Total Synthesis of Peniphenones A-D via Biomimetic Reactions of a Common o-Quinone Methide Intermediate

Justin T. J. Spence and Jonathan H. George*
Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia.

Supporting Information

Table of Contents

1. General methods 2
2. Experimental procedures 3
3. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra 17
4. Tables of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data for peniphenones A-D 37

1. General methods

All chemicals used were purchased from commercial suppliers and used as received. All reactions were performed under an inert atmosphere of N_{2}. All organic extracts were dried over anhydrous magnesium sulfate. Thin layer chromatography was performed using aluminium sheets coated with silica gel. Visualization was aided by viewing under a UV lamp and staining with ceric ammonium molybdate stain followed by heating. All R_{f} values were measured to the nearest 0.05 . Flash chromatography was performed using 40-63 micron grade silica gel. Melting points were recorded on a digital melting point apparatus and are uncorrected. Infrared spectra were recorded using an FT-IR spectrometer as the neat compounds. High field NMR was recorded using a 600 MHz spectrometer $\left({ }^{1} \mathrm{H}\right.$ at 600 MHz , ${ }^{13} \mathrm{C}$ at 150 MHz$)$ or a 500 MHz spectrometer $\left({ }^{1} \mathrm{H}\right.$ at $500 \mathrm{MHz},{ }^{13} \mathrm{C}$ at 125 MHz$)$. Solvents used for spectra were chloroform unless otherwise specified. ${ }^{1} \mathrm{H}$ chemical shifts are reported in ppm on the δ-scale relative to TMS ($\delta 0.0$) and ${ }^{13} \mathrm{C}$ NMR are reported in ppm relative to chloroform ($\delta 77.0$). Multiplicities are reported as (br) broad, (s) singlet, (d) doublet, (t) triplet, (q) quartet and (m) multiplet. All J-values were rounded to the nearest 0.1 Hz . ESI high resolution mass spectra were recorded on a Q-TOF mass spectrometer. Optical rotations were measured on a modular circular polarimeter.

2. Experimental procedures

Peniphenone B dimethyl ether (SI-1): 2-Methyleneacetoxy-4-methyl-6-acetylresorcinol 11 ${ }^{1}$ $(48 \mathrm{mg}, 0.20 \mathrm{mmol})$ and pyrone $\mathbf{1 2}^{2}(50 \mathrm{mg}, 0.20 \mathrm{mmol})$ were dissolved in AcOH $(10 \mathrm{~mL})$ in a sealed tube. The tube was flushed with N_{2}, sealed and the reaction mixture was heated at $120{ }^{\circ} \mathrm{C}$ for 16 h . The reaction mixture was then cooled and the precipitate was collected via vacuum filtration, to give peniphenone B dimethyl ether (SI-1) ($57 \mathrm{mg}, 66 \%$) as a brown solid, which was used without further purification.

Data for SI-1: $\mathbf{R}_{\mathbf{f}}=0.20$ (petroleum ether/ EtOAc, 1:1)

Mp: $158-160{ }^{\circ} \mathrm{C}$
IR (film): 3215, 2940, 1667, 1625, 1568, 1517, 1377, 1274, $1149 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 10.34(\mathrm{~s}, 1 \mathrm{H}), 9.74(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}$, 2 H), 2.57 ($\mathrm{s}, 3 \mathrm{H}$), 2.22 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 203.3,167.9,162.0,159.4,158.7,151.7,149.3,130.9,123.4$, 119.6, 119.2, 112.5, 112.4, 111.1, 108.2, 102.0, 98.2, 56.13, 56.06, 25.9, 17.5, 16.1.

HRMS $\left(\mathbf{C}_{\mathbf{2 3}} \mathbf{H}_{\mathbf{2 2}} \mathbf{O}_{\mathbf{8}}, \mathbf{E S I}\right)$: calculated $[\mathrm{M}-\mathrm{H}]^{-}$425.1242, found 425.1245 .

[^0]

Peniphenone B (2): To a solution of SI-1 ($58 \mathrm{mg}, 0.14 \mathrm{mmol}$) in CHCl_{3} (3 mL) was added $\mathrm{BBr}_{3}\left(1.0 \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1.36 \mathrm{~mL}, 1.36 \mathrm{mmol}\right)$ dropwise and the reaction mixture was heated at reflux for 1.5 h . The reaction mixture was quenched with $1 \mathrm{M} \mathrm{HCl}(5 \mathrm{~mL})$ and the organic layer separated. The aqueous layer was extracted with EtOAc ($3 \times 15 \mathrm{~mL}$) and the combined organics were washed with brine (20 mL), dried over MgSO_{4}, filtered and concentrated in vacuo. The resultant solid was recrystallized from acetone to give peniphenone B(2) (51 mg, 94\%) as a yellow solid.

Data for 2: $\mathbf{R}_{\mathbf{f}}=0.05$ (petroleum ether/ $\mathrm{EtOAc}, 1: 1$)

Mp: $255-260{ }^{\circ} \mathrm{C}$
IR (film): $3329,2924,1655,1605,1555,1526,1369,1289,1182,1138 \mathrm{~cm}^{-1}$
${ }^{1}{ }^{1}$ NMR (500 MHz, DMSO-d6) $\delta 13.10(\mathrm{~s}, 1 \mathrm{H}), 9.65(\mathrm{~s}, 1 \mathrm{H}), 9.40(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H})$, $7.14(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{dd}, J=8.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H})$, $3.68(\mathrm{~s}, 2 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (125 MHz, DMSO-d6) $\delta 203.1,167.3,167.0,161.3,160.9,158.1,148.6,145.7$, $130.9,121.7,117.4,116.6,116.1,112.8,112.23,112.18,100.1,96.4,26.3,16.9,16.0$.

