hz}$,
$2 \mathrm{H}), 2.22(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.78-1.38(\mathrm{~m}, 10 \mathrm{H}), 1.27\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 22.5 \mathrm{H}, \mathrm{Et}_{3} \mathrm{~N}-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 176.1,174.9,173.8,166.1,162.1,157.3,154.0,150.9,141.2$, $134.4,131.4,120.7,120.1,119.3,117.9,87.4,85.2,83.4,71.5,71.4,71.31,71.26,70.6,69.5$, 68.3, 63.3, 61.6, 57.0, 47.8, 41.1, 40.4, 40.0, 37.7, 36.7, 29.8, 29.5, 27.9, 26.9, 26.2, 9.41. HRMS (ESI-): [M-H] calcd for $\mathrm{C}_{58} \mathrm{H}_{93} \mathrm{~N}_{10} \mathrm{O}_{23} \mathrm{~S}_{2}, 1361.5856$; found, 1361.5847.

Chemical Biology Procedures

Preparation of Overexpression Constructs. Recombinant proteins holo-GrsA, apo-TycA, and holo-TycB1 were expressed and purified as described previously. ${ }^{4,9}$ These proteins were overproduced and isolated as C-terminal His-tagged constructs using the E. coli overexpression strain, BL21 (DE3), kindly provided by Prof. Mohamed A. Marahiel at Philipps-Universität Marburg, Germany. The ausA2 (A2-T2-R) gene was PCR amplified genomic DNA from Staphylococcus aureus ATCC 700699 using primers ausA2 F (5^{\prime}-GCCTCCACGACCATGGAACTTCTAAATTGGGTCAATAC-3') and ausA2 R (5^{\prime}-CCGAATTCGTCTTATTGAATATTGTTTTGATATATTGTGC-3'), and subsequently cloned into plitmus28-ausA2. Plasmid litmus28-ausA2 was digested with NcoI and EcoRI, and the gene was subcloned into pET28b to produce pET28b-ausA2, an expression vector for apo-AusA2 with a $6 \times$ His-tag appended to the C-terminus. The entE gene was PCR amplified from pKK223-3 containing the entE gene, kindly provided by Prof. Christopher T. Walsh at Harvard University, USA, using primers entE F (5^{\prime}-GCCTCCATGACCATGGGCATTCCATTCACC-3') and entE R (5^{\prime}-CCGAGAGTCCGAATTCGTGGCTGATGCGCG-3'), and subsequently cloned into plitmus28-entE. Plasmid litmus28-entE was digested with NcoI and EcoRI, and the gene was subcloned into pET28b to produce pET28b-entE, an expression vector for EntE with a $6 \times$ His-tag appended to the C -terminus. Sequencing revealed the expression plasmid to be error free.

