Nickel-Catalyzed Direct C ($\mathbf{s p}^{\mathbf{3}}$)-H Arylation of Aliphatic Amides with Thiophenes

Xie Wang, ${ }^{\dagger}$ Longzhi Zhu, ${ }^{\dagger}$ Sihai Chen, ${ }^{\dagger}$ Xinhua Xu, ${ }^{*, \dagger}$ Chak-Tong Au, ${ }^{\dagger, \hbar}$ Renhua Qiu ${ }^{*}{ }^{\dagger}$

${ }^{\dagger}$ State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
${ }^{\ddagger}$ Department of Chemistry, Hong Kong Baptist University, Hong Kong, P.R. China
Tel/Fax: +86-731-88821546
renhuaqiu@hnu.edu.cn (Dr. Qiu), xhx1581@hnu.edu.cn (Prof. Xu)
1 General S2
2 The organic semiconductors which contain alkyl-substituted thiophenes S3
3 Synthesis of Starting Materials S4
4 Sytnhesis of Thiophene Products S8
5 Synthesis of N-heteroarylated Products S17
6 Application of Thiophenes Products S19
7 Deuterium Labeling Experiment S20
8 References S22
9 Copies of ${ }^{1} H,{ }^{13} C$ NMR Charts for the Compounds S23

1. General

1.1 Instrumentation

All the reactions were carried out under an N_{2} atmosphere using standard Schlenk techniques. Glassware was dried in an oven $\left(150{ }^{\circ} \mathrm{C}\right)$ and heated under reduced pressure before use. For thin layer chromatography (TLC) analyses throughout this work, Flash column chromatography was performed using Qingdao Haiyang silica gel (300-400) with distilled solvents. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz})$ spectra were recorded on Bruker Avance 400 spectrometers in CDCl_{3} [using $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{Si}$ (for $\left.{ }^{1} \mathrm{H}, \delta=0.00\right)$ as internal standard]. ${ }^{13} \mathrm{C}$ NMR (100 MHz) spectra on Bruker Avance 400 spectrometers in CDCl_{3} [using CDCl_{3} (for ${ }^{13} \mathrm{C}, \delta=77.00$) as internal standard]. The following abbreviations were used to explain the multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiple. Chemical shifts (δ) are in parts per million relative to CDCl_{3} at 7.26 ppm for ${ }^{1} \mathrm{H}$ and at 77.16 ppm for ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$, respectively. The NMR yields were determined by ${ }^{1} \mathrm{H}$ NMR spectra with dibromomethane as an internal standard.

1.2 Chemicals

Unless otherwise noted, materials obtained from commercial suppliers were used without further purification. All the solvents and commercially available reagents were purchased from commercial sources and used directly. Starting materials were prepared according to literature procedures. ${ }^{1}$

2. The organic semiconductors which contain alkyl-substituted thiophenes

TIBDT

3. Synthesis of Starting Materials

3.1 General Procedure for the Preparation of Starting Materials

A solution of LDA (10 mmol) in THF was prepared from diisopropylamine ($1.5 \mathrm{~mL}, 10.7 \mathrm{mmol}$) and 2.5 M n-BuLi in hexane $(4.0 \mathrm{~mL}, 10 \mathrm{mmol})$ at $-78{ }^{\circ} \mathrm{C}$. To this LDA solution, carboxylate ester (10 mmol) was added dropwise at $-78{ }^{\circ} \mathrm{C}$ and the mixture was stirred at this temperature for 1 h . Alkyl halide (15 mmol) was then added dropwise to the solution at $-78{ }^{\circ} \mathrm{C}$. After the addition, the mixture was warmed to room temperature and stirred overnight. Then the mixture was quenched with water at $0{ }^{\circ} \mathrm{C}$, extracted with $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL} \times 3)$. The combined organic layers were washed with brine, dried over MgSO_{4}, and then evaporated in vacuo to give the crude ester.

To the ester was added a solution of $\mathrm{NaOH}(2 \mathrm{M}, 8.0 \mathrm{~mL})$ and methanol $(10 \mathrm{~mL})$. The mixture was stirred overnight at $60{ }^{\circ} \mathrm{C}$. After removal of methanol in vacuo, the pH of the mixture was adjusted to 2 with 3.0 M HCl The mixture was then saturated with NaCl and extracted with $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL} \times 3)$. The combined organic layers were washed with brine, dried over MgSO_{4}, and then evaporated in vacuo to give the crude carboxylic acid, which was used directly for the next step without further purification.

Oxalyl chloride $(1.75 \mathrm{~mL}, 20 \mathrm{mmol})$ was added slowly to a stirred solution of the carboxylic acid in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20$ $\mathrm{mL})$ and DMF $(0.1 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred for 1 h at $0{ }^{\circ} \mathrm{C}$ and another 16 h at room temperature, and evaporated in vacuo. The residue was then dissolved in toluene $(5 \mathrm{~mL})$, evaporated in vacuo twice, to give the crude acid chloride, which was used directly for the next step without further purification.

The acid chloride was added dropwise to a solution of 8 -aminoquinoline ($1.01 \mathrm{~g}, 7.0 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(1.7 \mathrm{~mL}, 12$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$. The mixture was stirred overnight at room temperature. Then the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, washed successively with water, saturated aqueous NaHCO_{3}, and brine. The organic layer was dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel, eluting with EtOAc/Hexane (1:60, v/v), to afford corresponding 8-aminoquinolinyl amides 1 .

3.2 Analytical Data for Starting Materials

N-(quinolin-8-yl)pivalamide (1a)

This amide was obtained as colorless oil. $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.43(\mathrm{~s}, 9 \mathrm{H}), 7.37-7.53(\mathrm{~m}, 3 \mathrm{H}), 8.07-$ $8.11(\mathrm{~m}, 1 \mathrm{H}), 8.79-8.81(\mathrm{~m}, 2 \mathrm{H}), 10.27(\mathrm{~s}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 27.75,40.36,116.20,121.25$, $121.53,127.40,127.92,134.70,136.28,138.79,148.21,177.24 ; \mathrm{Ms}(\mathrm{EI}): m / z=228.1[\mathrm{M}+\mathrm{H}]^{+}$.

2-methyl-2-phenyl- N-(quinolin-8-yl)propanamide (1b)

This amide was obtained as white solid. Melting point: $100-101{ }^{\circ} \mathrm{C} . \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.78(\mathrm{~s}, 6 \mathrm{H})$, $7.28-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.48-7.55(\mathrm{~m}, 3 \mathrm{H}), 8.05-8.07(\mathrm{~m}, 1 \mathrm{H}), 8.58-8.59(\mathrm{~m}, 1 \mathrm{H}), 8.75-8.77$ (m, 1 H), $9.87(\mathrm{~s}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 27.02,48.40,115.97,121.26,121.43,126.37$, 127.02, 127.33, $127.84,128.79,134.72,136.09,138.68,144.90,148.12,175.82 ; \mathrm{Ms}(\mathrm{EI}): m / z=290.1[\mathrm{M}+\mathrm{H}]^{+}$.

