Page S1 ## **Supporting Information** ## Elution of Uranium and Transition Metals from Amidoxime-Based Polymer Adsorbents for Sequestering Uranium from Seawater Horng-Bin Pan^a, Li-Jung Kuo^b, Chien M. Wai^{a*}, Naomi Miyamoto^a, Ruma Joshi^a, Jordana R. Wood^b, Jonathan E. Strivens^b, Christopher J. Janke^c, Yatsandra Oyola^c, Sadananda Das^c, Richard T. Mayes^c, Gary A. Gill^{b*} ^aDepartment of Chemistry, University of Idaho, Moscow, ID 83844, United States ^bMarine Sciences Laboratory, Pacific Northwest National Laboratory, Sequim, Washington 98382, United States ^cMaterials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States *E-mail: cwai@uidaho.edu; *E-mail: gary.gill@pnnl.gov **Figure S1**. FTIR spectra of the three ORNL AF1 braided adsorbents after 42 days of seawater exposure. The spectra are normalized to the –CH₂– asymmetrical stretching peak at 2918 cm⁻¹. **Table S1**. Peak intensity of N–O stretching (928 cm⁻¹) and ratio of C=N/–COO⁻ stretching (I₁₆₄₃/I₁₅₅₉) of the ORNL AF1 braided adsorbents after 42 days of seawater exposure. The peak intensities are normalized to –CH₂– asymmetrical stretching peak at 2918 cm⁻¹. | Description | IR peak ratio of I ₁₆₄₃ /I ₁₅₅₉ | IR peak intensity of I ₉₂₈ | |--|---|---------------------------------------| | ORNL AF1 braid-1 initial | 1.355 | 0.511 | | ORNL AF1 braid-1 after 42 days seawater exposure | 1.031 | 0.427 | | ORNL AF1 braid-2 initial | 1.364 | 0.567 | | ORNL AF1 braid-2 after 42 days seawater exposure | 1.124 | 0.431 | | ORNL AF1 braid-3 initial | 1.286 | 0.552 | | ORNL AF1 braid-3 after 42 days seawater exposure | 1.068 | 0.428 | ## LC-MS analysis of the vanadium(V)-glutarimidedioxime complex Figure S2 shows the LC chromatogram, acquired for solutions containing only glutarimidedioxime and vanadium (V) to glutarimidedioxime, at a molar ratio of 1:1. The peak at the retention time of 1.75 minute is due to glutarimidedioxime. At a molar ratio of vanadium(V) to glutarimidedioxime = 1:1 is observed at the retention time of 0.77 minute in the LC chromatogram. **Figure S2**. LC chromatogram of solutions containing only 0.2 mM glutarimidedioxime (red line) and 0.2 mM Na₃VO₄ and 0.2 mM glutarimidedioxime (green line) at pH 8.3 in 0.05 M NaCl. Figure S3 shows the mass spectrum acquired for solutions containing glutarimidedioxime and vanadium (V) at the molar ratio of 1:1. According to the literature, the peak observed at $m/z \sim 144$ can be assigned to protonated glutarimidedioxime. The peak observed at $m/z \sim 126$ results from the loss of water from protonated glutarimidedioxime. The base peak ($m/z \sim 266$) in the mass spectrum is the evidence of 1:1 vanadium: glutarimidedioxime complex. The peaks observed at $m/z \sim 248$, $m/z \sim 270$, $m/z \sim 292$, are due to ([VO₂ + glutarimidedioxime + Na] +), ([VO₂ + glutarimidedioxime + 2Na – H] +) and ([VO₂ + glutarimidedioxime + 3Na – 2H] +), respectively. The peaks observed at $m/z \sim 140$, $m/z \sim 199$, $m/z \sim 257$, $m/z \sim 315$, and $m/z \sim 433$ are the positive clusters of sodium chloride because 0.05 M sodium chloride was used as a solvent for making our samples. **Figure S3**. Positive-ion ESI mass spectrum of solutions containing 0.2 mM Na₃VO₄ and 0.2 mM glutarimidedioxime complex at pH 8.3 in 0.05 M NaCl ## **References:** (1) Mustapha, A. M.; Pasilis, S. P., Probing uranyl(VI) speciation in the presence of amidoxime ligands using electrospray ionization mass spectrometry. *Rapid Commun. Mass Spectrom.* **2013**, 27, 2135-2142.