Site-Directed Mutagenesis. Site-directed mutant EntE (S240C) was constructed from a pET28b-entE template PCR mutagenesis using primers EntE (S240C) F (5^{\prime}-TACGCCATGAGTTGCCCAGGATCGCTGGGCGTC-3') and EntE (S240C) R (5'-GACGCCCAGCGATCCTGGGCAACTCATGGCGTA-3'), and the PCR-amplified products were subsequently treated with DpnI. The DpnI-treated DNA was transformed into E. coli DH5 α cells.
Protein Expression and Purification. For expression and purification of apo-AusA2, pET28b-ausA2 was transformed into E. coli BL21 (DE3) cells. Overnight cultures were used to inoculate 1 L of LB medium supplemented with $50 \mu \mathrm{~g} / \mathrm{mL}$ kanamycin. Cultures were allowed to grow to an A_{600} of 0.7 at $37^{\circ} \mathrm{C}$, then induced with IPTG to a final concentration of 0.3 mM , and allowed to grow for a further 18 h at $18{ }^{\circ} \mathrm{C}$. For expression and purification of EntE and the
mutant EntE (S240C), pET28b-entE and pET-entE (S240C) were transformed into E. coli BL21 (DE3) cells. Overnight cultures were used to inoculate 1 L of LB medium supplemented with 50 $\mu \mathrm{g} / \mathrm{mL}$ kanamycin. Cultures were allowed to grow to an A_{600} of 0.7 at $37^{\circ} \mathrm{C}$, then induced with IPTG to a final concentration of 0.1 mM , and allowed to grow for a further 3 h at $37^{\circ} \mathrm{C}$. Cells were pelleted and resuspended in lysis buffer (20 mM Tris-HCl, $\mathrm{pH} 8.0,0.5 \%$ Triton-X and protease inhibitor cocktail). The cells were then lysed by sonication at $4{ }^{\circ} \mathrm{C}$ using an ultrasonic disruptor UD201 (Tomy Digital Biology Co., Ltd, Japan). The resulting cell lysates were centrifuged to remove cell debris and the supernatants were loaded onto a Ni-NTA agarose column (Qiagen) and eluted with a gradient of imidazole. Eluted proteins were visualized by SDS-PAGE with Coomassie Brilliant Blue stain and quantitated by the method of Bradford. ${ }^{10}$ Fractions containing the recombinant proteins were pooled and dialyzed against assay buffer (20 mM Tris- $\mathrm{HCl}, \mathrm{pH} 8.0,1 \mathrm{mM} \mathrm{MgCl} 2$ and 1 mM TCEP). After the addition of 10% glycerol (v / v) the proteins were stored at $-80^{\circ} \mathrm{C}$.
Preparation of Lysates for Proteomic Binding Experiments. Recombinant proteins holo-GrsA and holo-TycB1 were overproduced as described previously. ${ }^{4,9}$ E. coli cell pellets containing overproduced GrsA were resuspended in 20 mM Tris (pH 8.0), $1 \mathrm{mM} \mathrm{MgCl} 2,1 \mathrm{mM}$ TCEP, 0.05% NP- 40 and protease inhibitor cocktail, and then lysed by sonication at $4^{\circ} \mathrm{C}$ using an ultrasonic disruptor UD201. In contrast, E. coli cell pellets containing overexpressed TycB1 were resuspended in 50 mM HEPES (pH 8.0), $100 \mathrm{mM} \mathrm{NaCl}, 10 \mathrm{mM} \mathrm{MgCl} 2,1 \mathrm{mM}$ TCEP, 1 mM EDTA, 0.05% NP-40, and protease inhibitor cocktail and subsequently sonicated at $4^{\circ} \mathrm{C}$ using an ultrasonic disruptor UD201. The lysates were centrifuged for 5 min at $15,000 \mathrm{rpm}$ and the pellets were discarded. The protein concentrations were measured by the method of Bradford ${ }^{10}$ and cell lysates were diluted to provide a final concentration of $1.0 \mathrm{mg} / \mathrm{mL}$.
Hydroxamate-MesG Assay. ${ }^{2}$
Standard assay conditions: Reactions contained varying amounts of NRPS enzymes (200-635 nM) to maintain initial velocity conditions, 20 mM Tris (pH 8.0), 2.5 mM ATP, $1 \mathrm{mM} \mathrm{MgCl} 2,1$ mM TCEP, 150 mM hydroxylamine (pH 7.0), 0.1 U purine nucleoside phosphorylase (SigmaAldrich, N8264), 0.04 U inorganic pyrophosphatase (Sigma-Aldrich, I1643), 0.2 mM MesG (Berry \& Associates), and varying concentrations of substrates. The reactions ($100 \mu \mathrm{~L}$) were run in 96-well half-area plates (Corning, 3881) and the cleavage of MesG was monitored at A_{355} on an EnVision Multilabel Reader (PerkinElmer). Working stocks of hydroxylamine were prepared fresh by combining $500 \mu \mathrm{~L}$ of 4 M hydroxylamine, $250 \mu \mathrm{~L}$ of water and $250 \mu \mathrm{~L}$ of 7 M NaOH on ice.

Determination of $K_{i}^{\text {app }}$ values of inhibitors by the hydroxamate-MesG assay: $K_{\mathrm{i}}^{\text {app }}$ determination was performed using standard assay conditions. For holo-TycB1, probe 3 was tested from 12.5 to $200 \mu \mathrm{M}$ using L-Pro (1 mM) as the competing substrate. The enzyme was fixed at 400 nM .

