Supporting Information For

Nickel-Catalyzed Direct C (sp³)-H Arylation of Aliphatic Amides with Thiophenes

Xie Wang,[†] Longzhi Zhu,[†] Sihai Chen,[†] Xinhua Xu,^{*,†} Chak-Tong Au,^{†,‡} Renhua Qiu^{*,†}

[†]State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China

[‡]Department of Chemistry, Hong Kong Baptist University, Hong Kong, P.R. China

Tel/Fax: +86-731-88821546

renhuaqiu@hnu.edu.cn (Dr. Qiu), xhx1581@hnu.edu.cn (Prof. Xu)

1	General	S2
2	The organic semiconductors which contain alkyl-substituted thiophenes	S3
3	Synthesis of Starting Materials	S4
4	Sytnhesis of Thiophene Products	S 8
5	Synthesis of N-heteroarylated Products	S17
6	Application of Thiophenes Products	S19
7	Deuterium Labeling Experiment	S20
8	References	S22
9	Copies of ${}^{1}H$, ${}^{13}C$ NMR Charts for the Compounds	S23

1. General

1.1 Instrumentation

All the reactions were carried out under an N₂ atmosphere using standard Schlenk techniques. Glassware was dried in an oven (150 °C) and heated under reduced pressure before use. For thin layer chromatography (TLC) analyses throughout this work, Flash column chromatography was performed using Qingdao Haiyang silica gel (300-400) with distilled solvents. ¹H NMR (400MHz) spectra were recorded on Bruker Avance 400 spectrometers in CDCl₃ [using (CH₃)₄Si (for ¹H, $\delta = 0.00$) as internal standard]. ¹³C NMR (100 MHz) spectra on Bruker Avance 400 spectrometers in CDCl₃ [using CDCl₃ (for ¹³C, $\delta = 77.00$) as internal standard]. The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiple. Chemical shifts (δ) are in parts per million relative to CDCl₃ at 7.26 ppm for ¹H and at 77.16 ppm for ¹³C {¹H}, respectively. The NMR yields were determined by ¹H NMR spectra with dibromomethane as an internal standard.

1.2 Chemicals

Unless otherwise noted, materials obtained from commercial suppliers were used without further purification. All the solvents and commercially available reagents were purchased from commercial sources and used directly. Starting materials were prepared according to literature procedures.¹

2. The organic semiconductors which contain alkyl-substituted thiophenes

 $2, 3-bis (5-\textit{tert}-butyl thiophen-2-yl)-6, 7-dimethyl quinoxaline-C_{60}-bis adduct$

poly(bithienyImethylene)s

TIBDT

3. Synthesis of Starting Materials

3.1 General Procedure for the Preparation of Starting Materials

A solution of LDA (10 mmol) in THF was prepared from diisopropylamine (1.5 mL, 10.7 mmol) and 2.5 M *n*-BuLi in hexane (4.0 mL, 10 mmol) at -78 °C. To this LDA solution, carboxylate ester (10 mmol) was added dropwise at -78 °C and the mixture was stirred at this temperature for 1 h. Alkyl halide (15 mmol) was then added dropwise to the solution at -78 °C. After the addition, the mixture was warmed to room temperature and stirred overnight. Then the mixture was quenched with water at 0 °C, extracted with Et₂O (15 mL x 3). The combined organic layers were washed with brine, dried over MgSO₄, and then evaporated in vacuo to give the crude ester.

To the ester was added a solution of NaOH (2 M, 8.0 mL) and methanol (10 mL). The mixture was stirred overnight at 60 $^{\circ}$ C. After removal of methanol in vacuo, the pH of the mixture was adjusted to 2 with 3.0 M HCl. The mixture was then saturated with NaCl and extracted with Et₂O (15 mL x 3). The combined organic layers were washed with brine, dried over MgSO₄, and then evaporated in vacuo to give the crude carboxylic acid, which was used directly for the next step without further purification.

Oxalyl chloride (1.75 mL, 20 mmol) was added slowly to a stirred solution of the carboxylic acid in CH_2Cl_2 (20 mL) and DMF (0.1 mL) at 0 °C. The mixture was stirred for 1 h at 0 °C and another 16 h at room temperature, and evaporated in vacuo. The residue was then dissolved in toluene (5 mL), evaporated in vacuo twice, to give the crude acid chloride, which was used directly for the next step without further purification.

The acid chloride was added dropwise to a solution of 8-aminoquinoline (1.01 g, 7.0 mmol) and Et_3N (1.7 mL, 12 mmol) in CH_2Cl_2 (12 mL). The mixture was stirred overnight at room temperature. Then the mixture was diluted with CH_2Cl_2 (10 mL), washed successively with water, saturated aqueous NaHCO₃, and brine. The organic layer was dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel, eluting with EtOAc/Hexane (1:60, v/v), to afford corresponding 8-aminoquinolinyl amides **1**.

3.2 Analytical Data for Starting Materials *N*-(quinolin-8-yl)pivalamide (1a)

This amide was obtained as colorless oil. $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 1.43 (s, 9 H), 7.37–7.53 (m, 3 H), 8.07–8.11 (m, 1 H), 8.79–8.81 (m, 2 H), 10.27 (s, 1 H); $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 27.75, 40.36, 116.20, 121.25, 121.53, 127.40, 127.92, 134.70, 136.28, 138.79, 148.21, 177.24; Ms (EI): *m/z* = 228.1 [M+H]⁺.

2-methyl-2-phenyl-N-(quinolin-8-yl)propanamide (1b)

This amide was obtained as white solid. Melting point: 100-101 $^{\circ}$ C. δ_{H} (400 MHz; CDCl₃; Me₄Si) 1.78 (s, 6 H), 7.28–7.35 (m, 2 H), 7.38–7.44 (m, 3 H), 7.48–7.55 (m, 3 H), 8.05–8.07 (m, 1 H), 8.58–8.59 (m, 1 H), 8.75–8.77 (m, 1 H), 9.87 (s, 1 H); δ_{C} (100 MHz; CDCl₃; Me₄Si) 27.02, 48.40, 115.97, 121.26, 121.43, 126.37, 127.02, 127.33, 127.84, 128.79, 134.72, 136.09, 138.68, 144.90, 148.12, 175.82; Ms (EI): m/z = 290.1 [M+H]⁺.

2,2-dimethyl-N-(quinolin-8-yl)butanamide (1c)

This amide was obtained as yellow oil. $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 0.96 (t, J = 7.2 Hz, 3 H), 1.39 (s, 6 H), 1.77 (q, J = 7.2 Hz, 2 H), 7.42–7.55 (m, 3 H), 8.13–8.15 (m, 1 H), 8.81–8.83 (m, 2 H), 10.25 (s, 1 H); $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 9.33, 25.11, 34.13, 44.08, 116.17, 121.21, 121.52, 127.36, 127.42, 127.93, 134.67, 136.24, 136.27, 138.79, 148.23, 176.65; Ms (EI): m/z = 242.1 [M+H]⁺.

1-methyl-N-(quinolin-8-yl)cyclohexanecarboxamide (1d)

This amide was obtained as yellow oil. $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 1.36 (s, 3 H), 1.50-1.68 (m, 8 H), 2.18–2.22 (m, 2 H), 7.41–7.55 (m, 3 H), 8.12–8.14 (m, 1 H), 8.80–8.84 (m, 2 H), 10.29 (s, 1 H); $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 22.90, 25.76, 26.54, 35.69, 44.27, 116.09, 121.01, 121.40, 127.34, 127.83, 134.70, 136.18, 138.70, 148.11, 176.51; Ms (EI): m/z = 268.2 [M+H]⁺.

2,2-diphenyl-N-(quinolin-8-yl)propanamide (1e)

This amide was obtained as white solid. Melting point: 153 °C. $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 2.17 (s, 3 H), 7.29–7.41 (m, 11 H), 7.45–7.54 (m, 2 H), 8.06–8.08 (m, 1 H), 8.49–8.50 (m, 1 H), 8.84–8.86 (m, 1 H), 10.12 (s, 1 H); $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 27.16. 58.44, 116.02, 121.45, 121.58, 126.99, 127.34, 127.82, 128.34, 128.57, 134.50, 136.02, 138.80, 144.94, 148.06, 173.75; Ms (EI): *m/z* = 352.1 [M+H]⁺.

