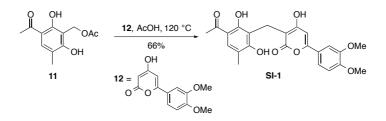
Total Synthesis of Peniphenones A-D via Biomimetic Reactions

of a Common *o*-Quinone Methide Intermediate

Justin T. J. Spence and Jonathan H. George*

Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia.

Supporting Information


Table of Contents

1.	General methods	2
2.	Experimental procedures	3
3.	¹ H and ¹³ C NMR spectra	17
4.	Tables of ¹ H and ¹³ C NMR data for peniphenones A-D	37

1. General methods

All chemicals used were purchased from commercial suppliers and used as received. All reactions were performed under an inert atmosphere of N₂. All organic extracts were dried over anhydrous magnesium sulfate. Thin layer chromatography was performed using aluminium sheets coated with silica gel. Visualization was aided by viewing under a UV lamp and staining with ceric ammonium molybdate stain followed by heating. All R_f values were measured to the nearest 0.05. Flash chromatography was performed using 40-63 micron grade silica gel. Melting points were recorded on a digital melting point apparatus and are uncorrected. Infrared spectra were recorded using an FT-IR spectrometer as the neat compounds. High field NMR was recorded using a 600 MHz spectrometer (¹H at 600 MHz, ¹³C at 150 MHz) or a 500 MHz spectrometer (¹H at 500 MHz, ¹³C at 125 MHz). Solvents used for spectra were chloroform unless otherwise specified. ¹H chemical shifts are reported in ppm on the δ -scale relative to TMS (δ 0.0) and ¹³C NMR are reported in ppm relative to chloroform (δ 77.0). Multiplicities are reported as (br) broad, (s) singlet, (d) doublet, (t) triplet, (q) quartet and (m) multiplet. All J-values were rounded to the nearest 0.1 Hz. ESI high resolution mass spectra were recorded on a Q-TOF mass spectrometer. Optical rotations were measured on a modular circular polarimeter.

2. Experimental procedures

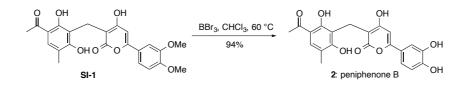
Peniphenone B dimethyl ether (SI-1): 2-Methyleneacetoxy-4-methyl-6-acetylresorcinol 11^1 (48 mg, 0.20 mmol) and pyrone 12^2 (50 mg, 0.20 mmol) were dissolved in AcOH (10 mL) in a sealed tube. The tube was flushed with N₂, sealed and the reaction mixture was heated at 120 °C for 16 h. The reaction mixture was then cooled and the precipitate was collected via vacuum filtration, to give peniphenone B dimethyl ether (SI-1) (57 mg, 66%) as a brown solid, which was used without further purification.

Data for SI-1: $R_f = 0.20$ (petroleum ether/ EtOAc, 1:1)

Mp: 158-160 °C

IR (film): 3215, 2940, 1667, 1625, 1568, 1517, 1377, 1274, 1149 cm⁻¹

¹**H NMR (500 MHz, CDCl₃)** δ 10.34 (s, 1H), 9.74 (s, 1H), 7.43 (s, 1H), 7.39 (d, *J* = 8.5 Hz, 1H), 7.28 (s, 1H), 6.91 (d, *J* = 8.5 Hz, 1H), 6.50 (s, 1H), 3.94 (s, 3H), 3.93 (s, 3H), 3.78 (s, 2H), 2.57 (s, 3H), 2.22 (s, 3H).


¹³C NMR (125 MHz, CDCl₃) δ 203.3, 167.9, 162.0, 159.4, 158.7, 151.7, 149.3, 130.9, 123.4, 119.6, 119.2, 112.5, 112.4, 111.1, 108.2, 102.0, 98.2, 56.13, 56.06, 25.9, 17.5, 16.1.

HRMS (C₂₃H₂₂O₈, ESI): calculated [M–H]⁻ 425.1242, found 425.1245.

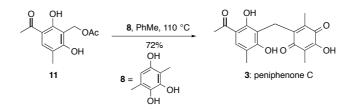
¹ Spence, J. T. J.; George, J. H. Org. Lett. 2013, 15, 3891.

² (a) Hua, D. H.; Chen, Y.; Sin, H.-S.; Maroto, M. J.; Robinson, P. D.; Newell, S. W.; Perchellet, E. M.;

Ladesich, J. B.; Freeman, J. A.; Perchellet, J.-P.; Chiang, P. K. *J. Org. Chem.* **1997**, *62*, 6888. (b) Douglas, C. J.; Sklenicka, H. M.; Shen, H. C.; Mathias, D. S.; Degen, S. J.; Golding, G. M.; Morgan, C. D.; Shih, R. A.; Mueller, K. L.; Seurer, L. M.; Johnson, E. W.; Hsung, R. P. *Tetrahedron* **1999**, *55*, 1368.

Peniphenone B (2): To a solution of **SI-1** (58 mg, 0.14 mmol) in CHCl₃ (3 mL) was added BBr₃ (1.0 M in CH₂Cl₂, 1.36 mL, 1.36 mmol) dropwise and the reaction mixture was heated at reflux for 1.5 h. The reaction mixture was quenched with 1 M HCl (5 mL) and the organic layer separated. The aqueous layer was extracted with EtOAc (3 x 15 mL) and the combined organics were washed with brine (20 mL), dried over MgSO₄, filtered and concentrated *in vacuo*. The resultant solid was recrystallized from acetone to give peniphenone B (**2**) (51 mg, 94%) as a yellow solid.

Data for 2: $R_f = 0.05$ (petroleum ether/ EtOAc, 1:1)


Mp: 255-260 °C

IR (film): 3329, 2924, 1655, 1605, 1555, 1526, 1369, 1289, 1182, 1138 cm⁻¹

¹**H** NMR (500 MHz, DMSO-d6) δ 13.10 (s, 1H), 9.65 (s, 1H), 9.40 (s, 1H), 7.55 (s, 1H), 7.14 (d, J = 2.2 Hz, 1H), 7.09 (dd, J = 8.4, 2.2 Hz, 1H), 6.84 (d, J = 8.4 Hz, 1H), 6.52 (s, 1H), 3.68 (s, 2H), 2.53 (s, 3H), 2.11 (s, 3H).

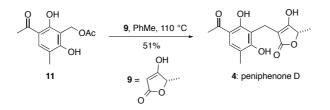
¹³C NMR (125 MHz, DMSO-d6) δ 203.1, 167.3, 167.0, 161.3, 160.9, 158.1, 148.6, 145.7, 130.9, 121.7, 117.4, 116.6, 116.1, 112.8, 112.23, 112.18, 100.1, 96.4, 26.3, 16.9, 16.0.

HRMS (C₂₁H₁₈O₈, ESI): calculated [M+H]⁺ 399.1090, found 399.1087.

Peniphenone C (3): 2-Methyleneacetoxy-4-methyl-6-acetylresorcinol **11** (100 mg, 0.42 mmol) and 3,6-dimethyl-1,2,4-benzenetriol $\mathbf{8}^3$ (59 mg, 0.38 mmol) were dissolved in toluene (10 mL) in a sealed tube and heated at 110 °C for 2 h. The reaction mixture was cooled and the solvent was removed *in vacuo*. The resultant residue was purified by flash chromatography (SiO₂, petroleum ether/acetone, 5:1) to give peniphenone C (**3**) (92 mg, 72%) as a bright yellow solid.

Data for 3: $\mathbf{R}_{\mathbf{f}} = 0.35$ (petroleum ether/acetone, 5:1)

Mp: 212-216 °C


IR (film): 3320, 2926, 1655, 1625, 1603, 1361, 1284, 1253, 1156, 1083 cm⁻¹

¹H NMR (500 MHz, CDCl₃) δ 13.18 (s, 1H), 9.57 (s, 1H), 7.41 (s, 1H), 3.74 (s, 2H), 2.53 (s, 3H), 2.37 (s, 3H), 2.22 (s, 3H), 1.91 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 202.7, 191.2, 183.7, 161.8, 161.1, 151.6, 143.4, 139.8, 131.1, 118.4, 116.8, 112.8, 110.6, 26.2, 22.0, 16.1, 12.5, 8.2.

HRMS (C₁₈H₁₈O₆, ESI): calculated [M+H]⁺ 331.1176, found 331.1181.

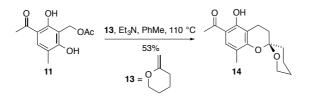
³ Tyman, J. H. P.; Patel, M. J. Chem. Res. 2007, 298.

Peniphenone D (4): 2-Methyleneacetoxy-4-methyl-6-acetylresorcinol **11** (100 mg, 0.42 mmol) and (*S*)-5-methyl tetronic acid 9^4 (144 mg, 1.26 mmol) were dissolved in toluene (10 mL) in a sealed tube. The flask was flushed with N₂, sealed and then the reaction mixture was heated at 110 °C for 16 h. The reaction mixture was concentrated *in vacuo*, then purified by flash chromatography (SiO₂, petroleum ether/EtOAc, 4:1 \rightarrow 2:1 gradient elution) to give (–)-peniphenone D (**4**) (63 mg, 51 %) as a white solid.

Data for 4: $\mathbf{R}_{\mathbf{f}} = 0.05$ (petroleum ether/EtOAc, 2:1)

[α]²⁵_D -6.8° (c 1.13, MeOH)

Mp: 175-177 °C


IR (film): 3159, 2916, 2583, 1714, 1655, 1576, 1322, 1233, 1099, 1055, 808 cm⁻¹

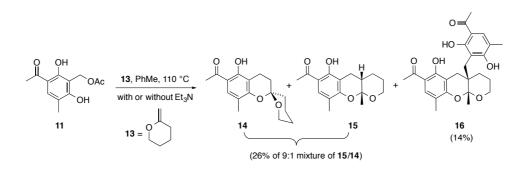
¹**H NMR (600 MHz, CDCl₃)** δ 13.97 (br s, 1H), 8.58 (br s, 1H), 8.24 (br s, 1H), 7.41 (d, J = 0.5 Hz, 1H), 4.84 (q, J = 6.8 Hz, 1H), 3.48 (d, J = 15.1 Hz, 1H), 3.43 (d, J = 15.1 Hz, 1H), 2.57 (s, 3H), 2.21 (d, J = 0.5 Hz, 3H), 1.46 (d, J = 6.8 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 203.5, 177.2, 175.8, 160.2, 158.8, 130.7, 119.5, 113.3, 112.8, 101.5, 76.2, 26.0, 17.2, 15.9, 14.5.