For apo-AusA2, probe 4 and the probe's cognate competitor 9 were tested from 0.79 to $25 \mu \mathrm{M}$ and 0.16 to $5 \mu \mathrm{M}$, respectively, using L-Tyr (1 mM) as the cognate substrate. The enzyme was fixed at 635 nM . Compounds 1 and 7 were varied from 1.9 to $30 \mu \mathrm{M}$ and 0.31 to $10 \mu \mathrm{M}$, respectively, and apo-AusA2 (635 nM) and L-Tyr (1 mM) were held constant. For EntE, probe 5 was tested from 0.31 to $5 \mu \mathrm{M}$ using $\mathrm{DHB}(50 \mu \mathrm{M})$ as the competing substrate. The enzyme was fixed at 200 nM . Compound 10 was varied from 0.25 to $2 \mu \mathrm{M}$ and EntE (400 nM) and DHB (50 $\mu \mathrm{M})$ were held constant. In all experiments, the total DMSO concentration was kept at 2.0%. Initial velocities were fit to the Morrison equation using Prism 5 (GraphPad Software).

Determination of kinetic parameters: Steady-state kinetic parameters of the substrates were determined for each enzyme using standard assay conditions as described above. The enzyme and substrate concentrations are listed here: GrsA was used at 50 nM with L-Phe (6.25-1000 $\mu \mathrm{M}$) and 100 nM with (S)- β-Phe ($100-2000 \mu \mathrm{M}$); TycB1 was used at 400 nM with L-Pro ($10-$ $2000 \mu \mathrm{M})$; AusA2 was used at 635 nM with L-Tyr $(200-1000 \mu \mathrm{M})$ and L-Phe $(188-3000 \mu \mathrm{M})$; EntE was used at 250 nM with DHB $(3.13-100 \mu \mathrm{M})$ and Sal $(20-320 \mu \mathrm{M})$; the mutant EntE (S240C) was used at 500 nM with DHB $(62.5-2000 \mu \mathrm{M})$ and $\mathrm{Sal}(10-320 \mu \mathrm{M})$. In all experiments, the total DMSO concentration was kept at or below 2.0%. Initial velocities were fit to the Michaelis-Menten equation using Prism 5 (GraphPad Software).