HRMS $\left(\mathbf{C}_{\mathbf{2 1}} \mathbf{H}_{\mathbf{1 8}} \mathbf{O}_{\mathbf{8}}, \mathbf{E S I}\right)$: calculated $[\mathrm{M}+\mathrm{H}]^{+} \mathbf{3 9 9} .1090$, found 399.1087.

Peniphenone C (3): 2-Methyleneacetoxy-4-methyl-6-acetylresorcinol $\mathbf{1 1}$ ($100 \mathrm{mg}, 0.42$ mmol) and 3,6-dimethyl-1,2,4-benzenetriol $\mathbf{8}^{3}(59 \mathrm{mg}, 0.38 \mathrm{mmol})$ were dissolved in toluene $(10 \mathrm{~mL})$ in a sealed tube and heated at $110{ }^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was cooled and the solvent was removed in vacuo. The resultant residue was purified by flash chromatography (SiO_{2}, petroleum ether/acetone, 5:1) to give peniphenone C (3) ($92 \mathrm{mg}, 72 \%$) as a bright yellow solid.

Data for 3: $\mathbf{R}_{\mathbf{f}}=0.35$ (petroleum ether/acetone, 5:1)

Mp: $212-216{ }^{\circ} \mathrm{C}$
IR (film): 3320, 2926, 1655, 1625, 1603, 1361, 1284, 1253, 1156, $1083 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 13.18(\mathrm{~s}, 1 \mathrm{H}), 9.57(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 2 \mathrm{H}), 2.53(\mathrm{~s}$, $3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (125 MHz, $\mathbf{C D C l}_{3}$) $\delta 202.7,191.2,183.7,161.8,161.1,151.6,143.4,139.8,131.1$, 118.4, 116.8, 112.8, 110.6, 26.2, 22.0, 16.1, 12.5, 8.2.

HRMS ($\left.\mathbf{C}_{\mathbf{1 8}} \mathbf{H}_{\mathbf{1 8}} \mathbf{O}_{\mathbf{6}}, \mathbf{E S I}\right)$: calculated $[\mathrm{M}+\mathrm{H}]^{+}$331.1176, found 331.1181.

[^1]

Peniphenone D (4): 2-Methyleneacetoxy-4-methyl-6-acetylresorcinol 11 ($100 \mathrm{mg}, 0.42$ mmol) and (S)-5-methyl tetronic acid $\mathbf{9}^{4}(144 \mathrm{mg}, 1.26 \mathrm{mmol}$) were dissolved in toluene (10 mL) in a sealed tube. The flask was flushed with N_{2}, sealed and then the reaction mixture was heated at $110^{\circ} \mathrm{C}$ for 16 h . The reaction mixture was concentrated in vacuo, then purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/EtOAc, $4: 1 \rightarrow 2: 1$ gradient elution) to give (-)peniphenone $\mathrm{D}(4)(63 \mathrm{mg}, 51 \%)$ as a white solid.

Data for 4: $\mathbf{R}_{\mathbf{f}}=0.05$ (petroleum ether/EtOAc, 2:1)

$$
[\alpha]_{D}^{25}-6.8^{\circ}(\mathrm{c} 1.13, \mathrm{MeOH})
$$

Mp: $175-177{ }^{\circ} \mathrm{C}$

IR (film): 3159, 2916, 2583, 1714, 1655, 1576, 1322, 1233, 1099, 1055, $808 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 13.97(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.58(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.24(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=$ $0.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.57(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.46(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (150 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 203.5,177.2,175.8,160.2,158.8,130.7,119.5,113.3,112.8$, 101.5, 76.2, 26.0, 17.2, 15.9, 14.5.

HRMS ($\mathbf{C}_{\mathbf{1 5}} \mathbf{H}_{\mathbf{1 8}} \mathbf{O}_{\mathbf{6}}$, $\left.\mathbf{E S I}\right)$: calculated $[\mathrm{M}-\mathrm{H}]^{-}$291.0874, found 291.0871.

[^2]

Spiroacetal 13: To a solution of 2-methyleneacetoxy-4-methyl-6-acetylresorcinol 11 (50 mg, 0.21 mmol) and 2-methylenetetrahydro-2 H-pyran $13(98 \mathrm{mg}, 1.00 \mathrm{mmol})$ in toluene (5 mL) was added $\mathrm{Et}_{3} \mathrm{~N}(0.06 \mathrm{~mL}, 0.42 \mathrm{mmol})$. The reaction was heated at $110^{\circ} \mathrm{C}$ in a sealed tube for 16 h . The solvent was removed in vacuo and the residue purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/EtOAc, 10:1) to give $\mathbf{1 4}(31 \mathrm{mg}, 53 \%)$ as a pale yellow oil.

Data for 13: $\mathbf{R}_{\mathbf{f}}=0.45$ (petroleum ether/EtOAc, 5:1)
IR (film): 2942, 2872, 1619, 1478, 1438, 1369, 1331, 1266, 1230, 1177, 1145, $1070 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 12.84(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~s}, 1 \mathrm{H}), 3.72(\mathrm{td}, J=11.8,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.65(\mathrm{dd}, J=11.1,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.75-2.69(\mathrm{~m}, 2 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 2.09-2.01(\mathrm{~m}$, $2 \mathrm{H}), 1.92$ (d, $J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-1.58$ (m, 5H).
${ }^{13} \mathbf{C}$ NMR (125 MHz, $\mathbf{C D C l}_{3}$) $\delta 202.7,160.5,156.9,129.4,117.3,112.7,110.4,96.8,62.2$, 34.5, 31.0, 26.2, 25.1, 18.6, 15.4, 15.1.