HRMS (C₁₅H₁₈O₆, ESI): calculated [M–H]⁻ 291.0874, found 291.0871.

⁴ (a) Fryzuk, M. D.; Bosnich, B. J. J. Am. Chem. Soc. **1978**, 100, 5491. (b) Brandange, S.; Flodman, L.; Norberg, A. J. Org. Chem. **1984**, 49, 927.

Spiroacetal 13: To a solution of 2-methyleneacetoxy-4-methyl-6-acetylresorcinol **11** (50 mg, 0.21 mmol) and 2-methylenetetrahydro-2*H*-pyran **13** (98 mg, 1.00 mmol) in toluene (5 mL) was added Et₃N (0.06 mL, 0.42 mmol). The reaction was heated at 110 °C in a sealed tube for 16 h. The solvent was removed *in vacuo* and the residue purified by flash chromatography (SiO₂, petroleum ether/EtOAc, 10:1) to give **14** (31 mg, 53%) as a pale yellow oil.


Data for 13: $\mathbf{R}_{\mathbf{f}} = 0.45$ (petroleum ether/EtOAc, 5:1)

IR (film): 2942, 2872, 1619, 1478, 1438, 1369, 1331, 1266, 1230, 1177, 1145, 1070 cm⁻¹

¹H NMR (500 MHz, CDCl₃) δ 12.84 (s, 1H), 7.36 (s, 1H), 3.72 (td, J = 11.8, 2.8 Hz, 1H), 3.65 (dd, J = 11.1, 4.7 Hz, 1H), 2.75 – 2.69 (m, 2H), 2.54 (s, 3H), 2.21 (s, 3H), 2.09 – 2.01 (m, 2H), 1.92 (d, J = 13.4 Hz, 1H), 1.80 – 1.58 (m, 5H).

¹³C NMR (125 MHz, CDCl₃) δ 202.7, 160.5, 156.9, 129.4, 117.3, 112.7, 110.4, 96.8, 62.2, 34.5, 31.0, 26.2, 25.1, 18.6, 15.4, 15.1.

HRMS (C₁₆H₂₀O₄, ESI): calculated $[M+H]^+$ 277.1434, found 277.1440.

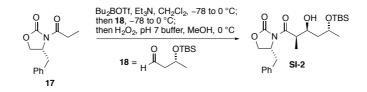
Ketals 15 and 16: 2-Methyleneacetoxy-4-methyl-6-acetylresorcinol 11 (100 mg, 0.42 mmol) and 2-methylenetetrahydro-2*H*-pyran 13^5 (38 mg, 0.38 mmol) were dissolved in toluene (5 mL) and heated at 110 °C in a sealed tube for 16 h. The solvent was removed *in vacuo* and the residue purified by flash chromatography (SiO₂, petroleum ether/EtOAc, 10:1 \rightarrow 1:1 gradient elution) to give 14 and 15 (28 mg, 26%) as a colourless oil and as a 9:1 inseparable mixture of isomers in favour of 15. Further elution afforded 16 (13 mg, 14%) as a colourless oil.

Data for 15: $R_f = 0.45$ (petroleum ether/EtOAc, 5:1)

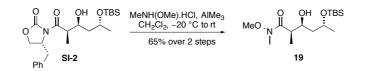
IR (film): 2931, 1738, 1620, 1478, 1373, 1282, 1232, 1193, 1116, 1074, 997 cm⁻¹

¹**H NMR (500 MHz, CDCl₃)** δ 12.93 (s, 1H), 7.36 (s, 1H), 3.99 – 3.92 (m, 1H), 3.78 (dd, J = 11.2, 4.8 Hz, 1H), 2.83 (dd, J = 17.5, 6.5 Hz, 1H), 2.62 (d, J = 17.5 Hz, 1H), 2.54 (s, 3H), 2.17 (s, 3H), 2.06 – 1.97 (m, 1H), 1.81 – 1.72 (m, 1H), 1.58–1.54 (m, 2H), 1.41 (s, 3H), 1.38 – 1.27 (m, 1H). ¹³**C NMR (125 MHz, CDCl₃)** δ 202.6, 161.3, 158.3, 129.6, 117.2, 112.4, 106.5, 100.9, 62.1, 34.4, 26.2, 25.2, 25.09, 25.07, 25.05, 15.7.

HRMS (C₁₆H₂₀O₄, ESI): calculated [M–H]⁻ 275.1289, found 275.1278.


Data for 16: $\mathbf{R}_{\mathbf{f}} = 0.10$ (petroleum ether/EtOAc, 5:1)

IR (film): 3357, 2946, 1626, 1480, 1444, 1380, 1286, 1190, 1114 cm⁻¹


¹**H NMR (500 MHz, CDCl₃)** 13.07 (s, 1H), 12.88 (s, 1H), 7.44 (s, 1H), 7.34 (s, 1H), 6.04 (br s, 1H), 4.17 (td, J = 11.9, 3.3 Hz, 1H), 3.85 (dd, J = 12.2, 5.6 Hz, 1H), 3.19 (d, J = 14.0 Hz, 1H), 2.95 (d, J = 14.9 Hz, 1H), 2.91 (d, J = 18.6 Hz, 1H), 2.57 (s, 3H), 2.53 (s, 3H), 2.46 (d, J = 17.8 Hz, 1H), 2.42 – 2.28 (m, 1H), 2.24 (s, 3H), 2.19 (s, 3H), 1.54 (s, 3H), 1.53 – 1.49 (m, 1H), 1.48 – 1.41 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 202.8, 202.6, 162.7, 161.1, 160.2, 157.4, 131.1, 129.5, 116.8, 114.6, 113.6, 112.51, 112.44, 108.2, 104.5, 62.0, 37.4, 26.9, 26.53, 26.35, 26.2, 22.0, 20.7, 15.78, 15.66.

HRMS (C₂₆H₃₀O₇, **ESI**): calculated [M–H]⁻ 453.1919, found 453.1916.

⁵ Cuzzupe, A. N.; Hutton, C. A.; Lilly, M. J.; Mann, R. K.; McRae, K. J.; Zammit, S. C.; Rizzacasa, M. A. J. Org. Chem. **2001**, *66*, 2382.

Aldol product SI-2: To a solution of (R)-(-)-4-benzyl-3-propionyl-2-oxazolidinone 17 (1.00 in CH₂Cl₂ (50 mL) at -78 °C was added dibutylboron 4.29 mmol) g, trifluoromethanesulfonate (1.0 M in CH₂Cl₂, 6.43 mL, 6.43 mmol) dropwise over 30 min. Et₃N (1.2 mL, 8.6 mmol) was added immediately once the addition was complete and the reaction mixture was stirred at -78 °C for 10 min and then warmed to 0 °C and stirred for 1 h. The solution was cooled to -78 °C and aldehyde 18 (1.30 g, 6.43 mmol) in CH₂Cl₂ (10 mL) was added dropwise and stirred at -78 °C for 20 min. The reaction mixture was then warmed to 0 °C and stirred for 3 h. pH 7 buffer (5 mL), MeOH (20 mL) and H₂O₂ (30% in H₂O, 10 mL) were added and the mixture stirred at 0 °C for 2 h. The reaction mixture was then diluted with CH₂Cl₂ (100 mL) and H₂O (100 mL). The organic layer was separated and the aqueous layer extracted with CH₂Cl₂ (2 x 100 mL). The combined organic layers were washed with brine (100 mL), dried over MgSO₄, filtered and concentrated in vacuo. The resultant residue was purified by flash chromatography (SiO₂, petroleum ether/EtOAc, 5:1) to give SI-2 (1.70 g) as a colourless oil that was inseparable from the starting material and was therefore carried through to the next step without further characterization.

Weinreb amide 19: To a solution of *N*,*O*-dimethylhydroxylamine hydrochloride (1.46 g, 15.0 mmol) in CH₂Cl₂ (100 mL) was added trimethylaluminium (2.0 M in hexane, 7.50 mL, 15.0 mmol) dropwise at 0 °C over 30 min and the mixture was stirred for 1 h. The reaction mixture was cooled to -20 °C and SI-2 (1.70 g) in CH₂Cl₂ (10 mL) was added dropwise and the reaction was then warmed to room temperature and stirred for 3 h. Saturated sodium potassium tartrate solution (25 mL) was added dropwise (strong effervescence observed) at 0 °C and the mixture was stirred for 1 h. The organic layer was separated and the aqueous layer was extracted with CH₂Cl₂ (2 x 100 mL). The combined organic layers were dried over MgSO₄, filtered and concentrated *in vacuo*. The resultant residue was purified by flash chromatography (SiO₂, petroleum ether/EtOAc, $5:1 \rightarrow 2:1$ gradient elution) to give Weinreb amide 19 (902 mg, 65% over 2 steps) as a colourless oil.

Data for 19: $\mathbf{R}_{\mathbf{f}} = 0.15$ (petroleum ether/EtOAc, 2:1)

 $[\alpha]_{D}^{25} - 21.8 (c 0.92, CHCl_{3})$

IR (film): 3472, 2957, 2931, 2857, 1638, 1461, 1381, 1255, 1059, 993, 836 cm⁻¹

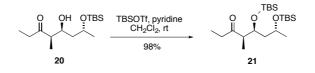
¹**H NMR (500 MHz, CDCl₃)** δ 4.18 – 4.14 (m, 1H), 4.13 – 4.09 (m, 1H), 4.00 (br s, 1H), 3.69 (s, 3H), 3.19 (s, 3H), 2.86 (s, 1H), 1.65 (ddd, *J* = 13.6, 10.2, 3.1 Hz, 1H), 1.43 – 1.36 (m, 1H), 1.21 (d, *J* = 1.1 Hz, 3H), 1.19 (*d*, J = 2.2 Hz, 3H), 0.89 (s, 9H), 0.085 (s, 3H), 0.081 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 68.6, 66.5, 61.5, 42.9, 40.2, 32.0, 25.9, 23.7, 18.0, 11.6, -4.5, -4.9.

HRMS (C₁₅H₃₃NO₄Si, ESI): calculated $[M+H]^+$ 320.2252, found 320.2244.

Ketone 20: To a solution of Weinreb amide **19** (1.62 g, 5.07 mmol) in Et₂O (100 mL) was added EtMgBr (3.0 M in Et₂O, 5.07 mL, 15.2 mmol) dropwise at room temperature and then the reaction mixture was stirred for 1 h. Further EtMgBr (3.0 M in Et₂O, 2.53 mL, 7.6 mmol) was added at room temperature and the reaction mixture was stirred for a further 3 h before being quenched with saturated aqueous NH₄Cl (100 mL) and then diluted with Et₂O (100 mL). The organic layer was separated and the aqueous layer was extracted with Et₂O (2 x 100 mL). The combined organic extracts were dried over MgSO₄, filtered and concentrated *in vacuo*. The resultant residue was purified by flash chromatography (SiO₂, petroleum ether/EtOAc, 8:1) to give **20** (1.15 g, 79 %) as a colourless oil.