2,2-dimethyl- N-(quinolin-8-yl)butanamide (1c)

This amide was obtained as yellow oil. $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 0.96(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 6 \mathrm{H}), 1.77$ (q, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.55(\mathrm{~m}, 3 \mathrm{H}), 8.13-8.15(\mathrm{~m}, 1 \mathrm{H}), 8.81-8.83(\mathrm{~m}, 2 \mathrm{H}), 10.25(\mathrm{~s}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 9.33,25.11,34.13,44.08,116.17,121.21,121.52,127.36,127.42,127.93,134.67,136.24,136.27$, 138.79, 148.23, 176.65; Ms (EI): $m / z=242.1[\mathrm{M}+\mathrm{H}]^{+}$.

1-methyl- N -(quinolin-8-yl)cyclohexanecarboxamide (1d)

This amide was obtained as yellow oil. $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.50-1.68(\mathrm{~m}, 8 \mathrm{H}), 2.18-2.22$ $(\mathrm{m}, 2 \mathrm{H}), 7.41-7.55(\mathrm{~m}, 3 \mathrm{H}), 8.12-8.14(\mathrm{~m}, 1 \mathrm{H}), 8.80-8.84(\mathrm{~m}, 2 \mathrm{H}), 10.29(\mathrm{~s}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right)$ $22.90,25.76,26.54,35.69,44.27,116.09,121.01,121.40,127.34,127.83,134.70,136.18,138.70,148.11,176.51$; $\mathrm{Ms}(\mathrm{EI}): m / z=268.2[\mathrm{M}+\mathrm{H}]^{+}$.

2,2-diphenyl- N-(quinolin-8-yl)propanamide (1e)

This amide was obtained as white solid. Melting point: $153{ }^{\circ} \mathrm{C} . \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 2.17(\mathrm{~s}, 3 \mathrm{H}), 7.29-$ $7.41(\mathrm{~m}, 11 \mathrm{H}), 7.45-7.54(\mathrm{~m}, 2 \mathrm{H}), 8.06-8.08(\mathrm{~m}, 1 \mathrm{H}), 8.49-8.50(\mathrm{~m}, 1 \mathrm{H}), 8.84-8.86(\mathrm{~m}, 1 \mathrm{H}), 10.12(\mathrm{~s}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}$ ($100 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}$) 27.16. 58.44, 116.02, 121.45, 121.58, 126.99, 127.34, 127.82, 128.34, 128.57, 134.50, 136.02, 138.80, 144.94, 148.06, 173.75; Ms (EI): $m / z=352.1[\mathrm{M}+\mathrm{H}]^{+}$.

2,2-dimethyl-3-(naphthalen-2-yl)- N -(quinolin-8-yl)propanamide (1f)

This amide was obtained as brown oil. $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.48(\mathrm{~s}, 6 \mathrm{H}), 3.22(\mathrm{~s}, 2 \mathrm{H}), 7.33-7.40(\mathrm{~m}, 4$ H), 7.47-7.50 (m, 1 H), 7.54-7.58 (m, 1 H), 7.64-7.73(m, $4 H), 8.08-8.11(\mathrm{~m}, 1 \mathrm{H}), 8.59-8.60(\mathrm{~m}, 1 \mathrm{H}), 8.86-$ $8.88(\mathrm{~m}, 1 \mathrm{H}), 10.15(\mathrm{~s}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 25.40,45.20,47.07,116.32,121.40,121.48,125.28$, $125.74,127.39,127.45,127.47,127.59,127.87,128.79,128.84,132.24,133.33,134.49,135.63,136.15,138.75$, 148.11, 176.07; Ms (EI): $m / z=354.2[\mathrm{M}+\mathrm{H}]^{+}$.

3-(4-fluorophenyl)-2,2-dimethyl- N -(quinolin-8-yl)propanamide (1g)

This amide was obtained as white solid. Melting point: $93{ }^{\circ} \mathrm{C} . \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.41(\mathrm{~s}, 6 \mathrm{H}), 3.01(\mathrm{~s}$, $2 \mathrm{H}), 6.86(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.13-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.56(\mathrm{~m}, 2 \mathrm{H}), 8.12-8.14(\mathrm{~m}, 1 \mathrm{H})$, $8.74-8.75(\mathrm{~m}, 1 \mathrm{H}), 8.81-8.83(\mathrm{~m}, 1 \mathrm{H}), 10.13(\mathrm{~s}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 25.26,45.00\left(\mathrm{~d}, J_{C-F}=0.8\right.$ $\mathrm{Hz}), 46.12,114.78\left(\mathrm{~d}, J_{C-F}=20.9 \mathrm{~Hz}\right), 116.30,121.46,121.56,127.40,127.92,131.60\left(\mathrm{~d}, J_{C-F}=7.8 \mathrm{~Hz}\right), 133.65(\mathrm{~d}$, $\left.J_{C-F}=3.3 \mathrm{~Hz}\right), 134.39,136.27,138.77,148.22,161.71\left(\mathrm{~d}, J_{C-F}=242.7 \mathrm{~Hz}\right), 175.77$; Ms $(\mathrm{EI}): m / z=322.3[\mathrm{M}+\mathrm{H}]^{+}$.

2-methyl-2-phenyl- N -(quinolin-8-yl)butanamide (1h)

This amide was obtained as yellow oil. $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 0.83(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 2.07-$ $2.27(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.36(\mathrm{~m}, 5 \mathrm{H}), 7.40-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.97-7.99(\mathrm{~m}, 1 \mathrm{H}), 8.51-8.52(\mathrm{~m}, 1 \mathrm{H}), 8.68-8.70(\mathrm{~m}, 1$ H), $9.78(\mathrm{~s}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 9.04,22.98,31.72,52.27,116.00,121.20,121.42,126.04,126.83$, $126.89,127.34,127.85,128.36,128.70,134.73,136.08,138.68,143.87,148.11,175.45 ; \mathrm{Ms}(\mathrm{EI}): m / z=304.3$ $[\mathrm{M}+\mathrm{H}]^{+}$.

[$\left.\mathrm{D}_{3}\right]$-2-methyl-2-phenyl- N -(quinolin-8-yl)butanamide ([$\left.\mathrm{D}_{3}\right]-1 \mathrm{~h}$)

This amide was obtained as yellow oil. $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 0.82(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.09-2.22(\mathrm{~m}, 2 \mathrm{H})$, $7.15-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.94-7.96(\mathrm{~m}, 1 \mathrm{H}), 8.49-8.50(\mathrm{~m}, 1 \mathrm{H}), 8.68-8.70$ $(\mathrm{m}, 1 \mathrm{H}), 9.77(\mathrm{~s}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 9.04,31.65,52.07,116.00,121.21,121.42,126.83,126.90$, $127.33,127.85,128.72,134.73,136.08,138.68,143.86,148.11,175.47$; Ms (EI): $m / z=307.4[\mathrm{M}+\mathrm{H}]^{+}$.

2-benzyl-2-methyl- N -(quinolin-8-yl)butanamide (1i)

This amide was obtained as pale yellow solid. Melting point: $64-65^{\circ} \mathrm{C} . \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 0.87(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.43-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.96(\mathrm{~m}, 1 \mathrm{H}), 2.71,3.15\left(\mathrm{AB}, J_{A B}=13.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.99-7.09$ $(\mathrm{m}, 5 \mathrm{H}), 7.22-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.94-7.96(\mathrm{~m}, 1 \mathrm{H}), 8.58-8.59(\mathrm{~m}, 1 \mathrm{H})$, $8.74-8.76(\mathrm{~m}, 1 \mathrm{H}), 10.02(\mathrm{~s}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 9.22,20.26,32.85,46.04,49.03,116.29,121.38$, $121.53,126.35,127.43,127.93,128.01,130.34,134.46,136.22,137.91,138.80,148.22,175.31 ; \mathrm{Ms}(\mathrm{EI}): \mathrm{m} / \mathrm{z}=$ $318.2[\mathrm{M}+\mathrm{H}]^{+}$.

