Inelastic Neutron Scattering and Theoretical Studies of H₂ Sorption in a Dy(III)-Based Phosphine Coordination Material

Katherine A. Forrest,^{†,§} Tony Pham,^{†,§} Peter A. Georgiev,^{‡,∥} Jan Peter Embs,[#] Nolan W. Waggoner,[⊥] Adam Hogan,[†] Simon M. Humphrey,^{*,⊥} Juergen Eckert,[†] and Brian Space^{*,†} [†]Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, CHE205, Tampa, FL 33620-5250, United States [‡]Department of Structural Chemistry, University of Milan, 21 Via G. Venezian, I-20133 Milan, Italy [∥]Faculty of Chemistry and Pharmacy, University of Sofia, 1 James Bourchier Blvd., Sofia 1164, Bulgaria [#]Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, CH-5232 Villigen, Switzerland [⊥]Department of Chemistry, The University of Texas at Austin, Welch Hall 2.204, 105 East 24th St., Stop A5300, Austin, TX 78712-1224, United States [§]Authors contributed equally *brian.b.space@gmail.com; smh@cm.utexas.edu

PCM-16 System Cell

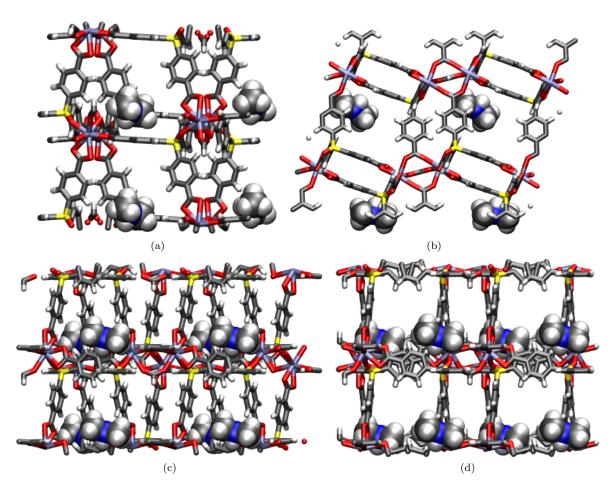


Figure S1. (a) The *a*-axis view, (b) *b*-axis view, (c) *c*-axis view, and (d) shifted *c*-axis view of the $2 \times 2 \times 1$ system cell of PCM-16. The $(CH_3)_2NH_2^+$ counterions are shown in van der Waals representation in their equilibrium positions. All views are orthographic projections. Atom colors: C = grey, H = white, N = blue, O = red, P = yellow, Dy = lavender.

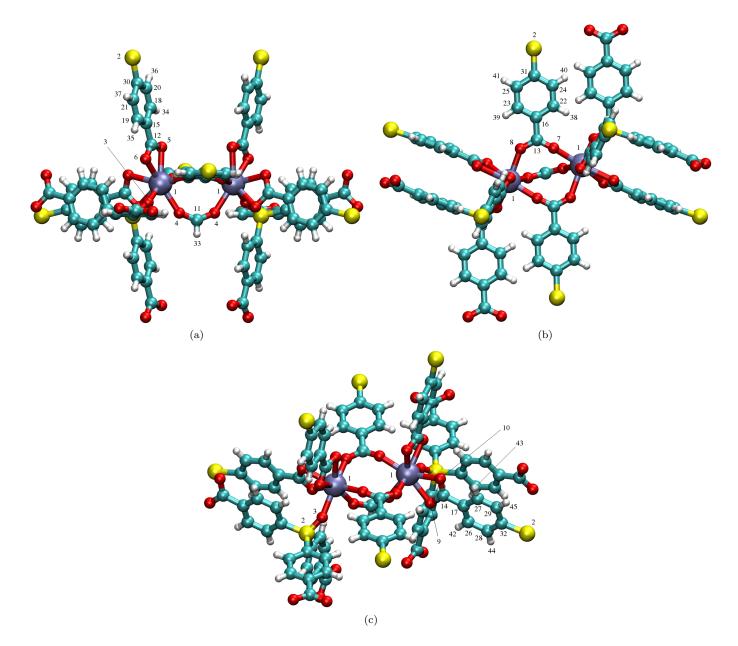


Figure S2. The numbering of the chemically distinct atoms in PCM-16 as referred to in Tables S1 and S2: (a) view 1; (b) view 2; (c) view 3. Atom colors: C = cyan, H = white, N = blue, O = red, P = yellow, Dy = lavender.

Figure S3. The numbering of the chemically distinct atoms on the $(CH_3)_2NH_2^+$ counterion as referred to in Table S3. Atom colors: C = cyan, H = white, N = blue.

Atom Pair	Distance $(Å)$
1 - 3	2.30413
1 - 4	2.33033
1 - 5	2.41892
1 - 6	2.45286
1 - 7	2.25342
1 - 8	2.29757
1 - 9	2.42732
1 - 10	2.42081
2 - 3	1.49599
2 - 30	1.77375
2 - 31	1.80162
2 - 32	1.81337
5 - 12	1.26946
6 - 12	1.23885
7 - 13	1.23672
8 - 13	1.25550
9-14	1.27686
10-14	1.26012

Table S1. The crystallographic distances (Å) between various atoms in PCM-16. Label of atoms correspond to Figure S2.