ELISA protocol. Probes 1, 2, 4, 5 and 6 were dissolved in immobilization buffer (PBST: PBS containing 0.05% Tween 20) to provide final concentrations of $3.5 \mu \mathrm{~g} / \mathrm{mL}$. In contrast, probe 3 was dissolved in immobilization buffer (PBS containing $0.0025 \% \mathrm{NP}-40$) to provide a final concentration of $3.5 \mu \mathrm{~g} / \mathrm{mL}$. Streptavidin High Binding Capacity Coated 96-well plates (Pierce) were treated with $100 \mu \mathrm{~L}$ of the probes for 1 h at room temperature, followed by extensive washing with $200 \mu \mathrm{~L}$ of PBST. Control wells were treated identically except no probes were added to the immobilization buffers. In Figure 3, wells were incubated with $100 \mu \mathrm{~L}$ of a serially diluted solution of GrsA $(0.0781-5.0 \mu \mathrm{~g} / \mathrm{mL})$, TycA $(0.156-10 \mu \mathrm{~g} / \mathrm{mL})$, AusA2 $(0.313-20$ $\mu \mathrm{g} / \mathrm{mL}$), and EntE ($0.0391-2.5 \mu \mathrm{~g} / \mathrm{mL}$) in 20 mM Tris (pH 8.0), $1 \mathrm{mM} \mathrm{MgCl}_{2}, 1 \mathrm{mM}$ TCEP, and 0.0025% NP-40 for 1 h at room temperature. Control wells were identically treated with $100 \mu \mathrm{~L}$ of GrsA $(5.0 \mu \mathrm{~g} / \mathrm{mL})$, TycA $(10 \mu \mathrm{~g} / \mathrm{mL})$, AusA2 $(20 \mu \mathrm{~g} / \mathrm{mL})$, and EntE $(5.0 \mu \mathrm{~g} / \mathrm{mL})$. In Figure 4, wells were treated with $100 \mu \mathrm{~L}$ of $\operatorname{GrsA}(5.0 \mu \mathrm{~g} / \mathrm{mL})$, TycA $(10 \mu \mathrm{~g} / \mathrm{mL})$, AusA2 $(20 \mu \mathrm{~g} / \mathrm{mL})$, and EntE $(1.0 \mu \mathrm{~g} / \mathrm{mL})$ in 20 mM Tris (pH 8.0), $1 \mathrm{mM} \mathrm{MgCl} 2,1 \mathrm{mM}$ TCEP, and 0.0025% NP-40 for 1 h at room temperature. Control wells were identically treated with $100 \mu \mathrm{~L}$ of GrsA (5.0 $\mu \mathrm{g} / \mathrm{mL})$, TycA $(10 \mu \mathrm{~g} / \mathrm{mL})$, AusA2 $(20 \mu \mathrm{~g} / \mathrm{mL})$, EntE $(1.0 \mu \mathrm{~g} / \mathrm{mL})$, and the binding buffer. In Figure 5, wells were incubated with $100 \mu \mathrm{~L}$ of a serially diluted cell lysate ($0.0156-1.0 \mathrm{mg} / \mathrm{mL}$) containing overproduced GrsA and TycB1 for 1 h at room temperature. Control wells were identically treated with $100 \mu \mathrm{~L}$ of cell lysates $(1.0 \mathrm{mg} / \mathrm{mL})$ containing overproduced GrsA and TycB1. In Figure 6, wells were treated with a serially diluted solution of GrsA (0.313-20
$\mu \mathrm{g} / \mathrm{mL}$) and TycA ($0.313-20 \mu \mathrm{~g} / \mathrm{mL}$) in 20 mM Tris (pH 8.0), $1 \mathrm{mM} \mathrm{MgCl} 2,1 \mathrm{mM}$ TCEP, and 0.0025% NP-40 for 1 h at room temperature. Control wells were identically treated with $100 \mu \mathrm{~L}$ of GrsA ($20 \mu \mathrm{~g} / \mathrm{mL}$) and TycA ($20 \mu \mathrm{~g} / \mathrm{mL}$). In Figure 7, probe 5-immobilized wells were incubated with $100 \mu \mathrm{~L}$ of a serially diluted EntE ($0.0313-2.0 \mu \mathrm{~g} / \mathrm{mL}$) and the mutant EntE (S240C) ($0.156-10 \mu \mathrm{~g} / \mathrm{mL}$) in 20 mM Tris (pH 8.0), $1 \mathrm{mM} \mathrm{MgCl} 2,1 \mathrm{mM}$ TCEP, and 0.0025% NP-40 for 1 h at room temperature. In contrast, probe 6 -immobilized wells were treated with $100 \mu \mathrm{~L}$ of a serially diluted EntE ($0.313-20 \mu \mathrm{~g} / \mathrm{mL}$) and the mutant EntE (S240C) (0.313-20 $\mu \mathrm{g} / \mathrm{mL}$) in 20 mM Tris (pH 8.0), $1 \mathrm{mM} \mathrm{MgCl} 2,1 \mathrm{mM}$ TCEP, and $0.0025 \% \mathrm{NP}-40$ for 1 h at room temperature. Control wells were identically treated with $100 \mu \mathrm{~L}$ of EntE $(2.0 \mu \mathrm{~g} / \mathrm{mL}$ and $20 \mu \mathrm{~g} / \mathrm{mL}$) and the mutant EntE (S240C) ($10 \mu \mathrm{~g} / \mathrm{mL}$ and $20 \mu \mathrm{~g} / \mathrm{mL}$). After extensive washing with $200 \mu \mathrm{~L}$ of PBST, wells were treated with a solution of $100 \mu \mathrm{~L}$ of an anti- $6 \times$ His, monoclonal antibody (9 C 11 , Wako Pure Chemical Industries, Ltd.), $1: 5000$ in PBST, for 1 h at room temperature. After three washes with $200 \mu \mathrm{~L}$ of PBST, a solution of $100 \mu \mathrm{~L}$ of goat anti-mouse-HRP conjugate (Bio-Rad Laboratories, Inc.), 1:5000 in PBST was incubated for 1 h at room temperature, followed by three washes with $200 \mu \mathrm{~L}$ of PBST, and each well was then treated with $100 \mu \mathrm{~L}$ of $0.4 \mathrm{mg} / \mathrm{mL} o$-phenylenediamine (OPD) in 0.05 M phosphate-citrate pH 5.0 containing $0.4 \mathrm{mg} / \mathrm{mL}$ urea hydrogen peroxide at room temperature. The yellow color was allowed to develop for approximately 5 min and the reaction was quenched by the addition of $50 \mu \mathrm{~L}$ of $1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$. The absorbance at 492 nm was measured using an EnVision Multilabel Reader (PerkinElmer).