2,2-dimethyl-3-(naphthalen-2-yl)-N-(quinolin-8-yl)propanamide (1f)

This amide was obtained as brown oil. δ_{H} (400 MHz; CDCl₃; Me₄Si) 1.48 (s, 6 H), 3.22 (s, 2 H), 7.33–7.40 (m, 4 H), 7.47–7.50 (m, 1 H), 7.54–7.58 (m, 1 H), 7.64–7.73 (m, 4 H), 8.08–8.11 (m, 1 H), 8.59–8.60 (m, 1 H), 8.86–8.88 (m, 1 H), 10.15 (s, 1 H); δ_{C} (100 MHz; CDCl₃; Me₄Si) 25.40, 45.20, 47.07, 116.32, 121.40, 121.48, 125.28, 125.74, 127.39, 127.45, 127.47, 127.59, 127.87, 128.79, 128.84, 132.24, 133.33, 134.49, 135.63, 136.15, 138.75, 148.11, 176.07; Ms (EI): *m/z* = 354.2 [M+H]⁺.

3-(4-fluorophenyl)-2,2-dimethyl-N-(quinolin-8-yl)propanamide (1g)

This amide was obtained as white solid. Melting point: 93 °C. $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 1.41 (s, 6 H), 3.01 (s, 2 H), 6.86 (t, J = 8.4 Hz, 2 H), 7.13–7.16 (m, 2 H), 7.40–7.43 (m, 1 H), 7.48–7.56 (m, 2 H), 8.12–8.14 (m, 1 H), 8.74–8.75 (m, 1 H), 8.81–8.83 (m, 1 H), 10.13 (s, 1 H); $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 25.26, 45.00 (d, $J_{C-F} = 0.8$ Hz), 46.12, 114.78 (d, $J_{C-F} = 20.9$ Hz), 116.30, 121.46, 121.56, 127.40, 127.92, 131.60 (d, $J_{C-F} = 7.8$ Hz), 133.65 (d, $J_{C-F} = 3.3$ Hz), 134.39, 136.27, 138.77, 148.22, 161.71 (d, $J_{C-F} = 242.7$ Hz), 175.77; Ms (EI): m/z = 322.3 [M+H]⁺.

2-methyl-2-phenyl-N-(quinolin-8-yl)butanamide (1h)

This amide was obtained as yellow oil. $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 0.83 (t, J = 7.6 Hz, 3 H), 1.66 (s, 3 H), 2.07–2.27 (m, 2 H), 7.17–7.36 (m, 5 H), 7.40–7.44 (m, 3 H), 7.97–7.99 (m, 1 H), 8.51–8.52 (m, 1 H), 8.68–8.70 (m, 1 H), 9.78 (s, 1 H); $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 9.04, 22.98, 31.72, 52.27, 116.00, 121.20, 121.42, 126.04, 126.83, 126.89, 127.34, 127.85, 128.36, 128.70, 134.73, 136.08, 138.68, 143.87, 148.11, 175.45; Ms (EI): m/z = 304.3 [M+H]⁺.

[D₃]-2-methyl-2-phenyl-N-(quinolin-8-yl)butanamide ([D₃]-1h)

 D_3C Н Ph

This amide was obtained as yellow oil. $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 0.82 (t, J = 7.2 Hz, 3 H), 2.09–2.22 (m, 2 H), 7.15–7.24 (m, 2 H), 7.27–7.33 (m, 3 H), 7.38–7.42 (m, 3 H), 7.94–7.96 (m, 1 H), 8.49–8.50 (m, 1 H), 8.68–8.70 (m, 1 H), 9.77 (s, 1 H); $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 9.04, 31.65, 52.07, 116.00, 121.21, 121.42, 126.83, 126.90, 127.33, 127.85, 128.72, 134.73, 136.08, 138.68, 143.86, 148.11, 175.47; Ms (EI): m/z = 307.4 [M+H]⁺.

2-benzyl-2-methyl-N-(quinolin-8-yl)butanamide (1i)

This amide was obtained as pale yellow solid. Melting point: 64-65 °C. $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 0.87 (t, *J* = 7.2 Hz, 3 H), 1.23 (s, 3 H), 1.43–1.50 (m, 1 H), 1.91–1.96 (m, 1 H), 2.71, 3.15 (AB, J_{AB} = 13.2 Hz, 2 H), 6.99–7.09 (m, 5 H), 7.22–7.25 (m, 1 H), 7.32–7.34 (m, 1 H), 7.38–7.42 (m, 1 H), 7.94–7.96 (m, 1 H), 8.58–8.59 (m, 1 H), 8.74–8.76 (m, 1 H), 10.02 (s, 1 H); $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 9.22, 20.26, 32.85, 46.04, 49.03, 116.29, 121.38, 121.53, 126.35, 127.43, 127.93, 128.01, 130.34, 134.46, 136.22, 137.91, 138.80, 148.22, 175.31; Ms (EI): m/z = 318.2 [M+H]⁺.

2,2-dimethyl-3-phenyl-N-(quinolin-8-yl)propanamide (1j)

This amide was obtained as pale yellow solid. Melting point: 60 °C. $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 1.42 (s, 6 H), 3.05 (s, 2 H), 7.14–7.20 (m, 5 H), 7.41–7.44 (m, 1 H), 7.48–7.57 (m, 2 H), 8.13–8.15 (m, 1 H), 8.74–8.75 (m, 1 H), 8.83–8.85 (m, 1 H), 10.17 (s, 1 H); $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 25.27, 44.97, 46.89, 116.30, 121.35, 121.50, 126.36, 127.44, 127.92, 127.98, 130.29, 134.52, 136.24, 137.95, 138.82, 148.17, 176.07; Ms (EI): *m/z* = 304.2 [M+H]⁺.

4. Synthesis of Thiophenes products

4.1 General Procedure for Nickel-Catalyzed heteroarylation of amide with bromide thiophene

A 10-mL Schlenk tube was charged with *N*-(quinolin-8-yl)pivalamide **1a** (45.6 mg, 0.2 mmol), 2,5-dibromothiophene (143.8 mg, 0.6 mmol), NiBr₂ (4.4 mg, 0.02 mmol), MesCOOH (6.6 mg, 0.04 mmol), Na₂CO₃ (42.4 mg, 0.4 mmol), TBAI (147.6 mg, 0.4 mmol) and DMF (0.5 mL). The vial was evacuated and filled with N₂, and stirred at 160 °C for 24 h. The mixture was then cooled to room temperature, diluted with CH₂Cl₂ (2 mL), filtered through a celite pad, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel, eluting with EtOAc/Hexane (1:100 ~ 1:60, v/v), to afford the desired product **2a**

4.2 Optimization of solvents and bases for thiophenes products synthesis

A: Solvents

Entry	Solvent	Yield(%)
1	DMSO	60
2	NMP	62
3	Toluene	trace
4	Tert-amyl alcohol	63
5	Dioxane	15

Entry	Base	Yield(%)
1	K_2CO_3	68
2	Cs_2CO_3	trace
3	K ₃ PO ₄	trace
4	NaOH	trace
5	Li ₂ CO ₃	50
6	NaHCO ₃	66
7	Na ₂ (OAc)	20
8	$Na_2CO_3(4eq)$	79

4.3 Analytical Data for Thiophenes Products

3-(5-bromothiophen-2-yl)-2,2-dimethyl-N-(quinolin-8-yl)propanamide (2a)

This amide was obtained 55.9 mg (72%) as pale white viscous oil. $R_f = 0.36$ (petroleum ether/ethyl acetate = 60:1); δ_H (400 MHz; CDCl₃; Me₄Si) 1.46 (s, 6 H), 3.17 (s, 2 H), 6.59–6.60 (m, 1 H), 6.79–6.80 (m, 1 H), 7.44–7.46 (m, 1 H), 7.51–7.58 (m, 2 H), 8.15–8.17 (m, 1 H), 8.79–8.83 (m, 2 H), 10.23 (s, 1 H); δ_C (100 MHz; CDCl₃; Me₄Si) 25.46, 41.25, 44.97, 116.45, 121.55, 121.59, 127.39, 127.44, 127.94, 129.40, 134.36, 136.31, 138.78, 141.86, 148.28, 175.34; HRMS (ESI): M+H⁺ found 388.0239; $C_{18}H_{17}Br_1N_2S_1O_1$ requires 388.0245.