HRMS ($\mathbf{C}_{\mathbf{1 6}} \mathbf{H}_{\mathbf{2 0}} \mathbf{O}_{\mathbf{4}}$, $\left.\mathbf{E S I}\right)$: calculated $[\mathrm{M}+\mathrm{H}]^{+}$277.1434, found 277.1440.

Ketals 15 and 16: 2-Methyleneacetoxy-4-methyl-6-acetylresorcinol 11 ($100 \mathrm{mg}, 0.42 \mathrm{mmol}$) and 2-methylenetetrahydro-2 H -pyran $\mathbf{1 3}^{5}(38 \mathrm{mg}, 0.38 \mathrm{mmol})$ were dissolved in toluene (5 mL) and heated at $110^{\circ} \mathrm{C}$ in a sealed tube for 16 h . The solvent was removed in vacuo and the residue purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/EtOAc, 10:1 $\rightarrow 1: 1$ gradient elution) to give $\mathbf{1 4}$ and $\mathbf{1 5}(28 \mathrm{mg}, \mathbf{2 6 \%})$ as a colourless oil and as a 9:1 inseparable mixture of isomers in favour of $\mathbf{1 5}$. Further elution afforded $\mathbf{1 6}(13 \mathrm{mg}, 14 \%)$ as a colourless oil.

Data for 15: $\mathbf{R}_{\mathbf{f}}=0.45$ (petroleum ether/EtOAc, 5:1)

IR (film): 2931, 1738, 1620, 1478, 1373, 1282, 1232, 1193, 1116, 1074, $997 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR ($500 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 12.93(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~s}, 1 \mathrm{H}), 3.99-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{dd}, J=$ $11.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}$), $2.83(\mathrm{dd}, J=17.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{~d}, \mathrm{~J}=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H})$, $2.17(\mathrm{~s}, 3 \mathrm{H}), 2.06-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.38-$ $1.27(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 202.6,161.3,158.3,129.6,117.2,112.4,106.5$, 100.9, 62.1, 34.4, 26.2, 25.2, 25.09, 25.07, 25.05, 15.7.

HRMS ($\left.\mathbf{C}_{\mathbf{1 6}} \mathbf{H}_{\mathbf{2 0}} \mathbf{O}_{\mathbf{4}}, \mathbf{E S I}\right)$: calculated $[\mathrm{M}-\mathrm{H}]^{-} \mathbf{2 7 5 . 1 2 8 9}$, found 275.1278 .

Data for 16: $\mathbf{R}_{\mathbf{f}}=0.10$ (petroleum ether/EtOAc, 5:1)
IR (film): 3357, 2946, 1626, 1480, 1444, 1380, 1286, 1190, $1114 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $13.07(\mathrm{~s}, 1 \mathrm{H}), 12.88(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~s}, 1 \mathrm{H}), 6.04(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}), 4.17(\mathrm{td}, J=11.9,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{dd}, J=12.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{~d}, J=14.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.95(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~d}, J=18.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{~d}, J$ $=17.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.53-1.49(\mathrm{~m}$, $1 \mathrm{H}), 1.48$ - 1.41 (m, 2H). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 202.8,202.6,162.7,161.1,160.2$, 157.4, 131.1, 129.5, 116.8, 114.6, 113.6, 112.51, 112.44, 108.2, 104.5, 62.0, 37.4, 26.9, 26.53, $26.35,26.2,22.0,20.7,15.78,15.66$.

HRMS ($\mathbf{C}_{\mathbf{2 6}} \mathbf{H}_{\mathbf{3 0}} \mathbf{O}_{\mathbf{7}}$, $\left.\mathbf{E S I}\right)$: calculated $[\mathrm{M}-\mathrm{H}]^{-}$453.1919, found 453.1916 .

[^3]

Aldol product SI-2: To a solution of (R)-(-)-4-benzyl-3-propionyl-2-oxazolidinone 17 (1.00 g , 4.29 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added dibutylboron trifluoromethanesulfonate (1.0 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 6.43 \mathrm{~mL}, 6.43 \mathrm{mmol}$) dropwise over 30 min . $\mathrm{Et}_{3} \mathrm{~N}(1.2 \mathrm{~mL}, 8.6 \mathrm{mmol})$ was added immediately once the addition was complete and the reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 10 min and then warmed to $0^{\circ} \mathrm{C}$ and stirred for 1 h . The solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and aldehyde $\mathbf{1 8}(1.30 \mathrm{~g}, 6.43 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added dropwise and stirred at $-78^{\circ} \mathrm{C}$ for 20 min . The reaction mixture was then warmed to $0{ }^{\circ} \mathrm{C}$ and stirred for $3 \mathrm{~h} . \mathrm{pH} 7$ buffer $(5 \mathrm{~mL})$, $\mathrm{MeOH}(20 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}_{2}\left(30 \%\right.$ in $\mathrm{H}_{2} \mathrm{O}, 10$ mL) were added and the mixture stirred at $0^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$. The organic layer was separated and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 100 \mathrm{~mL})$. The combined organic layers were washed with brine (100 mL), dried over MgSO_{4}, filtered and concentrated in vacuo. The resultant residue was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/EtOAc, 5:1) to give SI-2 (1.70 g) as a colourless oil that was inseparable from the starting material and was therefore carried through to the next step without further characterization.