8	arge equilibration (EQ _{eq}					
	Atom	Label	$q~(e^-)$			
	Dy	1	2.12080			
	Р	2	0.22070			
	0	3	-0.42430			
	0	4	-0.47760			
	0	5	-0.41440			
	0	6	-0.42310			
	0	7	-0.55750			
	0	8	-0.52310			
	0	9	-0.41490			
	0	10	-0.43480			
	С	11	0.41170			
	С	12	0.29600			
	С	13	0.48830			
	С	14	0.28470			
	С	15	-0.07170			
	С	16	-0.16920			
	С	17	-0.07090			
	С	18	-0.02040			
	С	19	-0.03260			
	С	20	-0.06690			
	С	21	-0.06320			
	С	22	0.06180			
	С	23	0.05570			
	С	24	-0.10500			
	С	25	-0.11400			
	С	26	-0.02240			
	С	27	0.00180			
	С	28	-0.06920			
	С	29	-0.08240			
	С	30	-0.03460			
	С	31	0.01050			
	С	32	-0.02590			
	Н	33	-0.08260			
	Η	34	0.04520			
	Η	35	0.03870			
	Η	36	0.06650			
	Η	37	0.03040			
	Η	38	0.01560			
	Н	39	0.00850			
	Н	40	0.07480			
	Н	41	0.04970			
	Н	42	0.01580			
	Н	43	0.01360			
	Н	44	0.00800			
	Н	45	0.05370			

Table S2. The partial charges (e^-) for the chemically distinct atoms in PCM-16. Label of atoms correspond to Figure S2. These partial charges were determined using the extended charge equilibration (EQ_{eq}) method.¹

Table S3. The partial charges (e^{-}) for the chemically distinct atoms on the $(CH_3)_2NH_2^+$ counterion. Label of atoms corresponds to Figure S3. These partial charges were determined in previous work.²

Atom	Label	$q~(e^-)$
Ν	1	0.20260
C	2	-0.19430
Η	3	0.22290
Η	4	0.12150
Η	5	0.12430

Two-Dimensional Rotational Levels

Table S4. The calculated two-dimensional quantum rotational levels for a H_2 molecule sorbed at the two sites in PCM-16. Sites 1 and 2 are depicted in Figure S4. Relative energies are given in meV.

n	j	Site 1 $\Delta E $	Site 2 ΔE (meV)
1	0	0.00	0.00
2		7.63	12.30
3	1	18.38	15.65
4		24.24	16.57
5		40.65	42.60
6		41.49	43.02
7	2	44.92	43.70
8		53.18	46.12
9		54.41	46.15

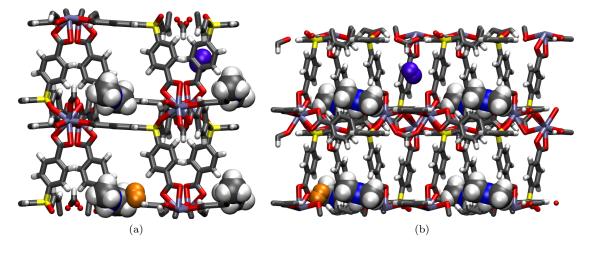
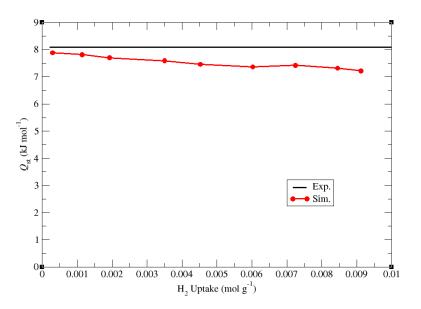



Figure S4. (a) The *a*-axis view and (b) *c*-axis view of the $2 \times 2 \times 1$ system cell of PCM-16 showing the singular locations of sites 1 (orange) and 2 (violet) that were used for the two-dimensional quantum rotation calculations in this work. Site 1 corresponds to sorption about the $(CH_3)_2NH_2^+$ counterions, whereas site 2 corresponds to sorption within the small pores of the framework. The $(CH_3)_2NH_2^+$ counterions are shown in van der Waals representation in their equilibrium positions. All views are orthographic projections. Atom colors: C = grey, H = white, N = blue, O = red, P = yellow, Dy = lavender.

Isosteric Heat of Adsorption

Figure S5. Isosteric heats of adsorption (Q_{st}) for H₂ in PCM-16 plotted against H₂ uptakes for experiment (black) and simulation (red). The simulated Q_{st} values were determined through fluctuations of the particle number and total potential energy within the PCM-16–H₂ system in grand canonical Monte Carlo (GCMC) simulations.³ The experimental data was estimated from reference 4.

¹ Wilmer, C. E.; Kim, K. C.; Snurr, R. Q. An Extended Charge Equilibration Method. J. Phys. Chem. Lett. 2012, 3, 2506–2511.

- ² Pham, T.; Forrest, K. A.; Georgiev, P. A.; Lohstroh, W.; Xue, D.-X.; Hogan, A.; Eddaoudi, M.; Space, B.; Eckert, J. A high rotational barrier for physisorbed hydrogen in an fcu-metal-organic framework. *Chem. Commun.* **2014**, *50*, 14109–14112.
- ³ Nicholson, D.; Parsonage, N. G. Computer Simulation and the Statistical Mechanics of Adsorption; Academic Press: London, 1982; pp. 97.
- ⁴ Ibarra, I. A.; Yoon, J. W.; Chang, J.-S.; Lee, S. K.; Lynch, V. M.; Humphrey, S. M. Organic Vapor Sorption in a High Surface Area Dysprosium(III)–Phosphine Oxide Coordination Material. *Inorg. Chem.* **2012**, *51*, 12242–12247, PMID: 23116537.