2,2-dimethyl-N-(quinolin-8-yl)-3-(thiophen-2-yl)propanamide (2ba)

This amide was obtained 34.5 mg (56%) as yellow viscous oil. $R_f = 0.29$ (petroleum ether/ethyl acetate = 60:1); δ_H (400 MHz; CDCl₃; Me₄Si) 1.46 (s, 6 H), 3.26 (s, 2 H), 6.84–6.87 (m, 2 H), 7.06–7.07 (m, 1 H), 7.41–7.45 (m, 1 H), 7.49–7.57 (m, 2 H), 8.13–8.15 (m, 1 H), 8.77–8.78 (m, 1 H), 8.84–8.85 (m, 1 H), 10.23 (s, 1 H); δ_C (100 MHz; CDCl₃; Me₄Si) 25.39, 40.86, 45.09, 116.40, 121.43, 121.55, 124.09, 126.61, 126.96, 127.46, 127.93, 134.50, 136.28, 138.81, 139.87, 148.23, 175.68; HRMS (ESI): M+H⁺ found 310.1134; C₁₈H₁₈N₂S₁O₁ requires 310.1140.

2-methyl-N-(quinolin-8-yl)-3-(thiophen-2-yl)-2-(thiophen-2-ylmethyl)propanamide (2bb)

This amide was obtained 19.9 mg (25%) as brown viscous oil. $R_f = 0.24$ (petroleum ether/ethyl acetate = 60:1); δ_H (400 MHz; CDCl₃; Me₄Si) 1.46 (s, 3 H), 3.08, 3.59 (AB, $J_{AB} = 14.4$ Hz, 4 H), 6.84–6.86 (m, 4 H), 7.06–7.07 (m, 2 H), 7.39–7.42 (m, 1 H), 7.49–7.58 (m, 2 H), 8.12–8.14 (m, 1 H), 8.70–8.71 (m, 1 H), 8.86–8.88 (m, 1 H), 10.11 (s, 1 H); δ_C (100 MHz; CDCl₃; Me₄Si) 20.47, 39.91, 49.87, 116.52, 121.50, 121.54, 124.31, 126.67, 127.29, 127.44, 127.88, 134.25, 136.17, 139.09, 148.18, 174.05; HRMS (ESI): M+H⁺ found 392.1011; C₂₂H₂₀N₂S₂O₁ requires 392.1017.

2,2-dimethyl-3-(5-methylthiophen-2-yl)-N-(quinolin-8-yl)propanamide (2ca)

This amide was obtained 32.8 mg (51%) as yellow oil. $R_f = 0.31$ (petroleum ether/ethyl acetate = 60:1); δ_H (400 MHz; CDCl₃; Me₄Si) 1.45 (s, 6 H), 2.34 (s, 3 H), 3.16 (s, 2 H), 6.49–6.50 (m, 1 H), 6.60–6.61 (m, 1 H), 7.42–7.45 (m, 1 H), 7.49–7.57 (m, 2 H), 8.14–8.16 (m, 1 H), 8.78–8.79 (m, 1 H), 8.83–8.84 (m, 1 H), 10.23 (s, 1 H); δ_C (100 MHz; CDCl₃; Me₄Si) 15.18, 25.36, 41.07, 44.98, 116.41, 121.36, 121.52, 124.64, 126.78, 127.47, 127.93, 134.55, 136.27, 137.51, 138.40, 138.83, 148.19, 175.83; HRMS (ESI): M+H⁺ found 324.1292; C₁₉H₂₀N₂S₁O₁ requires 324.1296.

2-methyl-3-(5-methylthiophen-2-yl)-2-((5-methylthiophen-2-yl)methyl)-N-(quinolin-8-yl)propanamide (2cb)

This amide was obtained 21.3 mg (25%) as yellow viscous oil. $R_f = 0.28$ (petroleum ether/ethyl acetate = 60:1); δ_H (400 MHz; CDCl₃; Me₄Si) 1.45 (s, 3 H), 2.32 (s, 6 H), 2.99, 3.46 (AB, $J_{AB} = 14.4$ Hz, 4 H), 6.47–6.48 (m, 2 H), 6.61–6.62 (m, 2 H), 7.40–7.43 (m, 1 H), 7.49–7.58 (m, 2 H), 8.13–8.15 (m, 1 H), 8.72–8.73 (m, 1 H), 8.85–8.87 (m, 1 H), 10.13 (s, 1 H); δ_C (100 MHz; CDCl₃; Me₄Si) 15.17, 20.66, 39.97, 49.68, 116.55, 121.40, 121.46, 124.70, 127.11, 127.47, 127.88, 134.40, 136.16, 136.84, 138.59, 138.81, 148.12, 174.31; HRMS (ESI): M+H⁺ found 420.1329; C₂₄H₂₄N₂S₂O₁ requires 420.1330.

3-(5-acetylthiophen-2-yl)-2,2-dimethyl-N-(quinolin-8-yl)propanamide (2d)

This amide was obtained 28.9 mg (41%) as brown viscous oil. $R_f = 0.21$ (petroleum ether/ethyl acetate = 10:1); δ_H (400 MHz; CDCl₃; Me₄Si) 1.49 (s, 6 H), 2.44 (s, 3 H), 3.26 (s, 2 H), 6.86–6.87 (m, 1 H), 7.43–7.46 (m, 2 H), 7.51–7.58 (m, 2 H), 8.15–8.17 (m, 1 H), 8.76–8.78 (m, 1 H), 8.80–8.83 (m, 1 H), 10.23 (s, 1 H); δ_C (100 MHz; CDCl₃; Me₄Si) 25.51, 26.54, 41.37, 45.14, 116.47, 121.61, 121.64, 127.43, 127.92, 128.32, 132.67, 134.26, 136.33, 138.75, 142.98, 148.29, 149.87, 175.00, 190.51; HRMS (ESI): M+H⁺ found 352.1230; $C_{20}H_{20}N_2S_1O_2$ requires 352.1245.

3-(5-chlorothiophen-2-yl)-2,2-dimethyl-N-(quinolin-8-yl)propanamide (2e)

This amide was obtained 42.7 mg (62%) as colorless oil. $R_f = 0.33$ (petroleum ether/ethyl acetate = 60:1); δ_H (400 MHz; CDCl₃; Me₄Si) 1.46 (s, 6 H), 3.14 (s, 2 H), 6.59–6.60 (m, 1 H), 6.65–6.66 (m, 1 H), 7.43–7.58 (m, 3 H), 8.15–8.17 (m, 1 H), 8.78–8.83 (m, 2 H), 10.23 (s, 1 H); δ_C (100 MHz; CDCl₃; Me₄Si) 25.46, 41.31, 45.00, 116.45, 121.57, 121.59, 125.61, 126.33, 127.44, 127.88, 127.94, 134.36, 136.32, 138.78, 138.93, 148.28, 175.35; HRMS (ESI): M+H⁺ found 344.0746; C₁₈H₁₇N₂S₁O₁Cl₁ requires 344.0750.

3-(5-formylthiophen-2-yl)-2,2-dimethyl-N-(quinolin-8-yl)propanamide (2f)

This amide was obtained 33.1 mg (49%) as yellow viscous oil. $R_f = 0.24$ (petroleum ether/ethyl acetate = 10:1); δ_H (400 MHz; CDCl₃; Me₄Si) 1.50 (s, 6 H), 3.30 (s, 2 H), 6.95–6.96 (m, 1 H), 7.43–7.46 (m, 1 H), 7.51–7.58 (m, 3 H), 8.15–8.17 (m, 1 H), 8.76–8.82 (m, 2 H), 9.75 (s, 1 H), 10.23 (s, 1 H); δ_C (100 MHz; CDCl₃; Me₄Si) 25.57, 41.52, 45.21, 116.48, 121.63, 121.71, 127.44, 127.93, 128.56, 134.20, 136.35, 136.63, 138.75, 142.57, 148.31, 151.73, 174.83, 182.70; HRMS (ESI): M+H⁺ found 338.1078; $C_{19}H_{18}N_2S_1O_2$ requires 338.1089.

ethyl 5-(2,2-dimethyl-3-oxo-3-(quinolin-8-ylamino)propyl)thiophene-2-carboxylate (2g)

This amide was obtained 32.9 mg (43%) as pale yellow viscous oil. $R_f = 0.34$ (petroleum ether/ethyl acetate = 10:1); δ_H (400 MHz; CDCl₃; Me₄Si) 1.31 (t, J = 6.8 Hz, 3 H), 1.48 (s, 6 H), 3.25 (s, 2 H), 4.27 (q, J = 7.2 Hz, 2 H), 6.83–6.84 (m, 1 H), 7.42–7.46 (m, 1 H), 7.50–7.58 (m, 3 H), 8.14–8.17 (m, 1 H), 8.76–8.83 (m, 2 H), 10.22 (s, 1 H); δ_C (100 MHz; CDCl₃; Me₄Si) 14.30, 25.47, 41.15, 45.07, 60.88, 116.48, 121.57, 127.42, 127.89, 127.93, 132.33, 133.30, 134.32, 136.29, 138.79, 147.88, 148.26, 162.24, 175.11; HRMS (ESI): M+H⁺ found 382.1344; C₂₁H₂₂N₂S₁O₃ requires 382.1351.