Data for 20: $\mathbf{R}_{f} = 0.30$ (petroleum ether/EtOAc, 5:1)


 $[\alpha]_{D}^{25}$ -21.8 (c 0.92, CHCl₃)

IR (film): 3491, 2930, 1700, 1463, 1377, 1255, 1066, 1006, 836 cm⁻¹

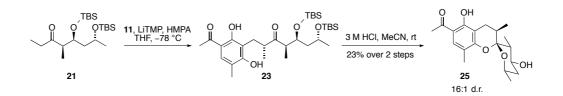
¹**H** NMR (500 MHz, CDCl₃) δ 4.21 – 4.16 (m, 1H), 3.53 (br s, 1H), 2.63 – 2.58 (m, 1H), 2.56 – 2.51 (m, 2H), 1.61 (ddd, J = 13.8, 10.4, 3.3 Hz, 1H), 1.37 (ddd, J = 14.1, 6.2, 1.6 Hz, 1H), 1.22 (d, J = 6.3 Hz, 3H), 1.14 (d, J = 7.1 Hz, 3H), 1.06 (t, J = 7.3 Hz, 3H), 0.89 (s, 9H), 0.09 (s, 6H).

¹³C NMR (125 MHz, CDCl₃) δ 215.6, 68.5, 67.0, 51.1, 41.9, 35.5, 25.8, 23.1, 18.0, 11.4, 7.6, -4.5, -5.0.

HRMS (C₁₅H₃₂O₃Si, ESI): calculated [M+Na]⁺ 311.2013, found 311.2019

Ketone 21: To a solution of ketone **20** (250 mg, 0.87 mmol) in CH_2Cl_2 (10 mL) at room temperature was added pyridine (0.07 mL, 0.9 mmol) and TBSOTF (0.22 mL, 0.95 mmol) and the reaction mixture was stirred for 4 h. The reaction mixture was quenched with saturated aqueous NH₄Cl (25 mL) and diluted with CH_2Cl_2 (50 mL). The organic layer was separated and the aqueous layer was extracted with CH_2Cl_2 (2 x 25 mL). The combined organic extracts were dried over MgSO₄, filtered and concentrated *in vacuo*. The resultant residue was purified by flash chromatography (SiO₂, petroleum ether/Et₂O, 10:1) to give **21** (343 mg, 98%) as a colourless oil.

Data for 21: $R_f = 0.70$ (petroleum ether/EtOAc, 5:1)


 $[\alpha]_{D}^{25} = -39.0 \text{ (c } 1.05, \text{ CHCl}_3)$

IR (film): 2956, 2930, 1712, 1473, 1462, 1377, 1253, 1052, 833 cm⁻¹

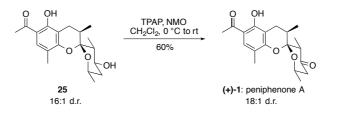
¹**H** NMR (500 MHz, CDCl₃) δ 4.07 – 4.02 (m, 1H), 3.85 (m, 1H), 2.65 – 2.60 (m, 2H), 2.42 (dq, J = 18.1, 7.2 Hz, 1H), 1.67 – 1.62 (m, 1H), 1.34 (ddd, J = 14.0, 6.9, 4.4 Hz, 1H), 1.16 (d, J = 6.1 Hz, 3H), 1.05 (d, J = 7.0 Hz, 3H), 1.02 (t, J = 7.3 Hz, 3H), 0.88 (s, 9H), 0.87 (s, 9H), 0.08 (s, 3H), 0.06 (s, 6H), 0.05 (s, 3H).

¹³C NMR (125 MHz, CDCl₃ δ 213.2, 71.6, 66.2, 51.7, 45.1, 35.8, 25.90, 25.85, 24.6, 18.07, 18.05, 11.1, 7.5, -2.9, -3.5, -4.24, -4.29.

HRMS ($C_{21}H_{46}O_3Si_2$, EI): calculated $[M-CH_3]^+$ 387.2751, found 387.2757 and calculated $[M-CH_2CH_3]^+$ 373.2594, found 373.2592

Spiroketal 25: To a solution of 2,2,6,6-tetramethylpiperidine (0.27 mL, 1.60 mmol) in THF (10 mL) at -78 °C was added *n*-BuLi (2.5 M in hexanes, 0.64 mL, 1.60 mmol) and the mixture was stirred for 20 min. Ketone 21 (215 mg, 0.53 mmol) in THF (2 mL) was then added dropwise at -78 °C and the mixture was stirred for a further 20 min. 11 (127 mg, 0.53 mmol) in THF (2 mL) was then added dropwise at -78 °C and the reaction mixture was stirred at this temperature for 5 h. The reaction was guenched with saturated aqueous NH₄Cl (25 mL) and diluted with EtOAc (50 mL). The organic layer was separated and the aqueous layer was extracted with EtOAc (2 x 15 mL). The combined organic extracts were washed with brine (20 mL), dried over MgSO₄, filtered and concentrated in vacuo. The resultant residue was partially purified by flash chromatography (SiO₂, petroleum ether/EtOAc, 50:1 \rightarrow 10:1) to give crude 23 (79.1 mg), which was dissolved in CH₃CN (8 mL) and 3 M HCl (4 mL) was added. The reaction mixture was stirred at room temperature for 16 h, then diluted with H₂O (10 mL) and EtOAc (20 mL). The organic layer was separated and the aqueous layer was extracted with EtOAc (2 x 10 mL). The combined organic extracts were washed with brine (20 mL), dried over MgSO₄, filtered and concentrated in vacuo. The resultant residue was purified by flash chromatography (SiO₂, petroleum ether/EtOAc, 2:1) to give 25 (41.2 mg, 23% over 2 steps) as a colourless oil and as an 16:1 mixture of diastereomers.

Data for 25: $R_f = 0.30$ (petroleum ether/EtOAc, 2:1)


 $[\alpha]_{D}^{25}$ +63.5 (c 0.65, CHCl₃)

IR (film): 3392, 2936, 1627, 1478, 1383, 1333, 1281, 1189, 1065, 916 cm⁻¹

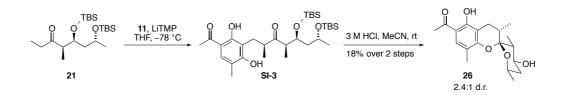
¹**H** NMR (500 MHz, CDCl₃) δ 12.83 (s, 1H), 7.33 (s, 1H), 4.01 (td, J = 10.7, 4.6 Hz, 1H), 3.71 (dqd, J = 12.4, 6.2, 2.3 Hz, 1H), 2.68 (dd, J = 16.4, 5.5 Hz, 1H), 2.54 (s, 3H), 2.44 (dd, J = 16.4, 12.6 Hz, 1H), 2.13 (s, 3H), 2.10 (dd, J = 12.8, 6.2 Hz, 1H), 2.04 (ddd, J = 12.5, 4.7, 2.4 Hz, 1H), 1.76 (dq, J = 10.0, 6.7 Hz, 1H), 1.31 (q, J = 11.6 Hz, 1H), 1.14 (d, J = 6.7 Hz, 3H), 1.06 (d, J = 6.2 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃) 202.7, 160.1, 156.5, 129.2, 116.9, 112.8, 111.3, 102.9, 69.6, 65.5, 42.7, 42.5, 30.5, 26.2, 23.4, 21.4, 15.5, 15.0, 10.6.

HRMS (C₁₉H₂₆O₅, ESI): calculate [M–H]⁻ 333.1707, found 333.1711.

Peniphenone A (1): To a solution of **25** (35 mg, 0.11 mmol) in CH₂Cl₂ (3 mL) was added 4 Å molecular sieves, TPAP (1.8 mg, 0.052 mmol) and *N*-methylmorpholine *N*-oxide (13.5 mg, 0.116 mmol) at 0 °C and the reaction was gradually warmed to room temperature and then stirred for 20 h. The reaction mixture was concentrated *in vacuo* and purified by flash chromatography (SiO₂, petroleum ether/EtOAc, 4:1 \rightarrow 2:1 gradient elution) to give (+)-peniphenone A (1) (20.8 mg, 60%) as a colourless film.

Data for 1: $R_f = 0.25$ (petroleum ether/EtOAc, 5:1)

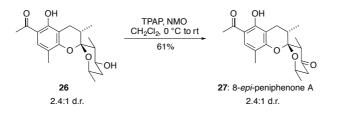

 $[\alpha]_{D}^{25}$ +85.6 (c 0.88, MeOH)

IR (film): 2976, 2939, 1725, 1629, 1479. 1455, 1382, 1332, 1278, 1188, 1076, 933 cm⁻¹

¹**H** NMR (500 MHz, CDCl₃) δ 12.82 (s, 1H), 7.32 (s, 1H), 3.93 (dqd, J = 12.3, 6.2, 3.1 Hz, 1H), 2.87 (q, J = 6.8 Hz, 1H), 2.77 (dd, J = 16.5, 5.6 Hz, 1H), 2.54 (s, 3H), 2.53 (dd, J = 16.5, 3.0 Hz, 1H), 2.50 (dd, J = 14.0, 3.0 Hz, 1H), 2.34 (dd, J = 13.3, 11.8 Hz, 1H), 2.09 (dt, J = 10.1, 6.0 Hz, 1H), 2.04 (s, 3H), 1.23 (d, J = 6.8 Hz, 3H), 1.19 (d, J = 6.2 Hz, 3H), 1.14 (d, J = 6.7 Hz, 3H).

¹³C NMR (125 MHz, CDCl₃ δ 206.5, 202.9, 160.0, 155.6, 129.5, 117.0, 113.2, 111.1, 105.0, 67.5, 49.2, 48.7, 30.8, 26.3, 23.5, 21.8, 15.2, 15.1, 7.6.

HRMS (C₁₉H₂₄O₅, ESI): calculated [M–H]⁻ 331.1551, found 331.1562.