Weinreb amide 19: To a solution of N, O-dimethylhydroxylamine hydrochloride (1.46 g , $15.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was added trimethylaluminium (2.0 M in hexane, 7.50 mL , 15.0 mmol) dropwise at $0^{\circ} \mathrm{C}$ over 30 min and the mixture was stirred for 1 h . The reaction mixture was cooled to $-20^{\circ} \mathrm{C}$ and $\mathbf{S I}-2(1.70 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added dropwise and the reaction was then warmed to room temperature and stirred for 3 h . Saturated sodium potassium tartrate solution (25 mL) was added dropwise (strong effervescence observed) at 0 ${ }^{\circ} \mathrm{C}$ and the mixture was stirred for 1 h . The organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 100 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The resultant residue was purified by flash chromatography (SiO_{2}, petroleum ether/EtOAc, 5:1 $\rightarrow 2: 1$ gradient elution) to give Weinreb amide 19 ($902 \mathrm{mg}, 65 \%$ over 2 steps) as a colourless oil.

Data for 19: $\mathbf{R}_{\mathbf{f}}=0.15$ (petroleum ether/EtOAc, 2:1)
$[\alpha]_{D}^{25}-21.8\left(\mathrm{c} 0.92, \mathrm{CHCl}_{3}\right)$
IR (film): 3472, 2957, 2931, 2857, 1638, 1461, 1381, 1255, 1059, 993, $836 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 4.18-4.14(\mathrm{~m}, 1 \mathrm{H}), 4.13-4.09(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $3.69(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 2.86(\mathrm{~s}, 1 \mathrm{H}), 1.65(\mathrm{ddd}, J=13.6,10.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.43-1.36(\mathrm{~m}$, $1 \mathrm{H}), 1.21(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.19(d, \mathrm{~J}=2.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.085(\mathrm{~s}, 3 \mathrm{H}), 0.081(\mathrm{~s}$, $3 \mathrm{H})$.
${ }^{13} \mathbf{C N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 68.6,66.5,61.5,42.9,40.2,32.0,25.9,23.7,18.0,11.6,-4.5$, -4.9.

HRMS ($\left.\mathbf{C}_{\mathbf{1 5}} \mathbf{H}_{33} \mathbf{N O}_{\mathbf{4}} \mathbf{S i}, \mathbf{E S I}\right)$: calculated $[\mathrm{M}+\mathrm{H}]^{+}$320.2252, found 320.2244 .

Ketone 20: To a solution of Weinreb amide $19(1.62 \mathrm{~g}, 5.07 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added $\mathrm{EtMgBr}\left(3.0 \mathrm{M}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}, 5.07 \mathrm{~mL}, 15.2 \mathrm{mmol}\right)$ dropwise at room temperature and then the reaction mixture was stirred for 1 h . Further $\mathrm{EtMgBr}\left(3.0 \mathrm{M} \mathrm{in} \mathrm{Et}_{2} \mathrm{O}, 2.53 \mathrm{~mL}, 7.6 \mathrm{mmol}\right)$ was added at room temperature and the reaction mixture was stirred for a further 3 h before being quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$ and then diluted with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$. The organic layer was separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 100 \mathrm{~mL})$. The combined organic extracts were dried over MgSO_{4}, filtered and concentrated in vacuo. The resultant residue was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/EtOAc, 8:1) to give $20(1.15 \mathrm{~g}, 79 \%)$ as a colourless oil.

Data for 20: $\mathbf{R}_{\mathbf{f}}=0.30$ (petroleum ether/EtOAc, 5:1)
$[\alpha]_{D}^{25}-21.8\left(\mathrm{c} 0.92, \mathrm{CHCl}_{3}\right)$
IR (film): 3491, 2930, 1700, 1463, 1377, 1255, 1066, 1006, $836 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 4.21-4.16(\mathrm{~m}, 1 \mathrm{H}), 3.53(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.63-2.58(\mathrm{~m}, 1 \mathrm{H})$, $2.56-2.51(\mathrm{~m}, 2 \mathrm{H}), 1.61$ (ddd, $J=13.8,10.4,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.37$ (ddd, $J=14.1,6.2,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 1.22(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.14(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H})$, 0.09 (s, 6H).
${ }^{13} \mathbf{C N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 215.6,68.5,67.0,51.1,41.9,35.5,25.8,23.1,18.0,11.4,7.6$, -4.5, -5.0.

HRMS $\left(\mathbf{C}_{\mathbf{1 5}} \mathbf{H}_{\mathbf{3 2}} \mathbf{O}_{\mathbf{3}} \mathbf{S i}, \mathbf{E S I}\right)$: calculated $[\mathrm{M}+\mathrm{Na}]^{+}$311.2013, found 311.2019

Ketone 21: To a solution of ketone $20(250 \mathrm{mg}, 0.87 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at room temperature was added pyridine ($0.07 \mathrm{~mL}, 0.9 \mathrm{mmol}$) and TBSOTf $(0.22 \mathrm{~mL}, 0.95 \mathrm{mmol})$ and the reaction mixture was stirred for 4 h . The reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(25 \mathrm{~mL})$ and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. The organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 25 \mathrm{~mL})$. The combined organic extracts were dried over MgSO_{4}, filtered and concentrated in vacuo. The resultant residue was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/Et $\mathrm{E}_{2} \mathrm{O}, 10: 1$) to give $21(343 \mathrm{mg}, 98 \%)$ as a colourless oil.