3-(benzo[b]thiophen-2-yl)-2,2-dimethyl-N-(quinolin-8-yl)propanamide (2h)

This amide was obtained 39.6 mg (55%) as yellow viscous oil. $R_f = 0.58$ (petroleum ether/ethyl acetate = 10:1); δ_H (400 MHz; CDCl₃; Me₄Si) 1.52 (s, 6 H), 3.34 (s, 2 H), 7.07 (s, 1 H), 7.18–7.26 (m, 2 H), 7.39–7.42 (m, 1 H),

7.50–7.62 (m, 3 H), 7.67–7.69 (m, 1 H), 8.12–8.15 (m, 1 H), 8.68–8.69 (m, 1 H), 8.86–8.87 (m, 1 H), 10.26 (s, 1 H); δ_{C} (100 MHz; CDCl₃; Me₄Si) 25.66, 41.66, 45.06, 116.47, 121.50, 121.53, 121.95, 122.82, 123.53, 123.61, 123.93, 127.43, 127.91, 134.47, 136.23, 138.79, 139.88, 140.00, 141.26, 148.21, 175.54; HRMS (ESI): M+H⁺ found 360.1288; C₂₂H₂₀N₂S₁O₁ requires 360.1296.

3-(5'-bromo-[2,2'-bithiophen]-5-yl)-2,2-dimethyl-N-(quinolin-8-yl)propanamide (2i)

This amide was obtained 39.5 mg (42%) as yellow viscous oil. $R_f = 0.59$ (petroleum ether/ethyl acetate = 10:1); δ_H (400 MHz; CDCl₃; Me₄Si) 1.49 (s, 6 H), 3.20 (s, 2 H), 6.73–6.74 (m, 1 H),6.85–6.88 (m, 1 H), 6.92–6.93 (m, 1 H),7.01–7.12 (m, 1 H), 7.41–7.44 (m, 1 H), 7.49–7.57 (m, 2 H), 8.13–8.15 (m, 1 H), 8.75–8.76 (m, 1 H), 8.82–8.84 (m, 1 H), 10.23 (s, 1 H); δ_C (100 MHz; CDCl₃; Me₄Si) 25.47, 41.05, 45.09, 116.44, 121.47, 121.51, 121.53, 121.55, 123.23, 123.39, 123.66, 123.79, 127.43, 127.61, 127.75, 127.82, 127.93, 130.43, 134.42, 135.05, 136.27, 138.80, 139.19, 139.29, 139.93, 148.24, 175.41; HRMS (ESI): M+H⁺ found 470.0111; C₂₂H₁₉Br₁N₂S₂O₁ requires 470.0122.

2,2-dimethyl-N-(quinolin-8-yl)-3-(thiophen-3-yl)propanamide (2ja)

This amide was obtained 28.7 mg (46%) as colorless viscous oil. $R_f = 0.34$ (petroleum ether/ethyl acetate = 60:1); δ_H (400 MHz; CDCl₃; Me₄Si) 1.42 (s, 6 H), 3.07 (s, 2 H), 6.92–6.93 (m, 1 H), 7.01 (s, 1 H), 7.12–7.14 (m, 1 H), 7.41–7.45 (m, 1 H), 7.49–7.57 (m, 2 H), 8.13–8.16 (m, 1 H), 8.76–8.77 (m, 1 H), 8.81–8.83 (m, 1 H), 10.19 (s, 1 H); δ_C (100 MHz; CDCl₃; Me₄Si) 25.43, 41.32, 44.81, 116.30, 121.40, 121.55, 122.84, 124.80, 127.44, 127.93, 129.58, 134.49, 136.28, 138.23, 138.80, 148.22, 176.09; HRMS (ESI): M+H⁺ found 310.1138; C₁₈H₁₈N₂S₁O₁ requires 310.1140.

2-methyl-N-(quinolin-8-yl)-3-(thiophen-3-yl)-2-(thiophen-3-ylmethyl)propanamide (2jb)

This amide was obtained 13.9 mg (18%) as colorless viscous oil. $R_f = 0.31$ (petroleum ether/ethyl acetate = 60:1); δ_H (400 MHz; CDCl₃; Me₄Si) 1.35 (s, 3 H), 2.85, 3.40 (AB, $J_{AB} = 13.6$ Hz, 4 H), 6.92–6.93 (m, 2 H), 7.01 (s, 2 H), 7.10–7.12 (m, 2 H), 7.38–7.41 (m, 1 H), 7.49–7.58 (m, 2 H), 8.12–8.14 (m, 1 H), 8.68–8.69 (m, 1 H), 8.84–8.86 (m, 1 H), 10.00 (s, 1 H); δ_C (100 MHz; CDCl₃; Me₄Si) 20.43, 40.69, 49.42, 116.30, 121.48, 121.50, 123.01, 124.88,

127.39, 127.88, 129.58, 134.28, 136.16, 137.76, 138.74, 148.16, 174.76; HRMS (ESI): M+H⁺ found 392.1014; C₂₂H₂₀N₂S₂O₁ requires 392.1017.

2-methyl-N-(quinolin-8-yl)-2-(thiophen-2-ylmethyl)butanamide (2ma)

This amide was obtained 31.1 mg (48%) as yellow viscous oil. $R_f = 0.34$ (petroleum ether/ethyl acetate = 60:1); δ_H (400 MHz; CDCl₃; Me₄Si) 1.00 (t, J = 7.2 Hz, 3 H), 1.41 (s, 3 H), 1.65–1.69 (m, 1 H), 1.96–2.03 (m, 1 H), 3.05, 3.46 (AB, $J_{AB} = 14.4$ Hz, 2 H), 6.83–6.86 (m, 2 H), 7.05–7.06 (m, 1 H), 7.42–7.45 (m, 1 H), 7.49–7.57 (m, 2 H), 8.14–8.16 (m, 1 H), 8.77–8.78 (m, 1 H), 8.84–8.86 (m, 1 H), 10.21 (s, 1 H); δ_C (100 MHz; CDCl₃; Me₄Si) 9.16, 20.63, 32.70, 39.47, 49.00, 116.35, 121.36, 121.52, 124.02, 126.56, 126.94, 127.46, 127.92, 134.42, 136.25, 138.79, 139.78, 148.23, 174.97; HRMS (ESI): M+H⁺ found 324.1277; C₁₉H₂₀N₂S₁O₁ requires 324.1296.

N-(quinolin-8-yl)-2,2-bis(thiophen-2-ylmethyl)butanamide (2mb)

This amide was obtained 19.5 mg (24%) as yellow viscous oil. $R_f = 0.31$ (petroleum ether/ethyl acetate = 60:1); δ_H (400 MHz; CDCl₃; Me₄Si) 1.14 (t, *J* = 7.6 Hz, 3 H), 1.88 (q, *J* = 7.2 Hz, 2 H), 3.26, 3.47 (AB, *J*_{AB} = 14.8 Hz, 4 H), 6.85–6.87 (m, 2 H), 6.89–6.90 (m, 2 H), 7.08–7.09 (m, 2 H), 7.40–7.43 (m, 1 H), 7.50–7.59 (m, 2 H), 8.13–8.15 (m, 1 H), 8.72–8.73 (m, 1 H), 8.85–8.87 (m, 1 H), 10.21 (s, 1 H); δ_C (100 MHz; CDCl₃; Me₄Si) 8.82, 26.48, 34.92, 53.41, 116.55, 121.48, 121.54, 124.22, 126.62, 127.34, 127.48, 127.91, 134.24, 136.21, 138.76, 138.96, 148.22, 173.68; HRMS (ESI): M+H⁺ found 406.1171; C₂₃H₂₂N₂S₂O₁ requires 406.1174.