Spiroketal 26: To a solution of 2,2,6,6-tetramethylpiperidine (0.13 mL, 0.74 mmol) in THF (6 mL) at -78 °C was added *n*-BuLi (2.5 M in hexanes, 0.30 mL, 0.74 mmol) and the mixture was stirred for 20 min. Ketone 21 (100 mg, 0.25 mmol) in THF (2 mL) was then added dropwise at -78 °C and the mixture was stirred for a further 20 min. 11 (60 mg, 0.25 mmol) in THF (2 mL) was then added dropwise at -78 °C and the reaction mixture was stirred at this temperature for 5 h. The reaction was quenched with sat. NH₄Cl (25 mL) and diluted with EtOAc (50 mL). The organic layer was separated and the aqueous layer was extracted wit EtOAc (2 x 15 mL). The combined organic extracts were washed with brine, dried over MgSO₄, filtered and concentrated in vacuo. The resultant residue was purified by flash chromatography (SiO₂, petroleum ether/EtOAc, 50:1 \rightarrow 10:1) to give crude SI-3 (39.1 mg), which was dissolved in CH₃CN (2 mL) and 3 M HCl (2 mL) was added. The reaction mixture was stirred at room temperature for 15 min. The reaction was diluted with H₂O (10 mL) and EtOAc (20 mL). The organic layer was separated and the aqueous layer was extracted with EtOAc (2 x 10 mL). The combined organic extracts were washed with brine (10 mL), dried over MgSO₄, filtered and concentrated *in vacuo*. The resultant residue was purified by flash chromatography (SiO₂, petroleum ether/EtOAc, 2:1) to give **26** (15.1 mg, 18% over 2 steps) as a colourless oil as a 2.4:1 mixture of diastereoisomers.

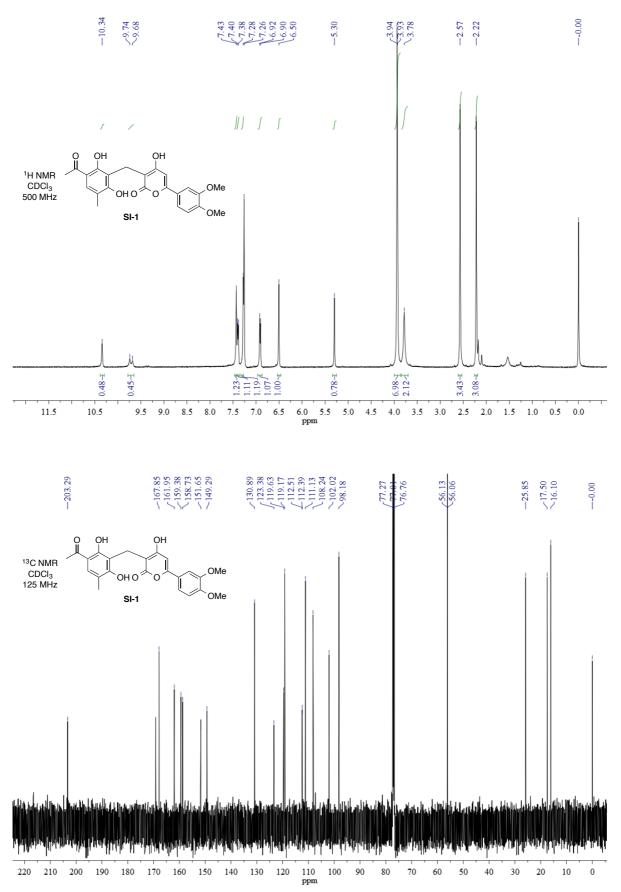
Data for 26: $R_f = 0.30$ (petroleum ether/EtOAc, 2:1)

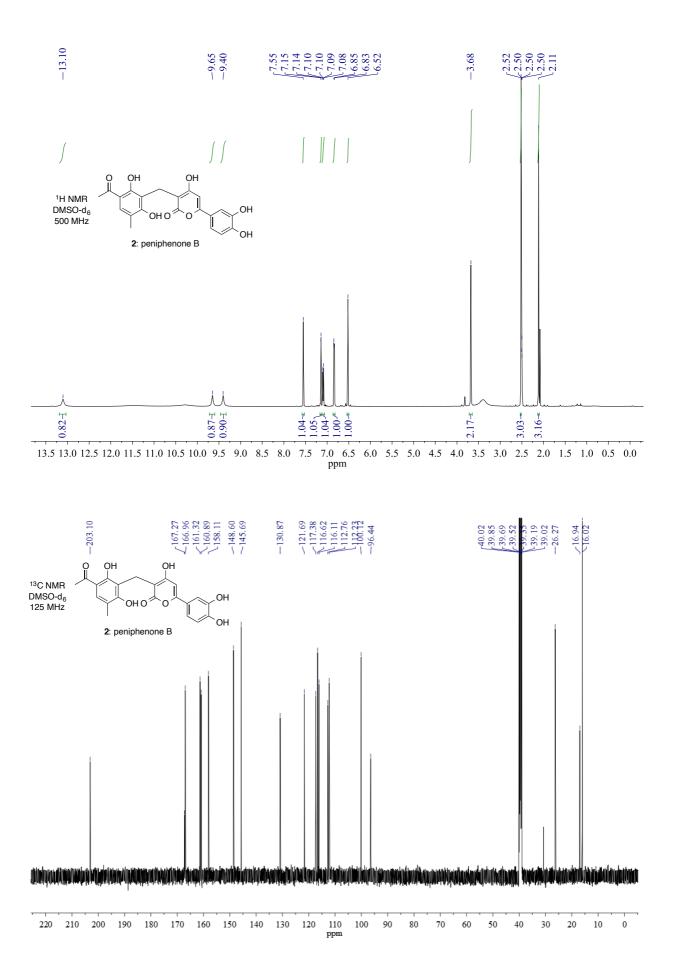
¹**H NMR (500 MHz, CDCl₃)** δ 12.86 (br s, 1H), 7.34 (s, 1H), 3.92 (dqd, J = 12.5, 6.2, 2.2 Hz, 1H), 3.84 (td, J = 10.9, 4.7 Hz, 1H), 3.03 (dd, J = 16.7, 6.5 Hz, 1H), 2.54 (s, 3H), 2.40 (dd, J = 16.7, 6.3 Hz, 1H), 2.20 – 2.15 (m, 1H), 2.16 (s, 3H), 2.04 (ddd, J = 12.4, 4.8, 2.2 Hz, 1H), 1.73 (dd, J = 9.7, 6.6 Hz, 1H), 1.33 (q, J = 11.5 Hz, 1H), 1.19 (d, J = 6.6 Hz, 3H), 1.13 (d, J = 7.1 Hz, 3H), 1.11 (d, J = 6.3 Hz, 3H).

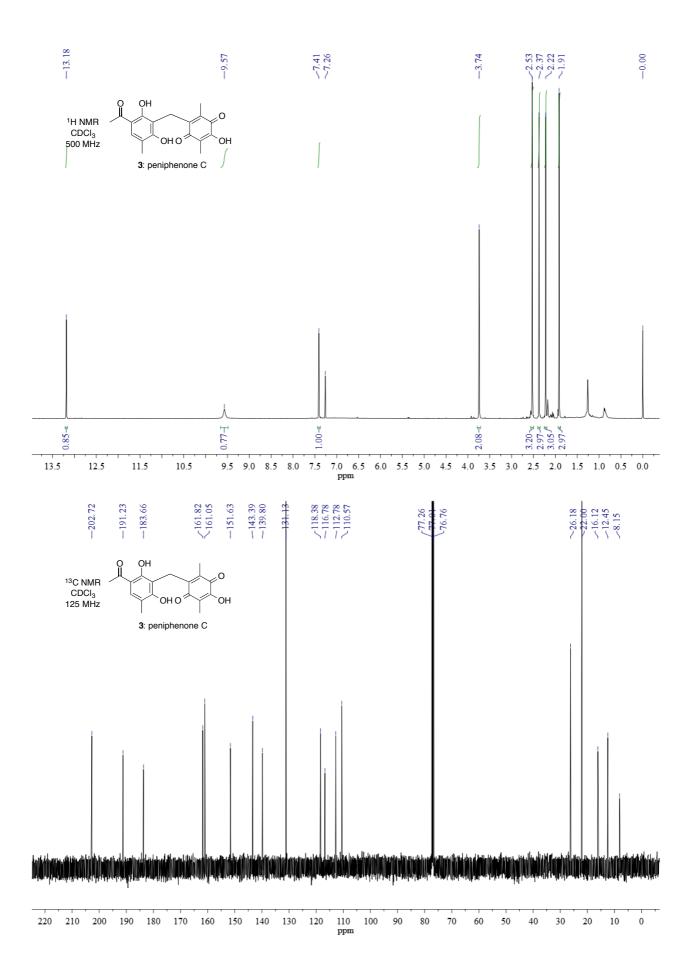
¹³C NMR (125 MHz, CDCl₃) δ 202.7, 160.7, 157.2, 129.4, 116.6, 112.8, 109.4, 103.2, 70.9, 65.1, 44.5, 41.9, 35.4, 30.5, 26.2, 25.9, 21.6, 17.2, 15.6, 12.5.

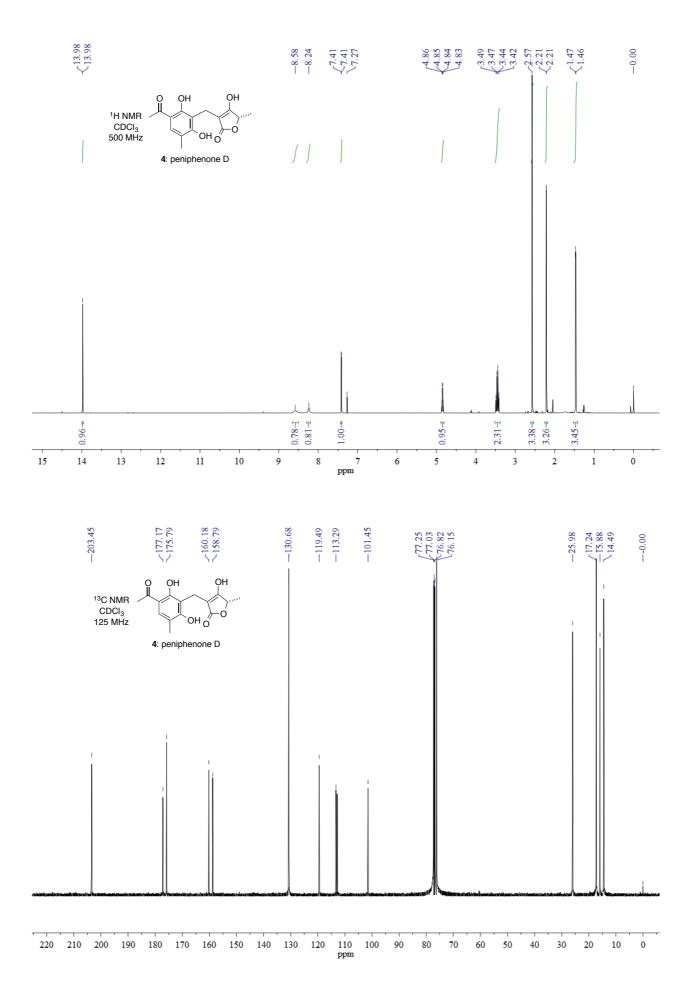
HRMS (C₁₉H₂₆O₅, ESI): calculated [M–H]⁻ 333.1707, found 333.1704