Data for 21: $\mathbf{R}_{\mathbf{f}}=0.70$ (petroleum ether/EtOAc, 5:1)
$[\alpha]_{\mathrm{D}}^{25}-39.0\left(\mathrm{c} 1.05, \mathrm{CHCl}_{3}\right)$
IR (film): 2956, 2930, 1712, 1473, 1462, 1377, 1253, 1052, $833 \mathrm{~cm}^{-1}$
${ }^{1}{ }^{\mathbf{H}} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 4.07-4.02(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{~m}, 1 \mathrm{H}), 2.65-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.42$ (dq, $J=18.1,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.67-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.34(\mathrm{ddd}, J=14.0,6.9,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.16(\mathrm{~d}$, $J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H})$, $0.08(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3} \delta 213.2,71.6,66.2,51.7,45.1,35.8,25.90,25.85,24.6,18.07\right.$, 18.05, 11.1, 7.5, -2.9, -3.5, -4.24, -4.29.

HRMS $\left(\mathbf{C}_{\mathbf{2 1}} \mathbf{H}_{\mathbf{4 6}} \mathbf{O}_{\mathbf{3}} \mathbf{S i}_{\mathbf{2}}, \mathbf{E I}\right)$: calculated $\left[\mathrm{M}^{-} \mathrm{CH}_{3}\right]^{+} 387.2751$, found 387.2757 and calculated $\left[\mathrm{M}-\mathrm{CH}_{2} \mathrm{CH}_{3}\right]^{+} 373.2594$, found 373.2592

Spiroketal 25: To a solution of 2,2,6,6-tetramethylpiperidine ($0.27 \mathrm{~mL}, 1.60 \mathrm{mmol}$) in THF $(10 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added $n-\mathrm{BuLi}(2.5 \mathrm{M}$ in hexanes, $0.64 \mathrm{~mL}, 1.60 \mathrm{mmol})$ and the mixture was stirred for 20 min . Ketone $21(215 \mathrm{mg}, 0.53 \mathrm{mmol})$ in THF (2 mL) was then added dropwise at $-78{ }^{\circ} \mathrm{C}$ and the mixture was stirred for a further $20 \mathrm{~min} . \mathbf{1 1}(127 \mathrm{mg}, 0.53$ $\mathrm{mmol})$ in THF (2 mL) was then added dropwise at $-78^{\circ} \mathrm{C}$ and the reaction mixture was stirred at this temperature for 5 h . The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ $(25 \mathrm{~mL})$ and diluted with EtOAc (50 mL). The organic layer was separated and the aqueous layer was extracted with EtOAc ($2 \times 15 \mathrm{~mL}$). The combined organic extracts were washed with brine (20 mL), dried over MgSO_{4}, filtered and concentrated in vacuo. The resultant residue was partially purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/EtOAc, 50:1 $\rightarrow 10: 1)$ to give crude $23(79.1 \mathrm{mg})$, which was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(8 \mathrm{~mL})$ and $3 \mathrm{M} \mathrm{HCl}(4$ mL) was added. The reaction mixture was stirred at room temperature for 16 h , then diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and EtOAc $(20 \mathrm{~mL})$. The organic layer was separated and the aqueous layer was extracted with EtOAc ($2 \times 10 \mathrm{~mL}$). The combined organic extracts were washed with brine (20 mL), dried over MgSO_{4}, filtered and concentrated in vacuo. The resultant residue was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/EtOAc, 2:1) to give $\mathbf{2 5}$ ($41.2 \mathrm{mg}, 23 \%$ over 2 steps) as a colourless oil and as an 16:1 mixture of diastereomers.

Data for 25: $\mathbf{R}_{\mathbf{f}}=0.30$ (petroleum ether/EtOAc, 2:1)
$[\alpha]_{D}^{25}+63.5\left(\mathrm{c} 0.65, \mathrm{CHCl}_{3}\right)$
IR (film): 3392, 2936, 1627, 1478, 1383, 1333, 1281, 1189, 1065, $916 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 12.83(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H}), 4.01(\mathrm{td}, J=10.7,4.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.71(\mathrm{dqd}, J=12.4,6.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{dd}, J=16.4,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{dd}, J$ $=16.4,12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{dd}, J=12.8,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.04$ (ddd, $J=12.5,4.7$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{dq}, J=10.0,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{q}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.14(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $3 \mathrm{H}), 1.11(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (125 MHz, $\mathbf{C D C l}_{3}$) 202.7, 160.1, 156.5, 129.2, 116.9, 112.8, 111.3, 102.9, 69.6, $65.5,42.7,42.5,30.5,26.2,23.4,21.4,15.5,15.0,10.6$.

HRMS ($\left.\mathbf{C}_{\mathbf{1 9}} \mathbf{H}_{\mathbf{2 6}} \mathbf{O}_{\mathbf{5}}, \mathbf{E S I}\right)$: calculate $[\mathrm{M}-\mathrm{H}]^{-}$333.1707, found 333.1711.

Peniphenone A (1): To a solution of $\mathbf{2 5}(35 \mathrm{mg}, 0.11 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added 4 \AA molecular sieves, TPAP ($1.8 \mathrm{mg}, 0.052 \mathrm{mmol}$) and N-methylmorpholine N-oxide (13.5 mg , 0.116 mmol) at $0{ }^{\circ} \mathrm{C}$ and the reaction was gradually warmed to room temperature and then stirred for 20 h . The reaction mixture was concentrated in vacuo and purified by flash chromatography (SiO_{2}, petroleum ether/EtOAc, $4: 1 \rightarrow 2: 1$ gradient elution) to give $(+)$ peniphenone A (1) ($20.8 \mathrm{mg}, 60 \%$) as a colourless film.