2-methyl-2-phenyl-N-(quinolin-8-yl)-3-(thiophen-2-yl)propanamide (2na)

This amide was obtained 19.1 mg (26%) as yellow viscous oil. $R_f = 0.39$ (petroleum ether/ethyl acetate = 60:1); δ_H (400 MHz; CDCl₃; Me₄Si) 1.77 (s, 3 H), 3.61, 3.84 (AB, $J_{AB} = 14.4$ Hz, 2 H), 6.64–6.65 (m, 1 H), 6.81–6.83 (m, 1 H), 7.02–7.04 (m, 1 H), 7.33–7.42 (m, 4 H), 7.45–7.55 (m, 4 H), 8.07–8.09 (m, 1 H), 8.58–8.59 (m, 1 H), 8.79–8.81 (m, 1 H), 9.90 (s, 1 H); δ_C (100 MHz; CDCl₃; Me₄Si) 22.85, 39.83, 52.73, 116.11, 121.38, 121.45, 124.26, 126.16, 127.22, 127.33, 127.41, 127.46, 127.85, 128.78, 134.58, 136.09, 138.65, 139.53, 142.52, 148.14, 174.67; HRMS (ESI): M+H⁺ found 372.1273; $C_{23}H_{20}N_2S_1O_1$ requires 372.1296.

2-phenyl-N-(quinolin-8-yl)-3-(thiophen-2-yl)-2-(thiophen-2-ylmethyl)propanamide (2nb)

This amide was obtained 46.6 mg (51%) as yellow viscous oil. $R_f = 0.35$ (petroleum ether/ethyl acetate = 60:1); δ_H (400 MHz; CDCl₃; Me₄Si) 3.76 (q, *J* = 14.8, 4 H) 6.72–6.73 (m, 2 H), 6.83–6.85 (m, 2 H), 7.06–7.07 (m, 2 H), 7.34–7.41 (m, 4 H), 7.46–7.49 (m, 3 H), 7.51–7.56 (m, 1 H), 8.09–8.11 (m, 1 H), 8.59–8.60 (m, 1 H), 8.72–8.74 (m, 1 H), 9.97 (s, 1 H); δ_C (100 MHz; CDCl₃; Me₄Si) 35.44, 57.29, 116.35, 121.40, 121.49, 124.54, 126.32, 127.37, 127.60, 127.70, 127.87, 127.98, 128.85, 134.37, 136.10, 138.50, 141.55, 148.22, 172.84; HRMS (ESI): M+H⁺ found 454.1163; $C_{27}H_{22}N_2S_2O_1$ requires 454.1174.

N-(quinolin-8-yl)-1-(thiophen-2-ylmethyl)cyclohexanecarboxamide (20)

This amide was obtained 46.9 mg (67%) as yellow viscous oil. $R_f = 0.31$ (petroleum ether/ethyl acetate = 60:1); δ_H (400 MHz; CDCl₃; Me₄Si) 1.54–1.70 (m, 8 H), 2.19–2.22 (m, 2 H), 3.17 (s, 2 H), 6.71–6.75 (m, 2 H), 6.95–6.97 (m, 1 H), 7.36–7.52 (m, 3 H), 8.08–8.11 (m, 1 H), 8.70–8.71 (m, 1 H), 8.77–8.79 (m, 1 H), 10.13 (s, 1 H); δ_C (100 MHz; CDCl₃; Me₄Si) 22.92, 25.83, 33.86, 40.05, 49.32, 116.38, 121.25, 121.44, 123.90, 126.59, 126.80, 127.41, 127.85, 134.41, 136.15, 138.78, 138.85, 148.15, 174.52; HRMS (ESI): M+H⁺ found 350.1450; C₂₁H₂₂N₂S₁O₁ requires 350.1453.

2,2-diphenyl-N-(quinolin-8-yl)-3-(thiophen-2-yl)propanamide (2p)

This amide was obtained 67.7 mg (78%) as brown solid. $R_f = 0.42$ (petroleum ether/ethyl acetate = 60:1); δ_H (400 MHz; CDCl₃; Me₄Si) 4.12 (s, 2 H), 6.42–6.43 (m, 1 H), 6.70–6.72 (m, 1 H), 6.98–6.99 (m, 1 H), 7.28–7.34 (m, 7 H), 7.40–7.46 (m, 5 H), 7.50–7.54 (m, 1 H), 8.06–8.08 (m, 1 H), 8.52–8.53 (m, 1 H), 8.81–8.83 (m, 1 H),10.18 (s, 1 H); δ_C (100 MHz; CDCl₃; Me₄Si) 39.45, 64.23, 116.10, 121.45, 124.51, 125.87, 126.98, 127.24, 127.29, 127.84, 128.23, 128.27, 128.34, 128.56, 129.41, 134.59, 135.99, 138.73, 139.78, 141.99, 148.10, 172.19; HRMS (ESI): M+H⁺ found 434.1453; C₂₈H₂₂N₂S₁O₁ requires 434.1453.

2-methyl-3-(naphthalen-2-yl)-N-(quinolin-8-yl)-2-(thiophen-2-ylmethyl)propanamide (2q)

This amide was obtained 60.2 mg (69%) as yellow viscous oil. $R_f = 0.38$ (petroleum ether/ethyl acetate = 60:1); δ_H (400 MHz; CDCl₃; Me₄Si) 1.42 (s, 3 H), 3.00–3.07 (m, 2 H), 3.55, 3.72 (AB, $J_{AB} = 14.4$ Hz, 2 H), 6.85–6.86 (m, 2 H), 7.05–7.06 (m, 1 H), 7.29–7.36 (m, 5 H), 7.47–7.49 (m, 1 H), 7.55–7.59 (m, 1 H), 7.61–7.69 (m, 3 H), 8.06–8.08 (m, 1 H), 8.46–8.47 (m, 1 H), 8.87–8.89 (m, 1 H), 9.96 (s, 1 H); δ_C (100 MHz; CDCl₃; Me₄Si) 20.13, 40.22, 46.55, 50.10, 116.45, 121.38, 121.50, 124.23, 125.30, 125.71, 126.60, 127.17, 127.31, 127.40, 127.53, 127.76, 128.68, 128.96, 132.24, 133.26, 134.17, 134.92, 135.98, 138.63, 139.49, 148.00, 174.37; HRMS (ESI): M+H⁺ found 436.1602; C₂₈H₂₄N₂O₁S₁ requires 436.1609.

2-(4-fluorobenzyl)-2-methyl-N-(quinolin-8-yl)-3-(thiophen-2-yl)propanamide (2r)

This amide was obtained 59.8 mg (74%) as yellow viscous oil. $R_f = 0.34$ (petroleum ether/ethyl acetate = 60:1); δ_H (400 MHz; CDCl₃; Me₄Si) 1.37 (s, 3 H), 2.78, 3.37 (AB, $J_{AB} = 13.6$ Hz, 2 H), 2.99, 3.65 (AB, $J_{AB} = 14.4$ Hz, 2 H), 6.81–6.85 (m, 4 H), 7.05–7.06 (m, 1 H), 7.12–7.16 (m, 2 H), 7.38–7.41 (m, 1 H), 7.51–7.56 (m, 2 H), 8.11–8.13 (m, 1 H), 8.65–8.66 (m, 1 H), 8.83–8.85 (m, 1 H), 9.96 (s, 1 H); δ_C (100 MHz; CDCl₃; Me₄Si) 19.96, 40.27, 45.60, 50.00, 114.86 (d, $J_{C-F} = 21.0$ Hz), 116.43, 121.57 (d, $J_{C-F} = 10.1$ Hz), 124.28, 126.64, 127.18, 127.36, 127.86, 131.67 (d, $J_{C-F} = 7.8$ Hz), 132.98 (d, $J_{C-F} = 3.4$ Hz), 134.09, 136.16, 138.70, 139.33, 148.17, 161.76 (d, $J_{C-F} = 242.8$ Hz), 174.10; HRMS (ESI): M+H⁺ found 404.1355; C₂₄H₂₁F₁N₂O₁S₁ requires 404.1359.