2,2-dimethyl-3-phenyl- N-(quinolin-8-yl)propanamide (1j)

This amide was obtained as pale yellow solid. Melting point: $60{ }^{\circ} \mathrm{C} . \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.42(\mathrm{~s}, 6 \mathrm{H})$, $3.05(\mathrm{~s}, 2 \mathrm{H}), 7.14-7.20(\mathrm{~m}, 5 \mathrm{H}), 7.41-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.57(\mathrm{~m}, 2 \mathrm{H}), 8.13-8.15(\mathrm{~m}, 1 \mathrm{H}), 8.74-8.75(\mathrm{~m}, 1 \mathrm{H})$, $8.83-8.85(\mathrm{~m}, 1 \mathrm{H}), 10.17(\mathrm{~s}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 25.27,44.97,46.89,116.30,121.35,121.50$, $126.36,127.44,127.92,127.98,130.29,134.52,136.24,137.95,138.82,148.17,176.07 ; \mathrm{Ms}(\mathrm{EI}): m / z=304.2$ $[\mathrm{M}+\mathrm{H}]^{+}$.

4. Synthesis of Thiophenes products

4.1 General Procedure for Nickel-Catalyzed heteroarylation of amide with bromide thiophene

A $10-\mathrm{mL}$ Schlenk tube was charged with N-(quinolin-8-yl)pivalamide 1a (45.6 mg, 0.2 mmol), 2,5-dibromothiophene ($143.8 \mathrm{mg}, 0.6 \mathrm{mmol}$), $\mathrm{NiBr}_{2}(4.4 \mathrm{mg}, 0.02 \mathrm{mmol})$, MesCOOH ($6.6 \mathrm{mg}, 0.04 \mathrm{mmol}$), $\mathrm{Na}_{2} \mathrm{CO}_{3}(42.4 \mathrm{mg}, 0.4 \mathrm{mmol})$, TBAI $(147.6 \mathrm{mg}, 0.4 \mathrm{mmol})$ and DMF $(0.5 \mathrm{~mL})$. The vial was evacuated and filled with N_{2}, and stirred at $160^{\circ} \mathrm{C}$ for 24 h . The mixture was then cooled to room temperature, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2$ mL), filtered through a celite pad, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel, eluting with EtOAc/Hexane (1:100~1:60, v/v), to afford the desired product 2a

4.2 Optimization of solvents and bases for thiophenes products synthesis

A: Solvents

Entry	Solvent	Yield(\%)
1	DMSO	60
2	NMP	62
3	Toluene	trace
4	Tert-amyl alcohol	63
5	Dioxane	15

B. Bases:

Entry	Base	Yield(\%)
1	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	68
2	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	trace
3	$\mathrm{~K}_{3} \mathrm{PO}_{4}$	trace
4	NaOH	trace
5	$\mathrm{Li}_{2} \mathrm{CO}_{3}$	50
6	NaHCO_{3}	66
7	$\mathrm{Na}_{2}(\mathrm{OAc})$	20
8	$\mathrm{Na}_{2} \mathrm{CO}_{3}(4 \mathrm{eq})$	79

4.3 Analytical Data for Thiophenes Products

3-(5-bromothiophen-2-yl)-2,2-dimethyl- N-(quinolin-8-yl)propanamide (2a)

This amide was obtained $55.9 \mathrm{mg}(72 \%)$ as pale white viscous oil. $\mathrm{R}_{f}=0.36$ (petroleum ether/ethyl acetate $=60: 1$); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.46(\mathrm{~s}, 6 \mathrm{H}), 3.17(\mathrm{~s}, 2 \mathrm{H}), 6.59-6.60(\mathrm{~m}, 1 \mathrm{H}), 6.79-6.80(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.46(\mathrm{~m}, 1$ H), $7.51-7.58(\mathrm{~m}, 2 \mathrm{H}), 8.15-8.17(\mathrm{~m}, 1 \mathrm{H}), 8.79-8.83(\mathrm{~m}, 2 \mathrm{H}), 10.23(\mathrm{~s}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right)$ $25.46,41.25,44.97$, 116.45, 121.55, 121.59, 127.39, 127.44, 127.94, 129.40, 134.36, 136.31, 138.78, 141.86, 148.28, 175.34; HRMS (ESI): $\mathrm{M}+\mathrm{H}^{+}$found 388.0239; $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{Br}_{1} \mathrm{~N}_{2} \mathrm{~S}_{1} \mathrm{O}_{1}$ requires 388.0245.

2,2-dimethyl- N-(quinolin-8-yl)-3-(thiophen-2-yl)propanamide (2ba)

This amide was obtained $34.5 \mathrm{mg}(56 \%)$ as yellow viscous oil. $\mathrm{R}_{f}=0.29$ (petroleum ether/ethyl acetate $=60: 1$); δ_{H} ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}$) $1.46(\mathrm{~s}, 6 \mathrm{H}$), 3.26 (s, 2 H), 6.84-6.87 (m, 2 H), 7.06-7.07 (m, 1 H), 7.41-7.45 (m, 1 H), $7.49-7.57(\mathrm{~m}, 2 \mathrm{H}), 8.13-8.15(\mathrm{~m}, 1 \mathrm{H}), 8.77-8.78(\mathrm{~m}, 1 \mathrm{H}), 8.84-8.85(\mathrm{~m}, 1 \mathrm{H}), 10.23(\mathrm{~s}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 25.39,40.86,45.09,116.40,121.43,121.55,124.09,126.61,126.96,127.46,127.93,134.50$ 136.28, 138.81, 139.87, 148.23, 175.68; HRMS (ESI): $\mathrm{M}+\mathrm{H}^{+}$found $310.1134 ; \mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{~S}_{1} \mathrm{O}_{1}$ requires 310.1140 .

2-methyl- N-(quinolin-8-yl)-3-(thiophen-2-yl)-2-(thiophen-2-ylmethyl)propanamide (2bb)

This amide was obtained $19.9 \mathrm{mg}(25 \%)$ as brown viscous oil. $\mathrm{R}_{f}=0.24$ (petroleum ether/ethyl acetate $=60: 1$); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.46(\mathrm{~s}, 3 \mathrm{H}), 3.08,3.59\left(\mathrm{AB}, J_{A B}=14.4 \mathrm{~Hz}, 4 \mathrm{H}\right), 6.84-6.86(\mathrm{~m}, 4 \mathrm{H}), 7.06-7.07(\mathrm{~m}$, 2 H), 7.39-7.42 (m, 1 H), 7.49-7.58 (m, 2 H), 8.12-8.14 (m, 1 H), 8.70-8.71 (m, 1 H), 8.86-8.88 (m, 1 H), 10.11 (s, 1 H); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 20.47,39.91,49.87,116.52$, 121.50, 121.54, 124.31, 126.67, 127.29, 127.44, 127.88, 134.25, 136.17, 139.09, 148.18, 174.05; HRMS (ESI): $\mathrm{M}+\mathrm{H}^{+}$found 392.1011; $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{~S}_{2} \mathrm{O}_{1}$ requires 392.1017

This amide was obtained $32.8 \mathrm{mg}(51 \%)$ as yellow oil. $\mathrm{R}_{f}=0.31$ (petroleum ether/ethyl acetate $\left.=60: 1\right) ; \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.45(\mathrm{~s}, 6 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 3.16(\mathrm{~s}, 2 \mathrm{H}), 6.49-6.50(\mathrm{~m}, 1 \mathrm{H}), 6.60-6.61(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.45$ (m, 1 H), 7.49-7.57 (m, 2 H), 8.14-8.16 (m, 1 H), 8.78-8.79 (m, 1 H$), 8.83-8.84(\mathrm{~m}, 1 \mathrm{H}), 10.23(\mathrm{~s}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}(100$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 15.18,25.36,41.07,44.98,116.41,121.36,121.52,124.64,126.78,127.47,127.93,134.55$, 136.27, 137.51, 138.40, 138.83, 148.19, 175.83; HRMS (ESI): $\mathrm{M}+\mathrm{H}^{+}$found $324.1292 ; \mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{~S}_{1} \mathrm{O}_{1}$ requires 324.1296.