Data for 1: $\mathbf{R}_{\mathbf{f}}=0.25$ (petroleum ether/EtOAc, 5:1)
$[\alpha]_{D}^{25}+85.6(\mathrm{c} 0.88, \mathrm{MeOH})$
IR (film): 2976, 2939, 1725, 1629, 1479. 1455, 1382, 1332, 1278, 1188, 1076, $933 \mathrm{~cm}^{-1}$
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 12.82(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H}), 3.93(\mathrm{dqd}, J=12.3,6.2,3.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.87(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{dd}, J=16.5,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 2.53(\mathrm{dd}, J=16.5$, $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{dd}, J=14.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{dd}, J=13.3,11.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{dt}, J=$ $10.1,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.19(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.14(\mathrm{~d}, J=$ $6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C N M R}\left(125 \mathrm{MHz}, \mathbf{C D C l}_{3} \delta 206.5,202.9,160.0,155.6,129.5,117.0,113.2,111.1,105.0\right.$, $67.5,49.2,48.7,30.8,26.3,23.5,21.8,15.2,15.1,7.6$.

HRMS ($\left.\mathbf{C}_{\mathbf{1 9}} \mathbf{H}_{\mathbf{2 4}} \mathbf{O}_{\mathbf{5}}, \mathbf{E S I}\right)$: calculated $[\mathrm{M}-\mathrm{H}]^{-}$331.1551, found 331.1562 .

Spiroketal 26: To a solution of 2,2,6,6-tetramethylpiperidine ($0.13 \mathrm{~mL}, 0.74 \mathrm{mmol}$) in THF $(6 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added $n-\mathrm{BuLi}(2.5 \mathrm{M}$ in hexanes, $0.30 \mathrm{~mL}, 0.74 \mathrm{mmol})$ and the mixture was stirred for 20 min . Ketone $21(100 \mathrm{mg}, 0.25 \mathrm{mmol})$ in THF (2 mL) was then added dropwise at $-78{ }^{\circ} \mathrm{C}$ and the mixture was stirred for a further $20 \mathrm{~min} .11(60 \mathrm{mg}, 0.25 \mathrm{mmol})$ in THF (2 mL) was then added dropwise at $-78^{\circ} \mathrm{C}$ and the reaction mixture was stirred at this temperature for 5 h . The reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}(25 \mathrm{~mL})$ and diluted with EtOAc (50 mL). The organic layer was separated and the aqueous layer was extracted wit EtOAc ($2 \times 15 \mathrm{~mL}$). The combined organic extracts were washed with brine, dried over MgSO_{4}, filtered and concentrated in vacuo. The resultant residue was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/EtOAc, $\left.50: 1 \rightarrow 10: 1\right)$ to give crude SI-3 (39.1 mg), which was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ and $3 \mathrm{M} \mathrm{HCl}(2 \mathrm{~mL})$ was added. The reaction mixture was stirred at room temperature for 15 min . The reaction was diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and EtOAc (20 mL). The organic layer was separated and the aqueous layer was extracted with EtOAc ($2 \times 10 \mathrm{~mL}$). The combined organic extracts were washed with brine (10 mL), dried over MgSO_{4}, filtered and concentrated in vacuo. The resultant residue was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/EtOAc, $2: 1$) to give 26 ($15.1 \mathrm{mg}, 18 \%$ over 2 steps) as a colourless oil as a 2.4:1 mixture of diastereoisomers.

Data for 26: $\mathbf{R}_{\mathbf{f}}=0.30$ (petroleum ether/EtOAc, 2:1)
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 12.86(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.34(\mathrm{~s}, 1 \mathrm{H}), 3.92(\mathrm{dqd}, J=12.5,6.2,2.2 \mathrm{~Hz}$, 1 H), $3.84(\mathrm{td}, J=10.9,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J=16.7,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{dd}, J$ $=16.7,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{ddd}, J=12.4,4.8,2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $1.73(\mathrm{dd}, J=9.7,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{q}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.13(\mathrm{~d}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 202.7,160.7,157.2,129.4,116.6,112.8,109.4,103.2,70.9$, 65.1, 44.5, 41.9, 35.4, 30.5, 26.2, 25.9, 21.6, 17.2, 15.6, 12.5.

HRMS ($\left.\mathbf{C}_{\mathbf{1 9}} \mathbf{H}_{\mathbf{2 6}} \mathbf{O}_{\mathbf{5}}, \mathbf{E S I}\right)$: calculated $[\mathrm{M}-\mathrm{H}]^{-} 333.1707$, found 333.1704

8-epi-Peniphenone A (27): To a solution of spiroketal 26 ($15.1 \mathrm{mg}, 0.045 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2 \mathrm{~mL})$ was added $4 \AA$ molecular sieves, TPAP $(0.8 \mathrm{mg}, 0.0023 \mathrm{mmol})$ and N methylmorpholine N-oxide ($6.5 \mathrm{mg}, 0.054 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$ and the reaction was gradually warmed to room temperature and then stirred for 16 h . The reaction mixture was concentrated in vacuo and purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, petroleum ether/EtOAc, 4:1 $\rightarrow 2: 1$ gradient elution) to give 8-epi-peniphenone A $27(9.1 \mathrm{mg}, 61 \%)$ as a colourless film in a 2.4:1 mixture of diastereoisomers.

Data for 27: $\mathbf{R}_{\mathbf{f}}=0.25$ (petroleum ether/EtOAc, 5:1)
${ }^{1} \mathbf{H}$ NMR (500 MHz, $\left.\mathbf{C D C l}_{\mathbf{3}}\right) \delta 12.85(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~s}, 1 \mathrm{H}), 4.20(\mathrm{dqd}, J=12.1,6.1,2.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.07(\mathrm{dd}, J=16.7,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{dd}, J=13.6,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.54$ (s, 3H), $2.45(\mathrm{dd}, J=16.8,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.32(\mathrm{~m}, 2 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $6 \mathrm{H}), 1.15(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3} \delta 209.8$, 205.5, 163.2, 159.0, 132.2, 119.4, 115.8, 111.8, 107.1, 69.0, 53.6, 50.6, 37.8, 28.9, 28.1, 24.5, 19.3, 18.0, 12.7.