2-benzyl-N-(quinolin-8-yl)-2-(thiophen-2-ylmethyl)butanamide (2s)

This amide was obtained 45.6 mg (57%) as yellow solid. $R_f = 0.31$ (petroleum ether/ethyl acetate = 60:1); δ_H (400 MHz; CDCl₃; Me₄Si) 1.11 (t, J = 7.2 Hz, 3 H), 1.74–1.80 (m, 2 H), 2.97, 3.45 (AB, $J_{AB} = 15.2$ Hz, 2 H), 3.15–3.23 (m, 2 H), 6.79–6.83 (m, 2 H), 7.02–7.09 (m, 4 H), 7.13–7.15 (m, 2 H), 7.31–7.34 (m, 1 H), 7.43–7.52 (m, 2 H), 8.05–8.07 (m, 1 H), 8.59–8.60 (m, 1 H), 8.79–8.81 (m, 1 H), 10.01 (s, 1 H); δ_C (100 MHz; CDCl₃; Me₄Si) 8.74, 25.20, 35.16, 41.72, 53.40, 116.44, 121.41, 121.47, 124.08, 126.46, 126.54, 127.15, 127.44, 127.86, 128.09, 130.15, 134.24, 136.12, 137.24, 138.75, 139.51, 148.12, 174.09; HRMS (ESI): M+H⁺ found 400.1607; C₂₅H₂₄N₂O₁S₁ requires 400.1609.

2-phenyl-N-(quinolin-8-yl)-2-(thiophen-2-ylmethyl)butanamide (2t)

This amide was obtained 47.9 mg (62%) as brown viscous oil. $R_f = 0.38$ (petroleum ether/ethyl acetate = 60:1); δ_H (400 MHz; CDCl₃; Me₄Si) 0.99 (t, J = 7.2 Hz, 3 H), 2.05–2.21 (m, 2 H), 3.56, 3.76 (AB, $J_{AB} = 14.8$ Hz, 2 H), 6.43–6.44 (m, 1 H), 6.71–6.73 (m, 1 H), 6.93–6.94 (m, 1 H), 7.19–7.48 (m, 8 H), 8.00–8.02 (m, 1 H), 8.51–8.52 (m, 1 H), 8.70–8.72 (m, 1 H), 9.75 (s, 1 H); δ_C (100 MHz; CDCl₃; Me₄Si) 8.96, 27.02, 35.46, 56.65, 116.07, 121.28, 121.47, 124.02, 126.16, 127.08, 127.34, 127.64, 127.89, 128.69, 134.60, 136.09, 138.63, 139.13, 142.27, 148.20, 174.01; HRMS (ESI): M+H⁺ found 386.1437 ; $C_{24}H_{22}N_2O_1S_1$ requires 386.1453.

2-benzyl-2-methyl-N-(quinolin-8-yl)-3-(thiophen-2-yl)propanamide (2u)

This amide was obtained 45.5 mg (59%) as yellow viscous oil. $R_f = 0.27$ (petroleum ether/ethyl acetate = 60:1); δ_H (400 MHz; CDCl₃; Me₄Si) 1.38 (s, 3 H), 2.86, 3.39 (AB, $J_{AB} = 13.2$ Hz, 2 H), 2.99, 3.67 (AB, $J_{AB} = 14.4$ Hz, 2 H), 6.83–6.84 (m, 2 H), 7.04–7.05 (m, 1 H), 7.11–7.21 (m, 5 H), 7.37–7.40 (m, 1 H), 7.48–7.56 (m, 2 H), 8.10–8.12 (m, 1 H), 8.65–8.66 (m, 1 H), 8.86–8.88 (m, 1 H), 10.00 (s, 1 H); δ_C (100 MHz; CDCl₃; Me₄Si) 20.06, 40.21, 46.47, 49.98, 116.42, 121.46, 121.48, 124.21, 126.51, 126.60, 127.14, 127.41, 127.85, 128.06, 130.35, 134.25, 136.13, 137.30, 138.75, 139.53, 148.12, 174.34; HRMS (ESI): M+H⁺ found 386.1452; $C_{24}H_{22}N_2S_1O_1$ requires 386.1453.

2-methyl-2-((5-methylthiophen-2-yl)methyl)-N-(quinolin-8-yl)butanamide (2v)

This amide was obtained 46.1 mg (68%) as yellow viscous oil. $R_f = 0.36$ (petroleum ether/ethyl acetate = 60:1); δ_H (400 MHz; CDCl₃; Me₄Si) 0.99 (t, *J* = 7.2 Hz, 3 H), 1.40 (s, 3 H), 1.65–1.70 (m, 1H), 1.96–2.01 (m, 1H), 2.34 (s, 3 H), 2.97, 3.36 (AB, $J_{AB} = 14.4$ Hz, 2 H), 6.48–6.49 (m, 1 H), 6.59–6.60 (m, 1 H), 7.42–7.57 (m, 3 H), 8.14–8.16 (m, 1 H), 8.77–8.78 (m, 1 H), 8.84–8.86 (m, 1 H), 10.20 (s, 1 H); δ_C (100 MHz; CDCl₃; Me₄Si) 9.13, 15.16, 20.67, 32.61, 39.64, 48.88, 116.35, 121.28, 121.49, 124.59, 126.75, 127.47, 127.91, 134.48, 136.23, 137.43, 138.32, 138.80, 148.19, 175.09; HRMS (ESI): M+H⁺ found 338.1453; $C_{20}H_{22}N_2S_1O_1$ requires 338.1453

2-((5-bromothiophen-2-yl)methyl)-2-methyl-N-(quinolin-8-yl)butanamide (2w)

This amide was obtained 51.3 mg (64%) as brown viscous oil. $R_f = 0.33$ (petroleum ether/ethyl acetate = 60:1); δ_H (400 MHz; CDCl₃; Me₄Si) 1.00 (t, J = 7.6 Hz, 3 H), 1.41 (s, 3 H), 1.64–1.69 (m, 1 H), 1.95–2.01 (m, 1 H), 2.93, 3.41 (AB, $J_{AB} = 14.8$ Hz, 2 H), 6.59–6.62 (m, 1 H), 6.78–6.79 (m, 1 H), 7.43–7.46 (m, 1 H), 7.50–7.58 (m, 2 H), 8.15–8.17 (m, 1 H), 8.78–8.84 (m, 2 H), 10.20 (s, 1 H); δ_C (100 MHz; CDCl₃; Me₄Si) 9.09, 20.75, 32.82, 39.78, 48.86, 110.01, 116.42, 121.49, 121.57, 127.39, 127.45, 127.94, 129.38, 134.32, 136.29, 141.82, 148.29, 174.65; HRMS (ESI): M+H⁺ found 402.0397; C₁₉H₁₉Br₁N₂S₁O₁ requires 402.0401.

3-(5-methylthiophen-2-yl)-2,2-diphenyl-N-(quinolin-8-yl)propanamide (2x)

This amide was obtained 73.4 mg (82%) as yellow solid. $R_f = 0.39$ (petroleum ether/ethyl acetate = 60:1); δ_H (400 MHz; CDCl₃; Me₄Si) 2.30 (s, 3 H), 4.03 (s, 2 H), 6.15–6.16 (m, 1 H), 6.33–6.34 (m, 1 H), 7.28–7.47 (m, 12 H), 7.50–7.54 (m, 1 H), 8.05–8.07 (m, 1 H), 8.52–8.53 (m, 1 H), 8.81–8.83 (m, 1 H), 10.17 (s, 1 H); δ_C (100 MHz; CDCl₃; Me₄Si) 15.21, 39.77, 64.09, 116.11, 121.44, 123.93, 127.20, 127.31, 127.83, 128.13, 128.24, 129.43, 134.61, 135.99, 137.29, 138.79, 142.08, 148.09, 172.31; HRMS (ESI): M+H⁺ found 448.1596; C₂₉H₂₄N₂S₁O₁ requires 448.1609.