References

1. May, J. J.; Kessler, N.; Marahiel, M. A.; Stubbs, M. T. Crystal structure of DhbE, an archetype for aryl acid activating domains of modular nonribosomal peptide synthetases. Proc. Natl. Acad. Sci. USA 2002, 99, 12120-12125.
2. Wilson, D. J.; Aldrich, C. C. A continuous kinetic assay for adenylation enzyme activity and inhibition. Anal. Chem. 2010, 404, 56-63.
3. Konno, S; Ishikawa, F.; Suzuki, T.; Dohmae, N.; Burkart, M. D.; Kakeya, H. Active site-directed proteomic probes for adenylation domains in nonribosomal peptide synthetases. Chem. Commun. 2015, 51, 2262-2265.
4. Ishikawa, F; Kakeya, H. Specific enrichment of nonribosomal peptide synthetase module by an affinity probes for adenylation domains. Bioorg. Med. Chem. Lett. 2014, 24, 865-869.
5. Kasai, S.; Konno, S.; Ishikawa, F.; Kakeya, H. Functional profiling of adenylation domains in nonribosomal peptide synthetases by competitive activity-based protein profiling. Chem. Commun. 2015, DOI: 10.1039/C5CC04953A.
6. Somu, R. V.; Boshoff, H.; Qiao, C.; Bennett, E. M.; Barry III, C. E.; Aldrich, C. C. Rationally designed nucleoside antibiotics that inhibit siderophore biosynthesis of Mycobacterium tuberculosis. J. Med. Chem. 2006, 49, 31-34.
7. Gottlieb, H. E.; Kotlyar, V.; Nudelman, A. NMR chemical shifts of common laboratory solvents as trace impurities. J. Org. Chem. 1997, 62, 7512-7515.
8. Still, W. C.; Kahn, A.; Mitra, A. Rapid chromatographic technique for preparative separations with moderate resolution. J. Org. Chem. 1978, 43, 2923-2925.
9. Stachelhaus, T.; Mootz, H. D.; Bergendahl, V.; Marahiel, M. A. Peptide bond formation in nonribosomal peptide biosynthesis. J. Biol. Chem. 1998, 273, 22773-22781.
10. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248-254.
${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}-$ NMR $(125 \mathrm{MHz})$ spectra of $\mathbf{3}$ in $\mathrm{CD}_{3} \mathrm{OD}$

${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$-NMR (125 MHz) spectra of $\mathbf{S 5 b}$ in $\mathrm{CD}_{3} \mathrm{OD}$

${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz})$ spectra of $\mathbf{S} 6 \mathbf{b}$ in $\mathrm{CD}_{3} \mathrm{OD}$

${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$-NMR (125 MHz) spectra of $\mathbf{4}$ in $\mathrm{CD}_{3} \mathrm{OD}$

${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz})$ spectra of $\mathbf{S 5 a}$ in $\mathrm{CD}_{3} \mathrm{OD}$

${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$-NMR (125 MHz) spectra of $\mathbf{S 6 a}$ in $\mathrm{CD}_{3} \mathrm{OD}$

${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz})$ spectra of $\mathbf{2}$ in $\mathrm{CD}_{3} \mathrm{OD}$

${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$-NMR (125 MHz) spectra of $\mathbf{S 7}$ in CDCl_{3}

${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$-NMR (125 MHz) spectra of $\mathbf{S 8}$ in CDCl_{3}

${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$-NMR (125 MHz) spectra of $\mathbf{S 1 0 a}$ in $\mathrm{CD}_{3} \mathrm{OD}$

${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$-NMR (125 MHz) spectra of S11a in $\mathrm{CD}_{3} \mathrm{OD}$

${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$-NMR (125 MHz) spectra of $\mathbf{S 1 2 a}$ in $\mathrm{CD}_{3} \mathrm{OD}$

${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$-NMR (125 MHz) spectra of 5 in $\mathrm{CD}_{3} \mathrm{OD}$

${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$-NMR (125 MHz) spectra of $\mathbf{S 1 0 b}$ in $\mathrm{CD}_{3} \mathrm{OD}$

${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$-NMR (125 MHz) spectra of $\mathbf{S 1 1 b}$ in $\mathrm{CD}_{3} \mathrm{OD}$

${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$-NMR (125 MHz) spectra of $\mathbf{S 1 2 b}$ in $\mathrm{CD}_{3} \mathrm{OD}$

${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$-NMR (125 MHz) spectra of 6 in $\mathrm{CD}_{3} \mathrm{OD}$