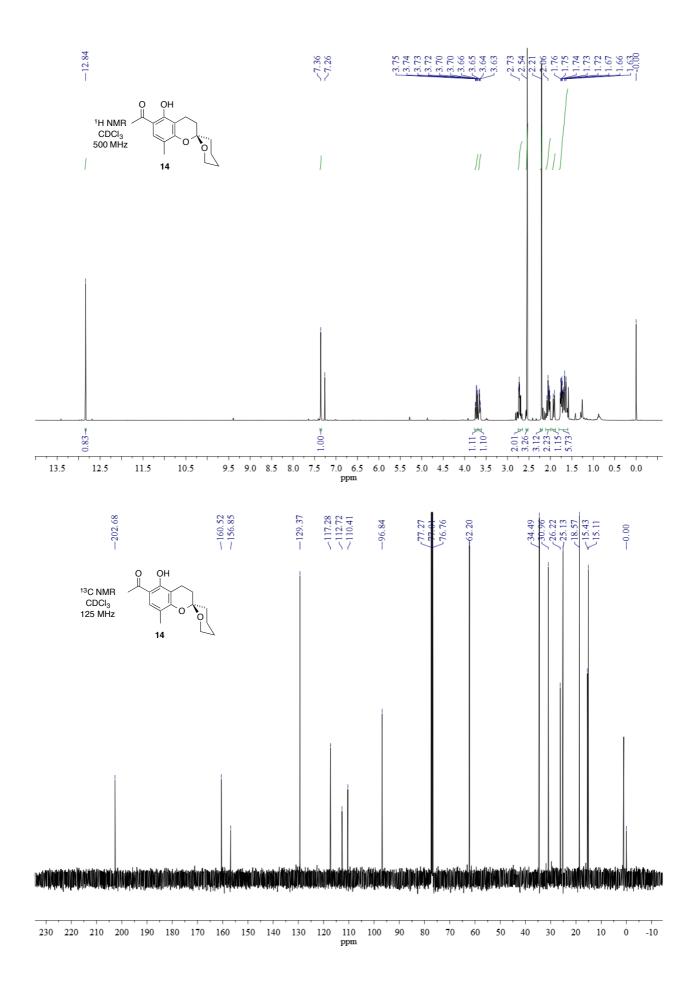
8-epi-Peniphenone A (27): To a solution of spiroketal **26** (15.1 mg, 0.045 mmol) in CH₂Cl₂ (2 mL) was added 4 Å molecular sieves, TPAP (0.8 mg, 0.0023 mmol) and *N*-methylmorpholine *N*-oxide (6.5 mg, 0.054 mmol) at 0 °C and the reaction was gradually warmed to room temperature and then stirred for 16 h. The reaction mixture was concentrated *in vacuo* and purified by flash chromatography (SiO₂, petroleum ether/EtOAc, 4:1 \rightarrow 2:1 gradient elution) to give 8-*epi*-peniphenone A **27** (9.1 mg, 61%) as a colourless film in a 2.4:1 mixture of diastereoisomers.

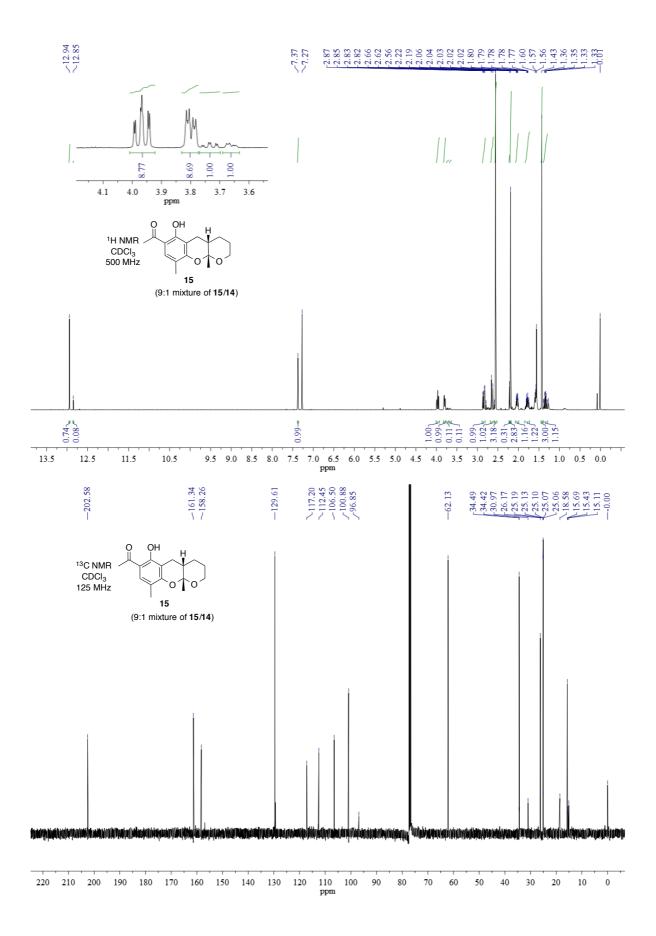

Data for 27: $R_f = 0.25$ (petroleum ether/EtOAc, 5:1)

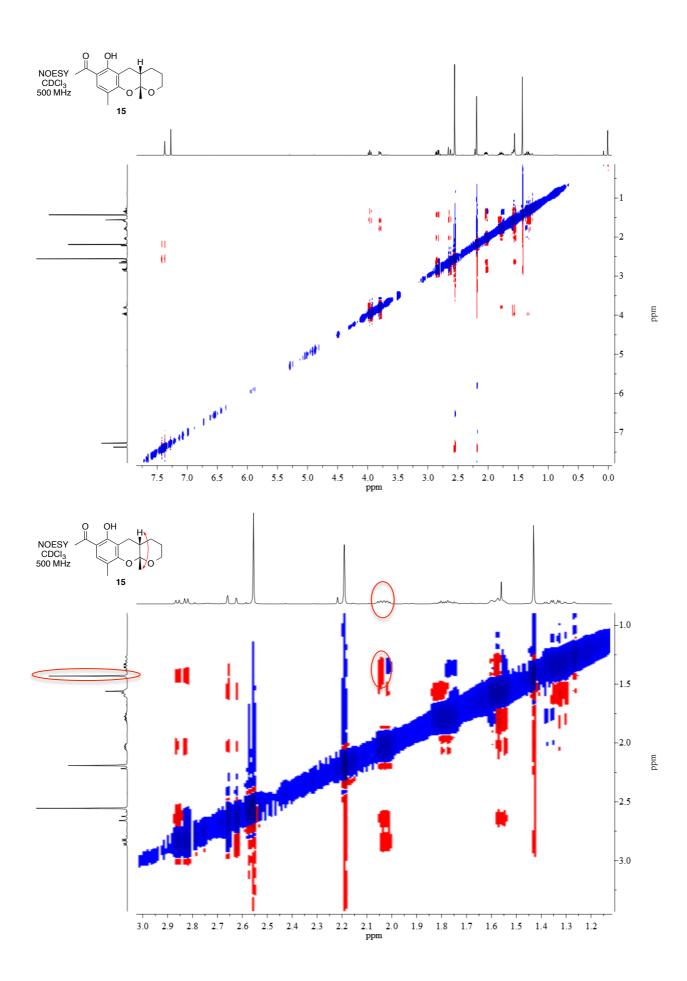

¹**H** NMR (500 MHz, CDCl₃) δ 12.85 (s, 1H), 7.34 (s, 1H), 4.20 (dqd, J = 12.1, 6.1, 2.9 Hz, 1H), 3.07 (dd, J = 16.7, 6.4 Hz, 1H), 2.77 (dd, J = 13.6, 6.3 Hz, 1H), 2.58-2.54 (m, 1H), 2.54 (s, 3H), 2.45 (dd, J = 16.8, 5.7 Hz, 1H), 2.37-2.32 (m, 2H), 2.09 (s, 3H), 1.22 (d, J = 6.4 Hz, 6H), 1.15 (d, J = 7.0 Hz, 3H).

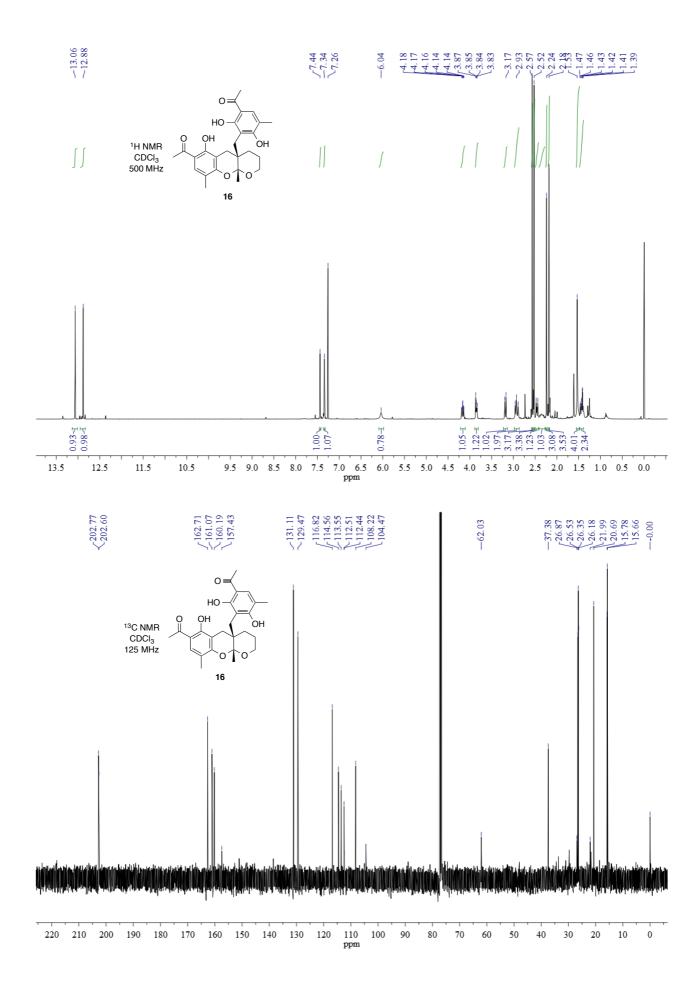

¹³C NMR (125 MHz, CDCl₃ δ 209.8, 205.5, 163.2, 159.0, 132.2, 119.4, 115.8, 111.8, 107.1, 69.0, 53.6, 50.6, 37.8, 28.9, 28.1, 24.5, 19.3, 18.0, 12.7.