2-methyl-3-(5-methylthiophen-2-yl)-2-((5-methylthiophen-2-yl)methyl)- N-(quinolin-8-yl)propanamide (2cb)

This amide was obtained $21.3 \mathrm{mg}(25 \%)$ as yellow viscous oil. $\mathrm{R}_{f}=0.28$ (petroleum ether/ethyl acetate $=60: 1$); δ_{H} $\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.45(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 6 \mathrm{H}), 2.99,3.46\left(\mathrm{AB}, J_{A B}=14.4 \mathrm{~Hz}, 4 \mathrm{H}\right), 6.47-6.48(\mathrm{~m}, 2 \mathrm{H})$, 6.61-6.62 (m, 2 H), 7.40-7.43 (m, 1 H), 7.49-7.58 (m, 2 H$), 8.13-8.15(\mathrm{~m}, 1 \mathrm{H}), 8.72-8.73(\mathrm{~m}, 1 \mathrm{H}), 8.85-8.87$ (m, 1 H$), 10.13(\mathrm{~s}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 15.17,20.66,39.97,49.68,116.55,121.40,121.46,124.70$, 127.11, 127.47, 127.88, 134.40, 136.16, 136.84, 138.59, 138.81, 148.12, 174.31; HRMS (ESI): $\mathrm{M}^{+} \mathrm{H}^{+}$found 420.1329; $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{~S}_{2} \mathrm{O}_{1}$ requires 420.1330 .

3-(5-acetylthiophen-2-yl)-2,2-dimethyl- N -(quinolin-8-yl)propanamide (2d)

This amide was obtained $28.9 \mathrm{mg}(41 \%)$ as brown viscous oil. $\mathrm{R}_{f}=0.21$ (petroleum ether/ethyl acetate $=10: 1$); δ_{H} ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}$) $1.49(\mathrm{~s}, 6 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{~s}, 2 \mathrm{H}), 6.86-6.87(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.51-$ $7.58(\mathrm{~m}, 2 \mathrm{H}), 8.15-8.17(\mathrm{~m}, 1 \mathrm{H}), 8.76-8.78(\mathrm{~m}, 1 \mathrm{H}), 8.80-8.83(\mathrm{~m}, 1 \mathrm{H}), 10.23(\mathrm{~s}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$; $\left.\mathrm{Me}_{4} \mathrm{Si}\right) 25.51,26.54,41.37,45.14,116.47,121.61,121.64,127.43,127.92,128.32,132.67,134.26,136.33,138.75$, $142.98,148.29,149.87,175.00,190.51$; $\mathrm{HRMS}(\mathrm{ESI}): \mathrm{M}+\mathrm{H}^{+}$found $352.1230 ; \mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{~S}_{1} \mathrm{O}_{2}$ requires 352.1245 .

3-(5-chlorothiophen-2-yl)-2,2-dimethyl-N-(quinolin-8-yl)propanamide (2e)

This amide was obtained $42.7 \mathrm{mg}(62 \%)$ as colorless oil. $\mathrm{R}_{f}=0.33$ (petroleum ether/ethyl acetate $\left.=60: 1\right) ; \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.46(\mathrm{~s}, 6 \mathrm{H}), 3.14(\mathrm{~s}, 2 \mathrm{H}), 6.59-6.60(\mathrm{~m}, 1 \mathrm{H}), 6.65-6.66(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.58(\mathrm{~m}, 3 \mathrm{H})$, $8.15-8.17(\mathrm{~m}, 1 \mathrm{H}), 8.78-8.83(\mathrm{~m}, 2 \mathrm{H}), 10.23(\mathrm{~s}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 25.46,41.31,45.00,116.45$, 121.57, 121.59, 125.61, 126.33, 127.44, 127.88, 127.94, 134.36, 136.32, 138.78, 138.93, 148.28, 175.35; HRMS (ESI): $\mathrm{M}+\mathrm{H}^{+}$found 344.0746; $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{~S}_{1} \mathrm{O}_{1} \mathrm{Cl}_{1}$ requires 344.0750.

3-(5-formylthiophen-2-yl)-2,2-dimethyl- N -(quinolin-8-yl)propanamide (2f)

This amide was obtained $33.1 \mathrm{mg}(49 \%)$ as yellow viscous oil. $\mathrm{R}_{f}=0.24$ (petroleum ether/ethyl acetate $=10: 1$); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.50(\mathrm{~s}, 6 \mathrm{H}), 3.30(\mathrm{~s}, 2 \mathrm{H}), 6.95-6.96(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.58(\mathrm{~m}, 3$ H), 8.15-8.17 (m, 1 H), 8.76-8.82 (m, 2 H), $9.75(\mathrm{~s}, 1 \mathrm{H}), 10.23(\mathrm{~s}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 25.57$, 41.52, 45.21, 116.48, 121.63, 121.71, 127.44, 127.93, 128.56, 134.20, 136.35, 136.63, 138.75, 142.57, 148.31, 151.73, 174.83, 182.70; HRMS (ESI): $\mathrm{M}+\mathrm{H}^{+}$found $338.1078 ; \mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{~S}_{1} \mathrm{O}_{2}$ requires 338.1089.
ethyl 5-(2,2-dimethyl-3-oxo-3-(quinolin-8-ylamino)propyl)thiophene-2-carboxylate (2g)

This amide was obtained $32.9 \mathrm{mg}(43 \%)$ as pale yellow viscous oil. $\mathrm{R}_{f}=0.34$ (petroleum ether/ethyl acetate $=$ $10: 1) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.31(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 6 \mathrm{H}), 3.25(\mathrm{~s}, 2 \mathrm{H}), 4.27(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 6.83-6.84 (m, 1 H), 7.42-7.46 (m, 1 H), 7.50-7.58 (m, 3 H), 8.14-8.17 (m, 1 H$), 8.76-8.83(\mathrm{~m}, 2 \mathrm{H}), 10.22(\mathrm{~s}, 1$ $\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 14.30,25.47,41.15,45.07,60.88,116.48,121.57,127.42,127.89,127.93$, 132.33, 133.30, 134.32, 136.29, 138.79, 147.88, 148.26, 162.24, 175.11; HRMS (ESI): $\mathrm{M}^{+} \mathrm{H}^{+}$found 382.1344; $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{~S}_{1} \mathrm{O}_{3}$ requires 382.1351 .