HRMS ($\left.\mathbf{C}_{\mathbf{1}} \mathbf{H}_{\mathbf{2 4}} \mathbf{O}_{\mathbf{5}}, \mathbf{E S I}\right)$: calculated $[\mathrm{M}-\mathrm{H}]^{-}$331.1551, found 331.1547.

3. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra

$$
\underset{\substack{0 \\ \\ \hline}}{ }
$$

$$

\pm
$\stackrel{\circ}{\circ}$
$\stackrel{\circ}{\circ}$ N末
-62.20

8
$\stackrel{\circ}{i}$
${ }^{13} \mathrm{C}$ NMR
CDCl_{3} 125 MHz

$\begin{array}{llllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 1 \\ \mathrm{ppm}\end{array}$
$\underset{\sim}{\sim}$
$\underset{\sim}{\sim}$

(9:1 mixture of $15 / 14$)

15
(9:1 mixture of $\mathbf{1 5 / 1 4}$)

1: peniphenone A 18:1 d.r.

1	1	1	1	1	1	1	1	T	1	1	1	1	1	1	1	1	1	1	1	1	1	1
220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
											ppm											

4. Tables of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data for peniphenones A-D

Table 1. Comparison of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of natural and synthetic peniphenone $\mathrm{A}(\mathbf{1}) .{ }^{6}$

Assignment	Natural sample, ${ }^{1} \mathrm{H}$ spectrum, CDCl_{3}, 400 MHz	Synthetic sample, ${ }^{1} \mathrm{H}$ spectrum $\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$	```Natural sample, \({ }^{13} \mathrm{C}\) spectrum, \(\mathrm{CDCl}_{3}, 100\) MHz```	Synthetic sample, ${ }^{3} \mathrm{C}$ spectrum, $\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$
1			155.6	155.6
2			117.0	117.0
3	7.32 s	7.32	129.5	129.5
4			113.2	113.2
5			160.0	160.0
6			112.2*	111.1*
7 a	$\begin{gathered} 2.53, \operatorname{dd}(J=16.6, \\ 3.1) \end{gathered}$	$\begin{gathered} 2.53, \operatorname{dd}(J=16.5, \\ 3.0) \end{gathered}$	23.5	23.5
7b	$\begin{gathered} 2.77, \operatorname{dd}(J=16.6, \\ 5.6) \end{gathered}$	$\begin{gathered} 2.77, \operatorname{dd}(J=16.5, \\ 5.6) \end{gathered}$		
8	2.09, m	$\begin{gathered} 2.09, \mathrm{dt}(J=10.1, \\ 6.0) \end{gathered}$	30.8	30.8
9			105.0	105.0
10	$\begin{gathered} 2.87, \operatorname{qd}(J=6.7, \\ 0.8) \end{gathered}$	2.87, $\mathrm{q}(\mathrm{J}=6.8)$	49.2	49.2
11			206.4	206.5
12a	$\begin{aligned} & 2.34, \operatorname{ddd}(J= \\ & 13.8,11.3,0.8) \end{aligned}$	$\begin{gathered} 2.34, \operatorname{dd}(J=13.3, \\ 11.8) \end{gathered}$	48.6	48.7
12b	$\begin{gathered} 2.50, \operatorname{dd}(J=13.8, \\ 3.1) \end{gathered}$	$\begin{gathered} 2.50, \operatorname{dd}(J=14.0, \\ 3.0) \\ \hline \end{gathered}$		
13	3.93 , m	$\begin{gathered} 3.93, \operatorname{dqd}(J=12.3, \\ 6.2,3.1) \end{gathered}$	67.5	67.5
14	2.04, s	2.04, s	15.1	15.1
15				
16	2.54, s	2.54, s	26.2	26.3
17	$1.23, \mathrm{~d}(J=6.8)$	$1.23, \mathrm{~d}(J=6.8)$	15.2	15.2
18	$1.14, \mathrm{~d}(J=6.7)$	$1.14, \mathrm{~d}(J=6.7)$	7.5	7.6
19	$1.19, \mathrm{~d}(J=6.2)$	1.19, d ($J=6.2$)	21.7	21.8
OH-5	12.82, br	12.82, br		

*Correction to natural product isolation data.

[^4]

Table 2. Comparison of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of natural and synthetic peniphenone $\mathrm{B}(\mathbf{2}) .{ }^{6}$

Assignment	Natural sample, ${ }^{1} \mathrm{H}$ spectrum, DMSO, 400 MHz	Synthetic sample, ${ }^{1} \mathrm{H}$ spectrum, DMSO, 500 MHz	Natural sample, ${ }^{13} \mathrm{C}$ spectrum, DMSO, 100 MHz	Synthetic sample, ${ }^{13} \mathrm{C}$ spectrum, DMSO, 125 MHz
1			161.4	161.3
2			116.6	116.6
3	7.52, s	7.55, s	130.6	130.9
4			112.5	112.23
5			160.6	160.9
6			113.2	112.8
7	3.66, s	3.68, s	17.2	16.9
8			100.0	100.1
9			167.0	167.0
10			158.0	158.1
11	6.49, s	6.52, s	97.1	96.4
12			168.4	167.3
13			121.9	121.7
14	$\begin{gathered} 7.09, \operatorname{dd}(J=8.4, \\ 2.3) \end{gathered}$	$\begin{gathered} 7.09, \operatorname{dd}(J=8.3, \\ 2.2) \\ \hline \end{gathered}$	117.3	117.4
15	$6.83, \mathrm{~d}(J=8.4)$	$6.84, \mathrm{~d}(J=8.4)$	116.1	116.1
16			148.5	148.6
17			145.7	145.7
18	7.14, d ($J=2.3$)	7.14, d ($J=2.2$)	112.3	112.18
19	2.10	2.11, s	16.0	16.0
20			202.6	203.1
21	2.51	2.53, s	26.6	26.3
OH	9.61	9.65 , br		
OH	9.37	9.40, br		
OH		13.10, br		