5. Synthesis of *N*-heteroarylated products

2,2-dimethyl-3-(pyridin-2-yl)-N-(quinolin-8-yl)propanamide (3a)

This amide was obtained 25.1 mg (41%) as yellow viscous oil. $R_f = 0.54$ (petroleum ether/ethyl acetate = 10:1); δ_H (400 MHz; CDCl₃; Me₄Si) 1.48 (s, 6 H), 3.24 (s, 2 H), 7.03–7.06 (m, 1 H), 7.19 (d, J = 7.6 Hz, 1 H), 7.41–7.56 (m, 4 H), 8.13–8.16 (m, 1 H), 8.48–8.49 (m, 1 H), 8.75–8.76 (m, 1 H), 8.81–8.83 (m, 1 H), 10.25 (s, 1 H); δ_C (100 MHz; CDCl₃; Me₄Si) 25.53, 44.99, 48.51, 116.34, 121.38, 121.45, 121.52, 124.55, 127.41, 127.91, 134.54, 136.18, 136.23, 138.83, 148.20, 148.78, 158.55, 175.95; HRMS (ESI): M+H⁺ found 305.1521; $C_{19}H_{19}N_3O_1$ requires 305.1528.

3-(5-bromopyridin-2-yl)-2,2-dimethyl-N-(quinolin-8-yl)propanamide (3b)

This amide was obtained 33.7 mg (44%) as brown viscous oil. $R_f = 0.66$ (petroleum ether/ethyl acetate = 10:1); δ_H

 $(400 \text{ MHz; CDCl}_3; \text{ Me}_4\text{Si}) \ 1.40 \ (\text{s}, 6 \ \text{H}), \ 3.11 \ (\text{s}, 2 \ \text{H}), \ 7.01-7.03 \ (\text{m}, 1 \ \text{H}), \ 7.35-7.50 \ (\text{m}, 4 \ \text{H}), \ 8.06-8.08 \ (\text{m}, 1 \ \text{H}), \ 8.45 \ (\text{s}, 1 \ \text{H}), \ 8.68-8.72 \ (\text{m}, 2 \ \text{H}), \ 10.11 \ (\text{s}, 1 \ \text{H}); \ \delta_C \ (100 \ \text{MHz; CDCl}_3; \ \text{Me}_4\text{Si}) \ 25.58, \ 44.94, \ 47.93, \ 116.36, \ 118.67, \ 121.50, \ 121.57, \ 125.78, \ 127.37, \ 127.92, \ 134.40, \ 136.26, \ 138.66, \ 138.78, \ 148.27, \ 149.91, \ 157.26, \ 175.58; \ \text{HRMS} \ (\text{ESI}): \ \text{M}+\text{H}^+ \ \text{found} \ 383.0631; \ \text{C}_{19}\text{H}_{18}\text{Br}_1\text{N}_3\text{O}_1 \ \text{requires} \ 383.0633.$

3-(1H-indol-5-yl)-2,2-dimethyl-N-(quinolin-8-yl)propanamide (3c)

This amide was obtained 41.2 mg (60%) as yellow solid. $R_f = 0.43$ (petroleum ether/ethyl acetate = 10:1); δ_H (400 MHz; CDCl₃; Me₄Si) 1.44 (s, 6 H), 3.15 (s, 2 H), 6.42 (s, 1 H), 7.02–7.04 (m, 1 H), 7.11 (s, 1 H), 7.17–7.19 (m, 1 H), 7.37–7.40 (m, 1 H), 7.47–7.49 (m, 2 H), 7.52–7.56 (m, 1 H), 8.10–8.12 (m, 1 H), 8.18 (br, 1 H), 8.67–8.68 (m, 1 H), 8.85–8.87 (m, 1 H), 10.18 (s, 1 H); δ_C (100 MHz; CDCl₃; Me₄Si) 25.27, 45.24, 47.05, 102.30, 110.44, 116.31, 121.27, 121.44, 122.12, 124.17, 124.67, 127.42, 127.81, 127.90, 129.06, 134.63, 134.76, 136.16, 138.82, 148.11, 176.73; HRMS (ESI): M+H⁺ found 343.1676; C₂₂H₂₁N₃O₁ requires 343.1685.

2,2-dimethyl-N-(quinolin-8-yl)-3-(thiazol-2-yl)propanamide (3d)

This amide was obtained 32.3 mg (52%) as yellow viscous oil. $R_f = 0.24$ (petroleum ether/ethyl acetate = 60:1); δ_H (400 MHz; CDCl₃; Me₄Si) 1.52 (s, 6 H), 3.48 (s, 2 H), 7.14 (d, J = 3.6 Hz, 1 H), 7.43–7.46 (m, 1 H), 7.50–7.57 (m, 2 H), 7.66 (d, J = 3.2 Hz, 1 H), 8.14–8.16 (m, 1 H), 8.77–8.79 (m, 1 H), 8.83–8.85 (m, 1 H), 10.28 (s, 1 H); δ_C (100 MHz; CDCl₃; Me₄Si) 25.56, 43.49, 45.09, 116.45, 119.23, 121.56, 121.59, 127.43, 127.92, 134.39, 136.29, 138.79, 142.07, 148.28, 166.78, 175.21; HRMS (ESI): M+H⁺ found 311.1088; C₁₇H₁₇N₃O₁S₁ requires 311.1092.

6. Application of Thiophenes Products

3-(5-bromothiophen-2-yl)-2,2-dimethylpropanoic acid (4)

3-(5-bromothiophen-2-yl)-2,2-dimethyl-*N*-(quinolin-8-yl)propanamide **2a** (155.2 mg, 0.4 mmol) and NaOH (96 mg, 2.4 mmol) were heated in ethanol (0.7 mL) for 12 h at 100 °C. After completion, water was added to the reaction mixture followed by extraction with ether (3 x 5 mL). These ether extracts were discarded. Aqueous layer was acidified with 1N NaHSO₄ until pH~2 followed by extraction with ether (3 x 10 mL). Ether extracts from acidified aqueous layer were combined and dried over MgSO₄. Evaporation of solvent gave 96.4 mg (92%) of brown liquid. $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 1.25 (s, 6 H), 3.01 (s, 2 H), 6.57–6.58 (m, 1 H), 6.87–6.88 (m, 1 H); $\delta_{\rm C}$ (100 MHz; CDCl₃; Me₄Si) 24.79, 40.40, 43.41, 110.21, 127.55, 129.46, 141.36, 182.86; Ms (EI): *m/z* = 264.3 [M+H]⁺.

2,2-dimethyl-3-(5-phenylthiophen-2-yl)-N-(quinolin-8-yl)propanamide (5)

To a solution of 3-(5-bromothiophen-2-yl)-2,2-dimethyl-*N*-(quinolin-8-yl)propanamide **2a** (77.6 mg, 0.2 mmol) and phenylboronic acid (28.6 mg, 0.22 mmol, 1.1 equiv) in THF (0.5 mL), 2 M aqueous solution of Na₂CO₃ (42.4 mg, 0.4mmol, 2 equiv) and tetrakis(triphenylphosphine) palladium (0) (11.4 mg) were added. The reaction mixture was heated at 80°C for 12 h. After removing THF, the aqueous layer was extracted with ethyl acetate. The combined organic layer was dried over anhydrous magnesium sulfate and filtered. The solvent was removed, and the crude product was purified by column chromatography (silica gel) using hexane/ EtOAc (20:1, v/v) as eluent to yield 70.3 mg (91%) as pale white oil. $R_f = 0.27$ (petroleum ether/ethyl acetate = 60:1); δ_H (400 MHz; CDCl₃; Me₄Si) 1.42 (s, 6 H), 3.17 (s, 2 H), 6.71–6.72 (m, 1 H), 6.99–7.00 (m, 1 H), 7.10–7.23 (m, 3 H), 7.32–7.50 (m, 5 H), 8.04–8.06 (m, 1 H), 8.67–8.68 (m, 1 H), 8.76–8.78 (m, 1 H), 10.18 (s, 1 H); δ_C (100 MHz; CDCl₃; Me₄Si) 25.44, 41.16, 45.10, 116.44, 121.47, 121.53, 122.70, 125.53, 127.04, 127.44, 127.93, 128.05, 128.72, 134.49, 134.54, 136.25, 138.82, 139.66, 142.93, 148.24, 175.65; HRMS (ESI): M+H⁺ found 386.1448; C₂₄H₂₂N₂S₁O₁ requires 386.1453.