3-(benzo[b]thiophen-2-yl)-2,2-dimethyl- N-(quinolin-8-yl)propanamide (2h)

This amide was obtained $39.6 \mathrm{mg}\left(55 \%\right.$) as yellow viscous oil. $\mathrm{R}_{f}=0.58$ (petroleum ether/ethyl acetate $=10: 1$); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.52(\mathrm{~s}, 6 \mathrm{H}), 3.34(\mathrm{~s}, 2 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 7.18-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.42(\mathrm{~m}, 1 \mathrm{H})$,
$7.50-7.62(\mathrm{~m}, 3 \mathrm{H}), 7.67-7.69(\mathrm{~m}, 1 \mathrm{H}), 8.12-8.15(\mathrm{~m}, 1 \mathrm{H}), 8.68-8.69(\mathrm{~m}, 1 \mathrm{H}), 8.86-8.87(\mathrm{~m}, 1 \mathrm{H}), 10.26(\mathrm{~s}, 1$ $\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 25.66,41.66,45.06,116.47,121.50,121.53,121.95,122.82,123.53,123.61$, $123.93,127.43,127.91,134.47,136.23,138.79,139.88,140.00,141.26,148.21,175.54 ;$ HRMS (ESI): $\mathrm{M}^{2}+\mathrm{H}^{+}$ found $360.1288 ; \mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{~S}_{1} \mathrm{O}_{1}$ requires 360.1296 .

3-(5'-bromo-[2,2'-bithiophen]-5-yl)-2,2-dimethyl- N-(quinolin-8-yl)propanamide (2i)

This amide was obtained $39.5 \mathrm{mg}(42 \%)$ as yellow viscous oil. $\mathrm{R}_{f}=0.59$ (petroleum ether/ethyl acetate $=10: 1$); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.49(\mathrm{~s}, 6 \mathrm{H}), 3.20(\mathrm{~s}, 2 \mathrm{H}), 6.73-6.74(\mathrm{~m}, 1 \mathrm{H}), 6.85-6.88(\mathrm{~m}, 1 \mathrm{H}), 6.92-6.93(\mathrm{~m}, 1$ H), 7.01-7.12 (m, 1 H), 7.41-7.44 (m, 1 H), 7.49-7.57 (m, 2 H), 8.13-8.15 (m, 1 H), 8.75-8.76 (m, 1 H), 8.82-8.84 $(\mathrm{m}, 1 \mathrm{H}), 10.23(\mathrm{~s}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 25.47,41.05,45.09,116.44,121.47,121.51,121.53,121.55$, $123.23,123.39,123.66,123.79,127.43,127.61,127.75,127.82,127.93,130.43,134.42,135.05,136.27,138.80$, 139.19, 139.29, 139.93, 148.24, 175.41; HRMS (ESI): $\mathrm{M}+\mathrm{H}^{+}$found $470.0111 ; \mathrm{C}_{22} \mathrm{H}_{19} \mathrm{Br}_{1} \mathrm{~N}_{2} \mathrm{~S}_{2} \mathrm{O}_{1}$ requires 470.0122 .

2,2-dimethyl- N-(quinolin-8-yl)-3-(thiophen-3-yl)propanamide (2ja)

This amide was obtained $28.7 \mathrm{mg}(46 \%)$ as colorless viscous oil. $\mathrm{R}_{f}=0.34$ (petroleum ether/ethyl acetate $=60: 1$); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.42(\mathrm{~s}, 6 \mathrm{H}), 3.07(\mathrm{~s}, 2 \mathrm{H}), 6.92-6.93(\mathrm{~m}, 1 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 7.12-7.14(\mathrm{~m}, 1 \mathrm{H})$, 7.41-7.45 (m, 1 H$), 7.49-7.57(\mathrm{~m}, 2 \mathrm{H}), 8.13-8.16(\mathrm{~m}, 1 \mathrm{H}), 8.76-8.77(\mathrm{~m}, 1 \mathrm{H}), 8.81-8.83(\mathrm{~m}, 1 \mathrm{H}), 10.19(\mathrm{~s}, 1$ $\mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 25.43,41.32,44.81,116.30,121.40,121.55,122.84,124.80,127.44,127.93$, 129.58, 134.49, 136.28, 138.23, 138.80, 148.22, 176.09; HRMS (ESI): $\mathrm{M}+\mathrm{H}^{+}$found 310.1138; $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{~S}_{1} \mathrm{O}_{1}$ requires 310.1140 .

2-methyl- N -(quinolin-8-yl)-3-(thiophen-3-yl)-2-(thiophen-3-ylmethyl)propanamide (2jb)

This amide was obtained $13.9 \mathrm{mg}(18 \%)$ as colorless viscous oil. $\mathrm{R}_{f}=0.31$ (petroleum ether/ethyl acetate $=60: 1$); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.35(\mathrm{~s}, 3 \mathrm{H}), 2.85,3.40\left(\mathrm{AB}, J_{A B}=13.6 \mathrm{~Hz}, 4 \mathrm{H}\right), 6.92-6.93(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{~s}, 2 \mathrm{H})$, 7.10-7.12 (m, 2 H), 7.38-7.41 (m, 1 H), 7.49-7.58 (m, 2 H$), 8.12-8.14(\mathrm{~m}, 1 \mathrm{H}), 8.68-8.69(\mathrm{~m}, 1 \mathrm{H}), 8.84-8.86$ $(\mathrm{m}, 1 \mathrm{H}), 10.00(\mathrm{~s}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 20.43,40.69,49.42,116.30,121.48,121.50,123.01,124.88$,
$127.39,127.88,129.58,134.28,136.16,137.76,138.74,148.16,174.76 ;$ HRMS (ESI): $\mathrm{M}+\mathrm{H}^{+}$found 392.1014 ; $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{~S}_{2} \mathrm{O}_{1}$ requires 392.1017.

2-methyl- N-(quinolin-8-yl)-2-(thiophen-2-ylmethyl)butanamide (2ma)

This amide was obtained $31.1 \mathrm{mg}(48 \%)$ as yellow viscous oil. $\mathrm{R}_{f}=0.34$ (petroleum ether/ethyl acetate $=60: 1$); δ_{H} ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}$) $1.00(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.65-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.96-2.03(\mathrm{~m}, 1 \mathrm{H}), 3.05$, $3.46\left(\mathrm{AB}, J_{A B}=14.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.83-6.86(\mathrm{~m}, 2 \mathrm{H}), 7.05-7.06(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.57(\mathrm{~m}, 2 \mathrm{H})$, 8.14-8.16 (m, 1 H$), 8.77-8.78(\mathrm{~m}, 1 \mathrm{H}), 8.84-8.86(\mathrm{~m}, 1 \mathrm{H}), 10.21(\mathrm{~s}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 9.16$, $20.63,32.70,39.47,49.00,116.35,121.36,121.52,124.02,126.56,126.94,127.46,127.92,134.42,136.25$, 138.79, 139.78, 148.23, 174.97; HRMS (ESI): $\mathrm{M}+\mathrm{H}^{+}$found 324.1277; $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{~S}_{1} \mathrm{O}_{1}$ requires 324.1296.