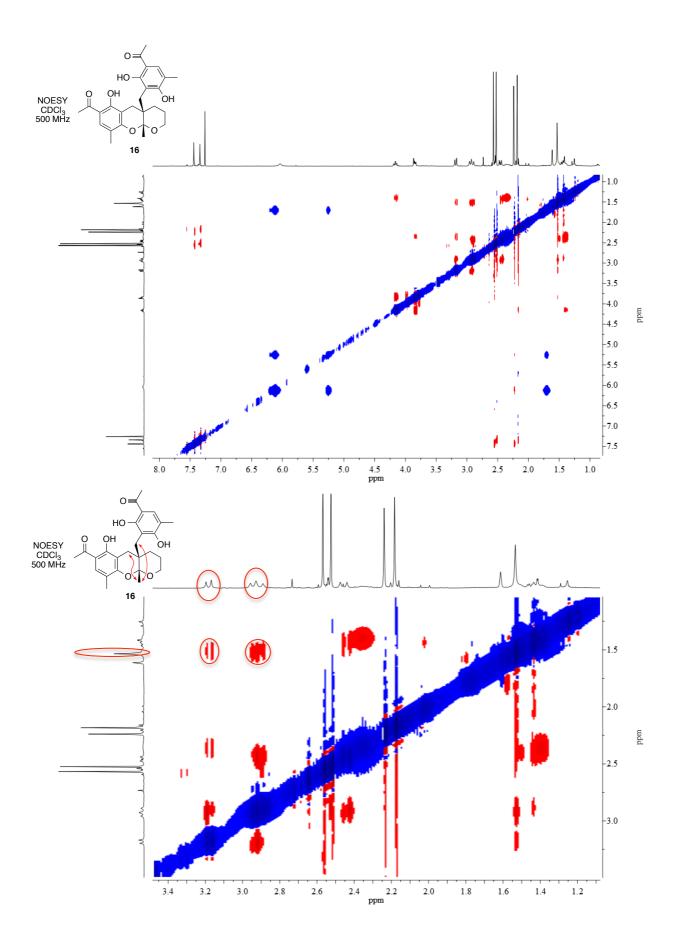

HRMS (C₁₉H₂₄O₅, ESI): calculated [M–H]⁻ 331.1551, found 331.1547.