7. Deuterium Labeling Experiment

A 10-mL Schlenk tube was charged with **1h** (45.6 mg, 0.15 mmol), **[D₃]-1h** (46.1 mg, 0.15 mmol), 2-bromothiophene (146.7 mg, 0.9 mmol), NiBr₂ (6.6 mg, 0.03 mmol), MesCOOH (9.8 mg, 0.06 mmol), Na₂CO₃ (63.6 mg, 0.6 mmol), TBAI (147.6 mg, 0.4 mmol) and DMF (0.7 mL). The vial was evacuated and filled with N₂, and stirred at 160 °C for 1 h. The mixture was then cooled to room temperature, diluted with CH₂Cl₂ (2 mL), filtered through a celite pad, analyzed by GC-MS, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel, eluting with EtOAc/Hexane (1:100 ~ 1:20, v/v), to afford the heteroarylated product. The ratio of **2t** and **[D₂]-2t** was determined by ¹H NMR.

The mixture of **2t** and **[D₂]-2t**: $\delta_{\rm H}$ (400 MHz; CDCl₃; Me₄Si) 1.06 (t, J = 7.2 Hz, 3 H), 2.14–2.26 (m, 2 H), **3.63**, **3.83 (AB, J_{AB} = 15.2 Hz, 1.7 H),** 6.50–6.51 (m, 1 H), 6.78–6.81 (m, 1 H), 7.00–7.02 (m, 1 H), 7.28–7.53 (m, 8 H), 8.08–8.10 (m, 1 H), 8.58–8.59 (m, 1 H), 8.77–8.79 (m, 1 H), 9.82 (s, 1 H).

S20 / S66

Radical Trapping Experiment

A 10-mL Schlenk tube was charged with **1a** (45.6 mg, 0.2 mmol), TEMPO (93.8 mg, 0.6 mmol, 3.0 equiv) or BHT (132.2 mg, 0.6 mmol, 3.0 equiv) or DTBP (87.7 mg, 0.6 mmol, 3.0 equiv), 2-bromothiophene (146.7 mg, 0.9 mmol), NiBr₂ (4.4 mg, 0.02 mmol), MesCOOH (6.6 mg, 0.04 mmol), Na₂CO₃ (42.4 mg, 0.4 mmol), TBAI (147.6 mg, 0.4 mmol) and DMF (0.5 mL). The vial was evacuated and filled with N₂, and stirred at 160 °C for 24 h. The mixture was then cooled to room temperature, diluted with CH_2Cl_2 (2 mL), filtered through a celite pad, analyzed by GC-MS, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel, eluting with EtOAc/hexane (1:100 ~ 1:20, v/v), to afford the heteroarylated product **2a** (yield = 11% to 66%).

8. Reference

- (a) Rui, S.; Laurean, I.; Arimasa, M.; Eiichi N. J. A. Chem. Soc. 2013, 135, 6030-6032;
 (b) Wu, X-S.; Zhao, Y.; Ge, H-B. J. A. Chem. Soc. 2014, 136, 1789-1792;
 (c) Aihara, Y.; Chatani, N. J. A. Chem. Soc. 2014, 136, 898-901.
 (d) Lee, W.; Lee, D.-W.; Lee, M.; Hong, J.-I. Chem. Commun. 2014, 50, 14851.

9. Copies of ¹H, ¹³C NMR Charts for the Compounds *N*-(quinolin-8-yl)pivalamide (1a)

S**23** / S**66**

2-methyl-2-phenyl-N-(quinolin-8-yl)propanamide (1b)

2,2-dimethyl-N-(quinolin-8-yl)butanamide (1c)

 $\overbrace{\begin{array}{c} 1.797\\ -1.779\\ -1.760\\ -1.394\\ -1.394\\ -0.975\\ -0.938\end{array}}$

S**25** / S**66**

1-methyl-N-(quinolin-8-yl)cyclohexanecarboxamide (1d)

S**26** / S**66**

2,2-diphenyl-N-(quinolin-8-yl)propanamide (1e)

2,2-dimethyl-3-(naphthalen-2-yl)-N-(quinolin-8-yl)propanamide (1f)

3-(4-fluorophenyl)-2,2-dimethyl-N-(quinolin-8-yl)propanamide (1g)

S**29** / S**66**

2-methyl-2-phenyl-N-(quinolin-8-yl)butanamide (1h)

 $\begin{array}{c}
0.853 \\
0.834 \\
0.816
\end{array}$

[D₃]-2-methyl-2-phenyl-N-(quinolin-8-yl)butanamide ([D₃]-1h)

2-benzyl-2-methyl-N-(quinolin-8-yl)butanamide (1i)

S**32** / S**66**

2,2-dimethyl-3-phenyl-N-(quinolin-8-yl)propanamide (1j)

S**33** / S**66**

3-(5-bromothiophen-2-yl)-2,2-dimethyl-N-(quinolin-8-yl)propanamide (2a)

2,2-dimethyl-N-(quinolin-8-yl)-3-(thiophen-2-yl)propanamide (2ba)

S**35** / S66

2-methyl-N-(quinolin-8-yl)-3-(thiophen-2-yl)-2-(thiophen-2-ylmethyl)propanamide (2bb)

S**36** / S**66**

2,2-dimethyl-3-(5-methylthiophen-2-yl)-N-(quinolin-8-yl)propanamide (2ca)

S**37** / S66

 $\label{eq:linear} 2-methyl-3-(5-methylthiophen-2-yl)-2-((5-methylthiophen-2-yl)methyl)-N-(quinolin-8-yl)propanamide~(2cb)$

S**40** / S**66**

3-(5-formylthiophen-2-yl)-2,2-dimethyl-N-(quinolin-8-yl)propanamide (2f)

-1.525

3-(5'-bromo-[2,2'-bithiophen]-5-yl)-2,2-dimethyl-N-(quinolin-8-yl)propanamide (2i)

2,2-dimethyl-N-(quinolin-8-yl)-3-(thiophen-3-yl)propanamide (2ja)

2-methyl-N-(quinolin-8-yl)-3-(thiophen-3-yl)-2-(thiophen-3-ylmethyl)propanamide (2jb)

2-methyl-N-(quinolin-8-yl)-2-(thiophen-2-ylmethyl)butanamide (2ma)

S**47** / S66

S**48** / S**66**

2-methyl-2-phenyl-N-(quinolin-8-yl)-3-(thiophen-2-yl)propanamide (2na)

S**49** / S**66**

2-phenyl-N-(quinolin-8-yl)-3-(thiophen-2-yl)-2-(thiophen-2-ylmethyl)propanamide (2nb)

S**50 /** S**66**

S**51** / S**66**

 $\label{eq:2-methyl-3-(naphthalen-2-yl)-N-(quinolin-8-yl)-2-(thiophen-2-ylmethyl) propanamide (2q)}$

 $\label{eq:2-(4-fluorobenzyl)-2-methyl-N-(quinolin-8-yl)-3-(thiophen-2-yl) propanamide (2r)$

S**54 /** S**66**

2-benzyl-N-(quinolin-8-yl)-2-(thiophen-2-ylmethyl)butanamide (2s)

S**55 /** S**66**

S**56** / S**66**

2-benzyl-2-methyl-N-(quinolin-8-yl)-3-(thiophen-2-yl)propanamide (2u)

S**57 /** S**66**

S**58 /** S**66**

2-((5-bromothiophen-2-yl)methyl)-2-methyl-N-(quinolin-8-yl)butanamide (2w)

3-(5-bromopyridin-2-yl)-2,2-dimethyl-N-(quinolin-8-yl)propanamide (3b)

-1.404

S**62** / S**66**

3-(1*H*-indol-5-yl)-2,2-dimethyl-*N*-(quinolin-8-yl)propanamide (3c)

S**63** / S**66**

2,2-dimethyl-N-(quinolin-8-yl)-3-(thiazol-2-yl)propanamide (3d)

0.0

S**64** / S**66**

3-(5-bromothiophen-2-yl)-2,2-dimethylpropanoic acid (4)

S**65 /** S**66**

2,2-dimethyl-3-(5-phenylthiophen-2-yl)-N-(quinolin-8-yl)propanamide (5)

S**66 /** S**66**