N-(quinolin-8-yl)-2,2-bis(thiophen-2-ylmethyl)butanamide (2mb)

This amide was obtained $19.5 \mathrm{mg}(24 \%)$ as yellow viscous oil. $\mathrm{R}_{f}=0.31$ (petroleum ether/ethyl acetate $=60: 1$); δ_{H} ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}$) $1.14(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.88(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.26,3.47\left(\mathrm{AB}, J_{A B}=14.8 \mathrm{~Hz}, 4 \mathrm{H}\right)$, 6.85-6.87 (m, 2 H), 6.89-6.90 (m, 2 H), 7.08-7.09 (m, 2 H), 7.40-7.43 (m, 1 H), 7.50-7.59 (m, 2 H$), 8.13-8.15$ (m, 1 H$), 8.72-8.73(\mathrm{~m}, 1 \mathrm{H}), 8.85-8.87(\mathrm{~m}, 1 \mathrm{H}), 10.21(\mathrm{~s}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 8.82,26.48,34.92$, $53.41,116.55,121.48,121.54,124.22,126.62,127.34,127.48,127.91,134.24,136.21,138.76,138.96,148.22$, 173.68; HRMS (ESI): $\mathrm{M}+\mathrm{H}^{+}$found 406.1171; $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{~S}_{2} \mathrm{O}_{1}$ requires 406.1174.

2-methyl-2-phenyl- N-(quinolin-8-yl)-3-(thiophen-2-yl)propanamide (2na)

This amide was obtained $19.1 \mathrm{mg}(26 \%)$ as yellow viscous oil. $\mathrm{R}_{f}=0.39$ (petroleum ether/ethyl acetate $=60: 1$); δ_{H} (400 MHz; $\left.\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.77(\mathrm{~s}, 3 \mathrm{H}), 3.61,3.84\left(\mathrm{AB}, J_{A B}=14.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.64-6.65(\mathrm{~m}, 1 \mathrm{H}), 6.81-6.83(\mathrm{~m}, 1$ H), 7.02-7.04 (m, 1 H), 7.33-7.42 (m, 4 H), 7.45-7.55 (m, 4 H), 8.07-8.09 (m, 1 H$), 8.58-8.59(\mathrm{~m}, 1 \mathrm{H}), 8.79-$ $8.81(\mathrm{~m}, 1 \mathrm{H}), 9.90(\mathrm{~s}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 22.85,39.83,52.73,116.11,121.38$, 121.45, 124.26, $126.16,127.22,127.33,127.41,127.46,127.85,128.78,134.58,136.09,138.65,139.53,142.52,148.14,174.67$; HRMS (ESI): $\mathrm{M}+\mathrm{H}^{+}$found $372.1273 ; \mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{~S}_{1} \mathrm{O}_{1}$ requires 372.1296.

This amide was obtained $46.6 \mathrm{mg}(51 \%)$ as yellow viscous oil. $\mathrm{R}_{f}=0.35$ (petroleum ether/ethyl acetate $=60: 1$); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 3.76(\mathrm{q}, J=14.8,4 \mathrm{H}) 6.72-6.73(\mathrm{~m}, 2 \mathrm{H}), 6.83-6.85(\mathrm{~m}, 2 \mathrm{H}), 7.06-7.07(\mathrm{~m}, 2 \mathrm{H})$, $7.34-7.41(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.51-7.56(\mathrm{~m}, 1 \mathrm{H}), 8.09-8.11(\mathrm{~m}, 1 \mathrm{H}), 8.59-8.60(\mathrm{~m}, 1 \mathrm{H}), 8.72-8.74$ $(\mathrm{m}, 1 \mathrm{H}), 9.97(\mathrm{~s}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 35.44,57.29,116.35,121.40,121.49,124.54,126.32,127.37$, $127.60,127.70,127.87,127.98,128.85,134.37,136.10,138.50,141.55,148.22,172.84 ;$ HRMS (ESI): $\mathrm{M}^{2}+\mathrm{H}^{+}$ found 454.1163; $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{~S}_{2} \mathrm{O}_{1}$ requires 454.1174 .
N-(quinolin-8-yl)-1-(thiophen-2-ylmethyl)cyclohexanecarboxamide (20)

This amide was obtained $46.9 \mathrm{mg}(67 \%)$ as yellow viscous oil. $\mathrm{R}_{f}=0.31$ (petroleum ether/ethyl acetate $=60: 1$); δ_{H} (400 MHz; $\left.\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.54-1.70(\mathrm{~m}, 8 \mathrm{H}), 2.19-2.22(\mathrm{~m}, 2 \mathrm{H}), 3.17(\mathrm{~s}, 2 \mathrm{H}), 6.71-6.75(\mathrm{~m}, 2 \mathrm{H}), 6.95-6.97$ $(\mathrm{m}, 1 \mathrm{H}), 7.36-7.52(\mathrm{~m}, 3 \mathrm{H}), 8.08-8.11(\mathrm{~m}, 1 \mathrm{H}), 8.70-8.71(\mathrm{~m}, 1 \mathrm{H}), 8.77-8.79(\mathrm{~m}, 1 \mathrm{H}), 10.13(\mathrm{~s}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}(100$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 22.92,25.83,33.86,40.05,49.32,116.38,121.25,121.44,123.90,126.59,126.80,127.41$, $127.85,134.41,136.15,138.78,138.85,148.15,174.52$; HRMS (ESI): $\mathrm{M}+\mathrm{H}^{+}$found $350.1450 ; \mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{~S}_{1} \mathrm{O}_{1}$ requires 350.1453 .

2,2-diphenyl- N-(quinolin-8-yl)-3-(thiophen-2-yl)propanamide (2p)

This amide was obtained $67.7 \mathrm{mg}(78 \%)$ as brown solid. $\mathrm{R}_{f}=0.42$ (petroleum ether/ethyl acetate $\left.=60: 1\right) ; \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 4.12(\mathrm{~s}, 2 \mathrm{H}), 6.42-6.43(\mathrm{~m}, 1 \mathrm{H}), 6.70-6.72(\mathrm{~m}, 1 \mathrm{H}), 6.98-6.99(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.34(\mathrm{~m}, 7$ H), $7.40-7.46(\mathrm{~m}, 5 \mathrm{H}), 7.50-7.54(\mathrm{~m}, 1 \mathrm{H}), 8.06-8.08(\mathrm{~m}, 1 \mathrm{H}), 8.52-8.53(\mathrm{~m}, 1 \mathrm{H}), 8.81-8.83(\mathrm{~m}, 1 \mathrm{H}), 10.18(\mathrm{~s}$, $1 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 39.45,64.23,116.10,121.45,124.51,125.87,126.98,127.24,127.29,127.84$, $128.23,128.27,128.34,128.56,129.41,134.59,135.99,138.73,139.78,141.99,148.10,172.19 ;$ HRMS (ESI): $\mathrm{M}+\mathrm{H}^{+}$found 434.1453; $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{~S}_{1} \mathrm{O}_{1}$ requires 434.1453.