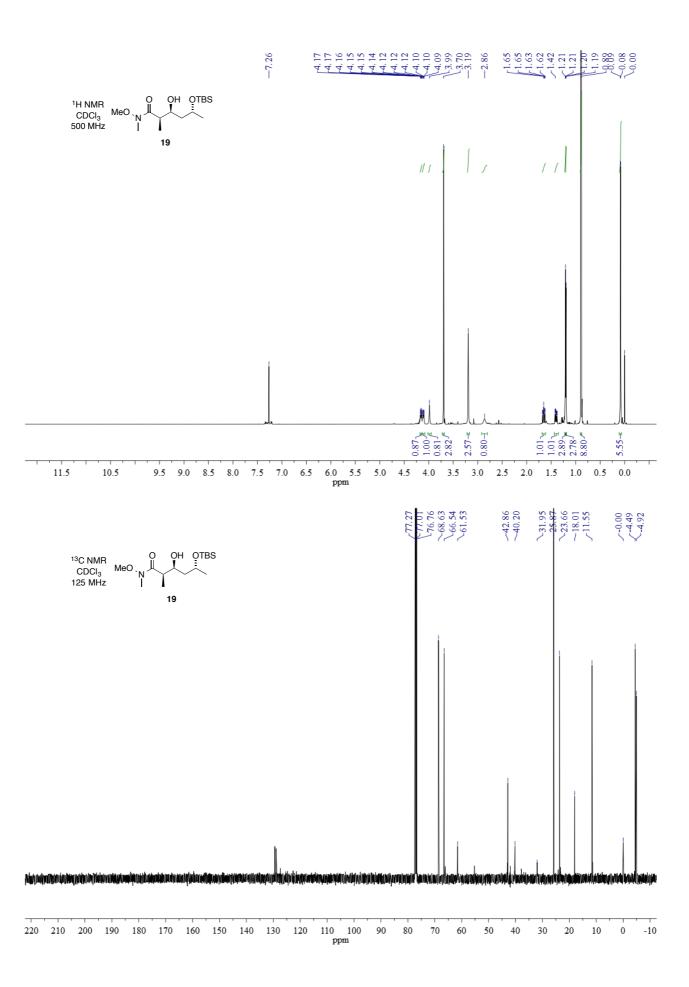


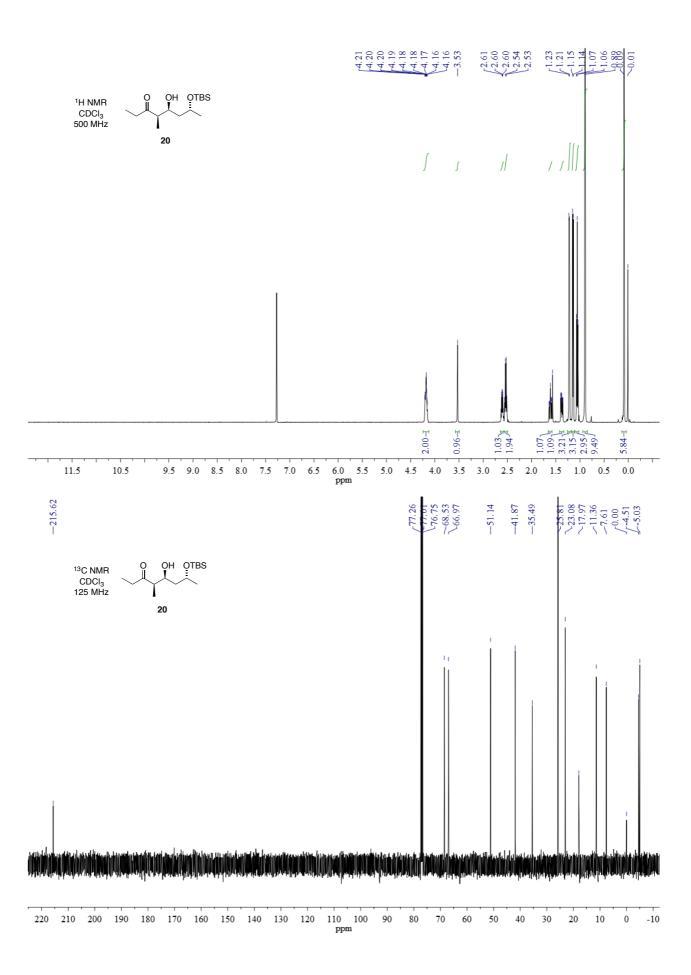


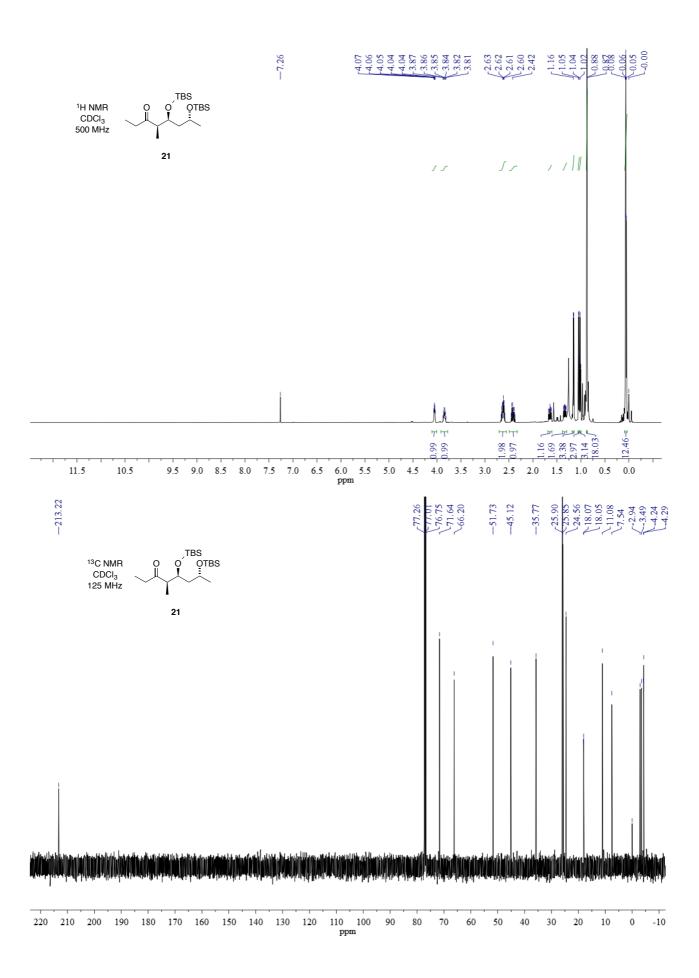


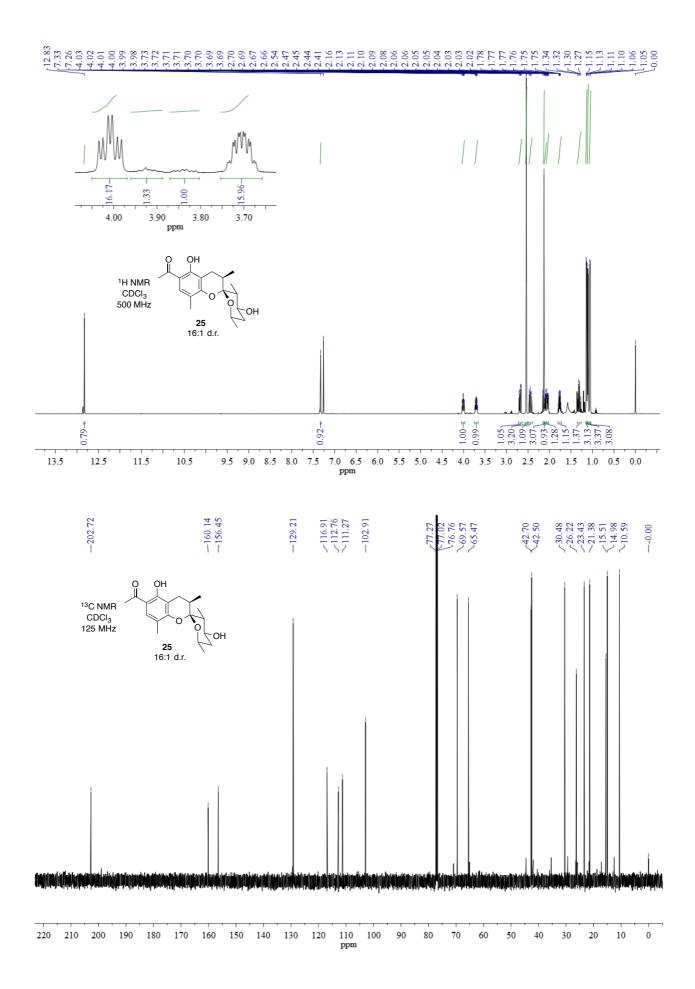




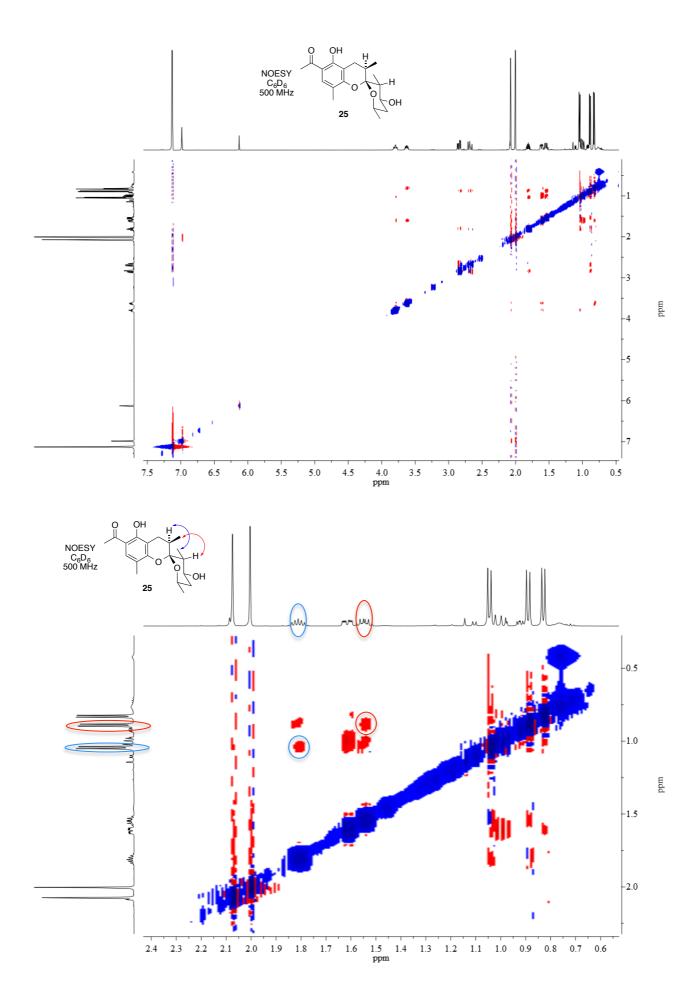


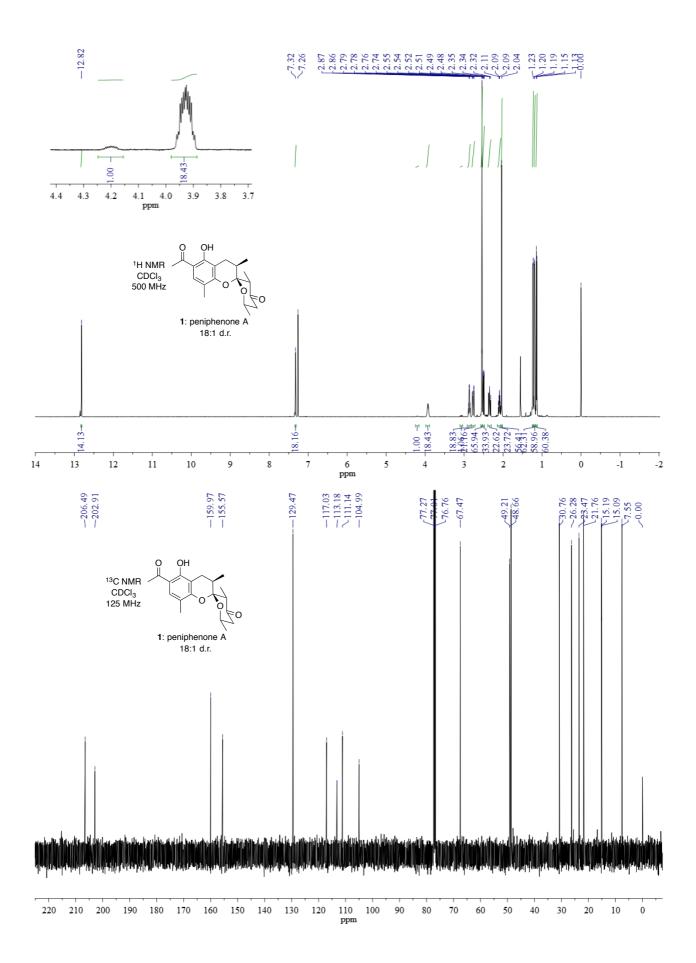


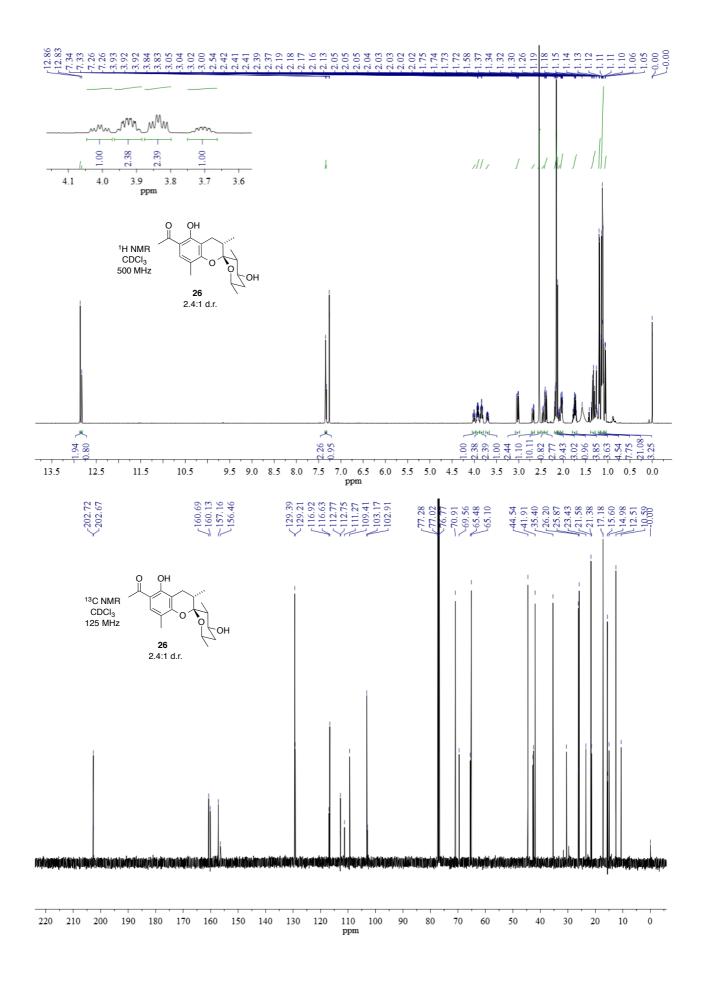


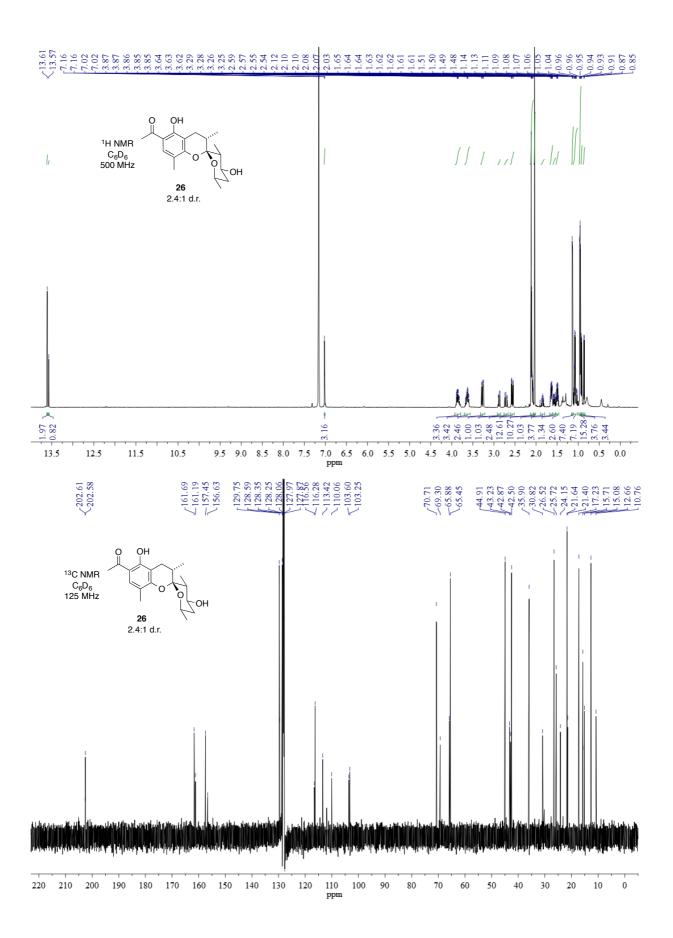


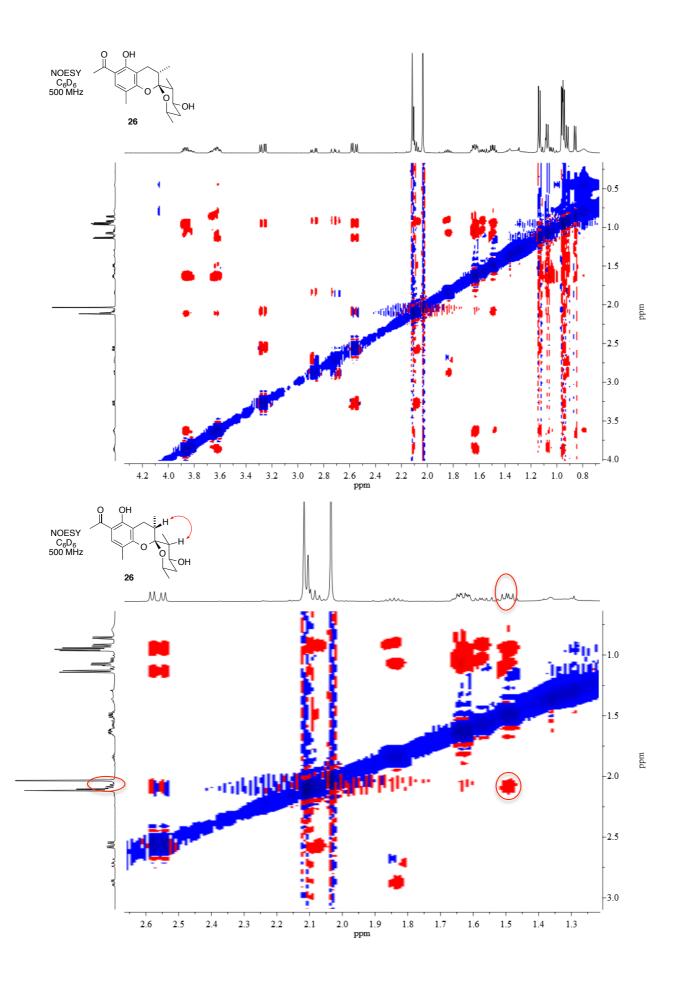


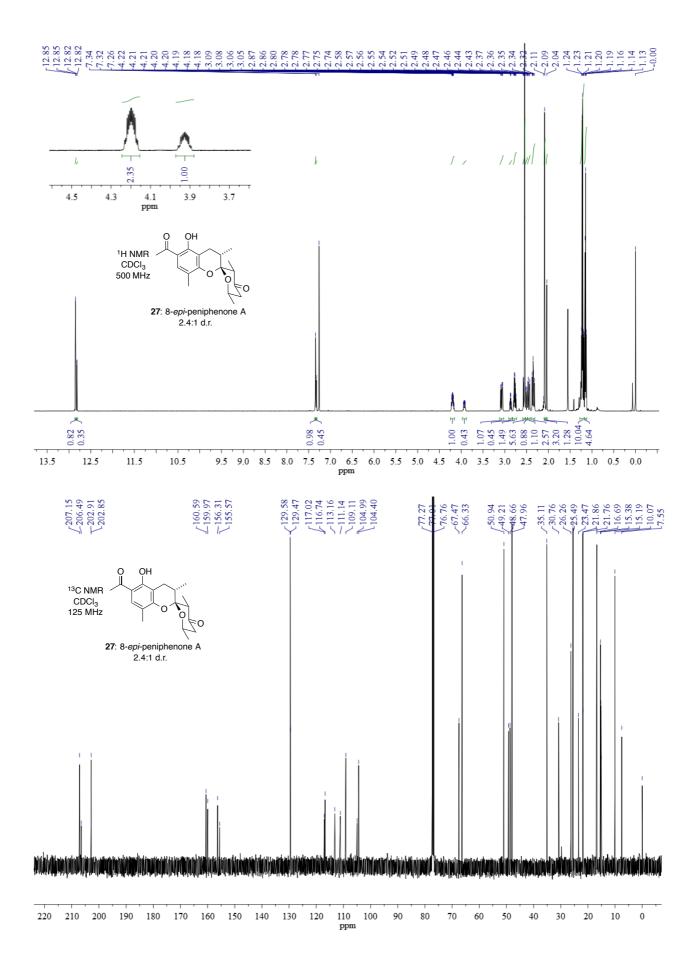


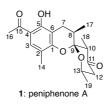












4. Tables of ¹H and ¹³C NMR data for peniphenones A-D

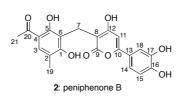
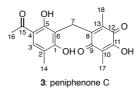
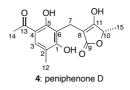


Table 1. Compari	son of the ¹ H and ¹¹	³ C spectra of natural and	l synthetic peni	phenone A (1) . ⁶

	Natural sample, ¹ H	Synthetic sample,	Natural sample,	Synthetic sample,
Assignment	spectrum, CDCl ₃ ,	¹ H spectrum,	¹³ C spectrum,	¹³ C spectrum,
rissignment	400 MHz	CDCl ₃ , 500 MHz	$CDCl_3, 100$	$CDCl_3$, 125 MHz
		CDC13, 500 WIIIZ	MHz	
1			155.6	155.6
2			117.0	117.0
3	7.32 s	7.32	129.5	129.5
4	7.520	1.52	113.2	113.2
5			160.0	160.0
6			112.2*	111.1*
7a	2.53, dd ($J = 16.6$,	2.53, dd ($J = 16.5$,	23.5	23.5
			20.0	-0.0
7b	3.1) 2.77, dd (<i>J</i> = 16.6,	3.0) 2.77, dd (<i>J</i> = 16.5,		
8	5.6) 2.09, m	5.6) 2.09, dt ($J = 10.1$,	30.8	30.8
	,	6.0)		
9			105.0	105.0
10	2.87, qd ($J = 6.7$,	2.87, q ($J = 6.8$)	49.2	49.2
	0.8)			
11			206.4	206.5
12a	2.34, ddd $(J =$	2.34, dd ($J = 13.3$,	48.6	48.7
	13.8, 11.3, 0.8)	11.8)		
12b	2.50, dd (J = 13.8,	2.50, dd ($J = 14.0$,		
	3.1)	3.0)		
13	3.93, m	3.93, dqd ($J = 12.3$,	67.5	67.5
		6.2, 3.1) 2.04, s		
14	2.04, s	2.04, s	15.1	15.1
15				
16	2.54, s	2.54, s	26.2	26.3
17	1.23, d ($J = 6.8$)	1.23, d ($J = 6.8$)	15.2	15.2
18	1.14, d (<i>J</i> = 6.7)	1.14, d ($J = 6.7$)	7.5	7.6
19	1.19, d (<i>J</i> = 6.2)	1.19, d ($J = 6.2$)	21.7	21.8
OH-5	12.82, br	12.82, br		


*Correction to natural product isolation data.

⁶ Li, H.; Jiang, J.; Liu, Z.; Lin, S.; Xia, G.; Xia, X.; Ding, B.; He, L.; Lu, Y.; She, Z. J. Nat. Prod. **2014**, 77, 800.


Table 2. Comparison of the 1 H and 13 C spectra of natural and synthetic peniphenone B (2).⁶

	Natural acression	Countly action groups and	Natural same la	Countly ation and multiple
	Natural sample,	Synthetic sample,	Natural sample,	Synthetic sample,
Assignment	¹ H spectrum,	¹ H spectrum,	¹³ C spectrum,	¹³ C spectrum,