Table 3. Comparison of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of natural and synthetic peniphenone $\mathrm{C}(3) .{ }^{6}$

Assignment	Natural sample, ${ }^{1} \mathrm{H}$ spectrum, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$	Synthetic sample, ${ }^{1} \mathrm{H}$ spectrum, $\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$	Natural sample, ${ }^{3} \mathrm{C}$ spectrum, $\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$	Synthetic sample, ${ }^{3} \mathrm{C}$ spectrum, $\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$
1			161.1	161.1
2			118.4	118.4
3	7.41, br s	7.41, s	131.1	131.1
4			112.8	112.8
5			161.8	161.8
6			110.6	110.6
7	3.75, s	3.74, s	22.0	22.0
8			143.4	143.4
9			191.2	191.2
10			116.8	116.8
11			151.6	151.6
12			183.7	183.7
13			139.8	139.8
14	2.22, d ($J=0.4$)	2.22, s	16.1	16.1
15			202.7	202.7
16	2.53, s	2.53, s	26.2	26.2
17	1.92, s	1.91, s	8.1	8.2
18	2.37, s	2.37, s	12.4	12.5
OH-5	13.18, br s	13.18		
OH-1	$9.55, \mathrm{br} \mathrm{s}$	9.57		

Table 4. Comparison of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of natural and synthetic peniphenone $\mathrm{D}(4) .{ }^{6}$

Assignment	Natural sample, ${ }^{1} \mathrm{H}$ spectrum, $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$	Synthetic sample, ${ }^{1} \mathrm{H}$ spectrum, $\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$	Natural sample, ${ }^{13} \mathrm{C}$ spectrum, $\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$	Synthetic sample, ${ }^{3} \mathrm{C}$ spectrum, $\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$
1			160.2	160.2
2			119.5	119.5
3	7.41, $\mathrm{d}(J=0.4)$	$7.41, \mathrm{~d}(J=0.5)$	130.7	130.7
4			113.2	113.3
5			158.8	158.8
6			112.8	112.8
7 a	$\begin{gathered} 3.42, \mathrm{~d}(J= \\ 15.1)^{*} \end{gathered}$	$\begin{gathered} 3.48, \mathrm{~d}(J= \\ 15.1)^{*} \\ \hline \end{gathered}$	25.9*	14.5*
7b	$\begin{gathered} 3.28, \mathrm{~d}(J= \\ 15.1)^{*} \end{gathered}$	$\begin{gathered} 3.43, \mathrm{~d}(J= \\ 15.1)^{*} \end{gathered}$		
8			101.5	101.5
9			177.1	177.2
10	4.84, $\mathrm{q}(\mathrm{J}=6.8)$	4.84, q ($J=6.8$)	76.1	76.2
11			175.7	175.8
12	2.21, $\mathrm{d}(J=0.4)$	2.21, s	15.8	15.9
13			203.4	203.5
14	2.57, s	2.57, s	25.9	26.0
15	1.46, $\mathrm{d}(J=6.8)$	$1.46, \mathrm{~d}(J=6.8)$	17.2	17.2
OH-5	13.76, br s	13.97		
OH-11	$8.55, \mathrm{br} \mathrm{s}$	8.58		
$\mathrm{OH}-1$	8.22, br s	8.24		

*Correction to natural product isolation data.

[^0]: ${ }^{1}$ Spence, J. T. J.; George, J. H. Org. Lett. 2013, 15, 3891.
 ${ }^{2}$ (a) Hua, D. H.; Chen, Y.; Sin, H.-S.; Maroto, M. J.; Robinson, P. D.; Newell, S. W.; Perchellet, E. M.;
 Ladesich, J. B.; Freeman, J. A.; Perchellet, J.-P.; Chiang, P. K. J. Org. Chem. 1997, 62, 6888. (b) Douglas, C. J.;
 Sklenicka, H. M.; Shen, H. C.; Mathias, D. S.; Degen, S. J.; Golding, G. M.; Morgan, C. D.; Shih, R. A.; Mueller, K. L.; Seurer, L. M.; Johnson, E. W.; Hsung, R. P. Tetrahedron 1999, 55, 1368.

[^1]: ${ }^{3}$ Tyman, J. H. P.; Patel, M. J. Chem. Res. 2007, 298.

[^2]: ${ }^{4}$ (a) Fryzuk, M. D.; Bosnich, B. J. J. Am. Chem. Soc. 1978, 100, 5491. (b) Brandange, S.; Flodman, L.; Norberg, A. J. Org. Chem. 1984, 49, 927.

[^3]: ${ }^{5}$ Cuzzupe, A. N.; Hutton, C. A.; Lilly, M. J.; Mann, R. K.; McRae, K. J.; Zammit, S. C.; Rizzacasa, M. A. J. Org. Chem. 2001, 66, 2382.

[^4]: ${ }^{6}$ Li, H.; Jiang, J.; Liu, Z.; Lin, S.; Xia, G.; Xia, X.; Ding, B.; He, L.; Lu, Y.; She, Z. J. Nat. Prod. 2014, 77, 800.