2-methyl-3-(naphthalen-2-yl)- N -(quinolin-8-yl)-2-(thiophen-2-ylmethyl)propanamide (2q)

This amide was obtained $60.2 \mathrm{mg}(69 \%)$ as yellow viscous oil. $\mathrm{R}_{f}=0.38$ (petroleum ether/ethyl acetate $=60: 1$); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.42(\mathrm{~s}, 3 \mathrm{H}), 3.00-3.07(\mathrm{~m}, 2 \mathrm{H}), 3.55,3.72\left(\mathrm{AB}, J_{A B}=14.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.85-6.86(\mathrm{~m}$, 2 H), 7.05-7.06 (m, 1 H), 7.29-7.36 (m, 5 H), 7.47-7.49 (m, 1 H), 7.55-7.59 (m, 1 H$), 7.61-7.69(\mathrm{~m}, 3 \mathrm{H}), 8.06-$ $8.08(\mathrm{~m}, 1 \mathrm{H}), 8.46-8.47(\mathrm{~m}, 1 \mathrm{H}), 8.87-8.89(\mathrm{~m}, 1 \mathrm{H}), 9.96(\mathrm{~s}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 20.13,40.22$, $46.55,50.10,116.45,121.38,121.50,124.23,125.30,125.71,126.60,127.17,127.31,127.40,127.53,127.76$, $128.68,128.96,132.24,133.26,134.17,134.92,135.98,138.63,139.49,148.00,174.37$; HRMS (ESI): $\mathrm{M}+\mathrm{H}^{+}$ found 436.1602; $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{1} \mathrm{~S}_{1}$ requires 436.1609.

2-(4-fluorobenzyl)-2-methyl- N-(quinolin-8-yl)-3-(thiophen-2-yl)propanamide (2r)

This amide was obtained $59.8 \mathrm{mg}(74 \%)$ as yellow viscous oil. $\mathrm{R}_{f}=0.34$ (petroleum ether/ethyl acetate $=60: 1$); δ_{H} $\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.37(\mathrm{~s}, 3 \mathrm{H}), 2.78,3.37\left(\mathrm{AB}, J_{A B}=13.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.99,3.65\left(\mathrm{AB}, J_{A B}=14.4 \mathrm{~Hz}, 2 \mathrm{H}\right)$, 6.81-6.85 (m, 4 H), 7.05-7.06 (m, 1 H), 7.12-7.16 (m, 2 H$), ~ .7 .38-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.56(\mathrm{~m}, 2 \mathrm{H}), 8.11-8.13$ (m, 1 H), 8.65-8.66 (m, 1 H$), 8.83-8.85(\mathrm{~m}, 1 \mathrm{H}), 9.96(\mathrm{~s}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right)$ 19.96, 40.27, 45.60, $50.00,114.86\left(\mathrm{~d}, J_{C-F}=21.0 \mathrm{~Hz}\right), 116.43,121.57\left(\mathrm{~d}, J_{C-F}=10.1 \mathrm{~Hz}\right), 124.28,126.64,127.18,127.36,127.86$, $131.67\left(\mathrm{~d}, J_{C-F}=7.8 \mathrm{~Hz}\right), 132.98\left(\mathrm{~d}, J_{C-F}=3.4 \mathrm{~Hz}\right), 134.09,136.16,138.70,139.33,148.17,161.76\left(\mathrm{~d}, J_{C-F}=\right.$ 242.8 Hz), 174.10; HRMS (ESI): $\mathrm{M}+\mathrm{H}^{+}$found 404.1355; $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~F}_{1} \mathrm{~N}_{2} \mathrm{O}_{1} \mathrm{~S}_{1}$ requires 404.1359 .

2-benzyl- N-(quinolin-8-yl)-2-(thiophen-2-ylmethyl)butanamide (2s)

This amide was obtained $45.6 \mathrm{mg}(57 \%)$ as yellow solid. $\mathrm{R}_{f}=0.31$ (petroleum ether/ethyl acetate $\left.=60: 1\right) ; \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.11(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.74-1.80(\mathrm{~m}, 2 \mathrm{H}), 2.97,3.45\left(\mathrm{AB}, J_{A B}=15.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.15-3.23$ (m, 2 H), 6.79-6.83 (m, 2 H), 7.02-7.09 (m, 4 H), 7.13-7.15 (m, 2 H), 7.31-7.34 (m, 1 H), 7.43-7.52 (m, 2 H), $8.05-8.07(\mathrm{~m}, 1 \mathrm{H}), 8.59-8.60(\mathrm{~m}, 1 \mathrm{H}), 8.79-8.81(\mathrm{~m}, 1 \mathrm{H}), 10.01(\mathrm{~s}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 8.74$, $25.20,35.16,41.72,53.40,116.44,121.41,121.47,124.08,126.46,126.54,127.15,127.44,127.86,128.09$, $130.15,134.24,136.12,137.24,138.75,139.51,148.12,174.09$; HRMS (ESI): $\mathrm{M}+\mathrm{H}^{+}$found 400.1607 ; $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{1} \mathrm{~S}_{1}$ requires 400.1609 .

This amide was obtained $47.9 \mathrm{mg}(62 \%)$ as brown viscous oil. $\mathrm{R}_{f}=0.38$ (petroleum ether/ethyl acetate $=60: 1$); δ_{H} ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}$) $0.99(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.05-2.21(\mathrm{~m}, 2 \mathrm{H}), 3.56,3.76\left(\mathrm{AB}, J_{A B}=14.8 \mathrm{~Hz}, 2 \mathrm{H}\right)$, 6.43-6.44 (m, 1 H), 6.71-6.73 (m, 1 H), 6.93-6.94 (m, 1 H), 7.19-7.48 (m, 8 H), 8.00-8.02 (m, 1 H), 8.51-8.52 $(\mathrm{m}, 1 \mathrm{H}), 8.70-8.72(\mathrm{~m}, 1 \mathrm{H}), 9.75(\mathrm{~s}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 8.96,27.02,35.46,56.65,116.07,121.28$, $121.47,124.02,126.16,127.08,127.34,127.64,127.89,128.69,134.60,136.09,138.63,139.13,142.27,148.20$, 174.01; HRMS (ESI): $\mathrm{M}+\mathrm{H}^{+}$found $386.1437 ; \mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{1} \mathrm{~S}_{1}$ requires 386.1453.

2-benzyl-2-methyl- N -(quinolin-8-yl)-3-(thiophen-2-yl)propanamide (2u)

This amide was obtained $45.5 \mathrm{mg}(59 \%)$ as yellow viscous oil. $\mathrm{R}_{f}=0.27$ (petroleum ether/ethyl acetate $=60: 1$); δ_{H} ($\left.400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.38(\mathrm{~s}, 3 \mathrm{H}), 2.86,3.39\left(\mathrm{AB}, J_{A B}=13.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.99,3.67\left(\mathrm{AB}, J_{A B}=14.4 \mathrm{~Hz}, 2 \mathrm{H}\right)$, 6.83-6.84 (m, 2 H), 7.04-7.05 (m, 1 H), 7.11-7.21 (m, 5H), 7.37-7.40(m, 1 H), 7.48-7.56 (m, 2 H$), 8.10-8.12$ $(\mathrm{m}, 1 \mathrm{H}), 8.65-8.66(\mathrm{~m}, 1 \mathrm{H}), 8.86-8.88(\mathrm{~m}, 1 \mathrm{H}), 10.00(\mathrm{~s}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 20.06,40.21,46.47$, $49.98,116.42,121.46,121.48,124.21,126.51,126.60,127.14,127.41,127.85,128.06,130.35,134.25,136.13$, 137.30, 138.75, 139.53, 148.12, 174.34; HRMS (ESI): $\mathrm{M}+\mathrm{H}^{+}$found $386.1452 ; \mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{~S}_{1} \mathrm{O}_{1}$ requires 386.1453.