	DMSO, 400 MHz	DMSO, 500 MHz	DMSO, 100 MHz	DMSO, 125 MHz
1			161.4	161.3
2			116.6	116.6
3	7.52, s	7.55, s	130.6	130.9
4			112.5	112.23
5			160.6	160.9
6			113.2	112.8
7	3.66, s	3.68, s	17.2	16.9
8			100.0	100.1
9			167.0	167.0
10			158.0	158.1
11	6.49, s	6.52, s	97.1	96.4
12			168.4	167.3
13			121.9	121.7
14	7.09, dd ($J = 8.4$,	7.09, dd ($J = 8.3$,	117.3	117.4
	2.3)	2.2)		
15	6.83, d ($J = 8.4$)	6.84, d (<i>J</i> = 8.4)	116.1	116.1
16			148.5	148.6
17			145.7	145.7
18	7.14, d ($J = 2.3$)	7.14, d (<i>J</i> = 2.2)	112.3	112.18
19	2.10	2.11, s	16.0	16.0
20			202.6	203.1
21	2.51	2.53, s	26.6	26.3
ОН	9.61	9.65, br		
ОН	9.37	9.40, br		
ОН		13.10, br		

Table 3. Comparison of the 1 H and 13 C spectra of natural and synthetic peniphenone C (3).⁶

Assignment	Natural sample, ¹ H spectrum, CDCl ₃ , 400 MHz	Synthetic sample, ¹ H spectrum, CDCl ₃ , 500 MHz	Natural sample, ¹³ C spectrum, CDCl ₃ , 100 MHz	Synthetic sample, ¹³ C spectrum, CDCl ₃ , 125 MHz
1			161.1	161.1
2			118.4	118.4
3	7.41, br s	7.41, s	131.1	131.1
4			112.8	112.8
5			161.8	161.8
6			110.6	110.6
7	3.75, s	3.74, s	22.0	22.0
8			143.4	143.4
9			191.2	191.2
10			116.8	116.8
11			151.6	151.6
12			183.7	183.7
13			139.8	139.8
14	2.22, d ($J = 0.4$)	2.22, s	16.1	16.1
15			202.7	202.7
16	2.53, s	2.53, s	26.2	26.2
17	1.92, s	1.91, s	8.1	8.2
18	2.37, s	2.37, s	12.4	12.5
OH-5	13.18, br s	13.18		
OH-1	9.55, br s	9.57		

Table 4. Comparison of the ¹H and ¹³C spectra of natural and synthetic peniphenone D (4).⁶

	Natural sample,	Synthetic sample,	Natural sample,	Synthetic sample,
Assignment	¹ H spectrum,	¹ H spectrum,	¹³ C spectrum,	¹³ C spectrum,
	CDCl ₃ , 400 MHz	CDCl ₃ , 500 MHz	CDCl ₃ , 100 MHz	CDCl ₃ , 125 MHz
1			160.2	160.2
2			119.5	119.5
3	7.41, d ($J = 0.4$)	7.41, d (<i>J</i> = 0.5)	130.7	130.7
4			113.2	113.3
5			158.8	158.8
6			112.8	112.8
7a	3.42, d (<i>J</i> =	3.48, d (<i>J</i> =	25.9*	14.5*
	15.1)*	15.1)*		
7b	3.28, d (<i>J</i> =	3.43, d (<i>J</i> =		
	15.1)*	15.1)*		
8			101.5	101.5
9			177.1	177.2
10	4.84, q ($J = 6.8$)	4.84, q ($J = 6.8$)	76.1	76.2
11			175.7	175.8
12	2.21, d ($J = 0.4$)	2.21, s	15.8	15.9
13			203.4	203.5
14	2.57, s	2.57, s	25.9	26.0
15	1.46, d (<i>J</i> = 6.8)	1.46, d (<i>J</i> = 6.8)	17.2	17.2
OH-5	13.76, br s	13.97		
OH-11	8.55, br s	8.58		
OH-1	8.22, br s	8.24		

*Correction to natural product isolation data.