2-methyl-2-((5-methylthiophen-2-yl)methyl)- N -(quinolin-8-yl)butanamide (2v)

This amide was obtained $46.1 \mathrm{mg}(68 \%)$ as yellow viscous oil. $\mathrm{R}_{f}=0.36$ (petroleum ether/ethyl acetate $=60: 1$); δ_{H} ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}$) $0.99(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.65-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.96-2.01(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3$ H), 2.97, $3.36\left(\mathrm{AB}, J_{A B}=14.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.48-6.49(\mathrm{~m}, 1 \mathrm{H}), 6.59-6.60(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.57(\mathrm{~m}, 3 \mathrm{H}), 8.14-8.16$ $(\mathrm{m}, 1 \mathrm{H}), 8.77-8.78(\mathrm{~m}, 1 \mathrm{H}), 8.84-8.86(\mathrm{~m}, 1 \mathrm{H}), 10.20(\mathrm{~s}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 9.13,15.16,20.67$, $32.61,39.64,48.88,116.35,121.28,121.49,124.59,126.75,127.47,127.91,134.48,136.23,137.43,138.32$, 138.80, 148.19, 175.09; HRMS (ESI): $\mathrm{M}+\mathrm{H}^{+}$found 338.1453; $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{~S}_{1} \mathrm{O}_{1}$ requires 338.1453

2-((5-bromothiophen-2-yl)methyl)-2-methyl- N-(quinolin-8-yl)butanamide (2w)

This amide was obtained $51.3 \mathrm{mg}(64 \%)$ as brown viscous oil. $\mathrm{R}_{f}=0.33$ (petroleum ether/ethyl acetate $=60: 1$); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.00(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.64-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.95-2.01(\mathrm{~m}, 1 \mathrm{H}), 2.93$, $3.41\left(\mathrm{AB}, J_{A B}=14.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.59-6.62(\mathrm{~m}, 1 \mathrm{H}), 6.78-6.79(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.58(\mathrm{~m}, 2 \mathrm{H})$, 8.15-8.17 (m, 1 H), 8.78-8.84 (m, 2 H), $10.20(\mathrm{~s}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 9.09,20.75,32.82,39.78$, $48.86,110.01,116.42,121.49,121.57,127.39,127.45,127.94,129.38,134.32,136.29,141.82,148.29,174.65$; HRMS (ESI): $\mathrm{M}+\mathrm{H}^{+}$found $402.0397 ; \mathrm{C}_{19} \mathrm{H}_{19} \mathrm{Br}_{1} \mathrm{~N}_{2} \mathrm{~S}_{1} \mathrm{O}_{1}$ requires 402.0401 .

3-(5-methylthiophen-2-yl)-2,2-diphenyl- N-(quinolin-8-yl)propanamide (2x)

This amide was obtained $73.4 \mathrm{mg}(82 \%)$ as yellow solid. $\mathrm{R}_{f}=0.39$ (petroleum ether/ethyl acetate $\left.=60: 1\right) ; \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 2.30(\mathrm{~s}, 3 \mathrm{H}), 4.03(\mathrm{~s}, 2 \mathrm{H}), 6.15-6.16(\mathrm{~m}, 1 \mathrm{H}), 6.33-6.34(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.47(\mathrm{~m}, 12 \mathrm{H})$, $7.50-7.54(\mathrm{~m}, 1 \mathrm{H}), 8.05-8.07(\mathrm{~m}, 1 \mathrm{H}), 8.52-8.53(\mathrm{~m}, 1 \mathrm{H}), 8.81-8.83(\mathrm{~m}, 1 \mathrm{H}), 10.17(\mathrm{~s}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 15.21,39.77,64.09,116.11,121.44,123.93,127.20,127.31,127.83,128.13,128.24,129.43$, 134.61, 135.99, 137.29, 138.79, 142.08, 148.09, 172.31; HRMS (ESI): $\mathrm{M}+\mathrm{H}^{+}$found 448.1596; $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{~S}_{1} \mathrm{O}_{1}$ requires 448.1609 .

5. Synthesis of N-heteroarylated products

2,2-dimethyl-3-(pyridin-2-yl)-N-(quinolin-8-yl)propanamide (3a)

This amide was obtained $25.1 \mathrm{mg}(41 \%)$ as yellow viscous oil. $\mathrm{R}_{f}=0.54$ (petroleum ether/ethyl acetate $=10: 1$); δ_{H} ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}$) $1.48(\mathrm{~s}, 6 \mathrm{H}), 3.24(\mathrm{~s}, 2 \mathrm{H}), 7.03-7.06(\mathrm{~m}, 1 \mathrm{H}), 7.19$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.41-7.56$ (m , $4 \mathrm{H}), 8.13-8.16(\mathrm{~m}, 1 \mathrm{H}), 8.48-8.49(\mathrm{~m}, 1 \mathrm{H}), 8.75-8.76(\mathrm{~m}, 1 \mathrm{H}), 8.81-8.83(\mathrm{~m}, 1 \mathrm{H}), 10.25(\mathrm{~s}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}(100$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 25.53,44.99,48.51,116.34,121.38,121.45,121.52,124.55,127.41,127.91,134.54,136.18$, 136.23, 138.83, 148.20, 148.78, 158.55, 175.95; HRMS (ESI): $\mathrm{M}+\mathrm{H}^{+}$found $305.1521 ; \mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{1}$ requires 305.1528 .

3-(5-bromopyridin-2-yl)-2,2-dimethyl- N -(quinolin-8-yl)propanamide (3b)

This amide was obtained $33.7 \mathrm{mg}(44 \%)$ as brown viscous oil. $\mathrm{R}_{f}=0.66$ (petroleum ether/ethyl acetate $=10: 1$); δ_{H}
(400 MHz; $\left.\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.40(\mathrm{~s}, 6 \mathrm{H}), 3.11(\mathrm{~s}, 2 \mathrm{H}), 7.01-7.03(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.50(\mathrm{~m}, 4 \mathrm{H}), 8.06-8.08(\mathrm{~m}, 1 \mathrm{H})$, $8.45(\mathrm{~s}, 1 \mathrm{H}), 8.68-8.72(\mathrm{~m}, 2 \mathrm{H}), 10.11(\mathrm{~s}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 25.58,44.94,47.93,116.36,118.67$, $121.50,121.57,125.78,127.37,127.92,134.40,136.26,138.66,138.78,148.27,149.91,157.26,175.58 ;$ HRMS (ESI): $\mathrm{M}+\mathrm{H}^{+}$found $383.0631 ; \mathrm{C}_{19} \mathrm{H}_{18} \mathrm{Br}_{1} \mathrm{~N}_{3} \mathrm{O}_{1}$ requires 383.0633 .

3-(1H-indol-5-yl)-2,2-dimethyl- N -(quinolin-8-yl)propanamide (3c)

This amide was obtained $41.2 \mathrm{mg}(60 \%)$ as yellow solid. $\mathrm{R}_{f}=0.43$ (petroleum ether/ethyl acetate $=10: 1$); δ_{H} (400 MHz; $\left.\mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.44(\mathrm{~s}, 6 \mathrm{H}), 3.15(\mathrm{~s}, 2 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 7.02-7.04(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 7.17-7.19$ $(\mathrm{m}, 1 \mathrm{H}), 7.37-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.56(\mathrm{~m}, 1 \mathrm{H}), 8.10-8.12(\mathrm{~m}, 1 \mathrm{H}), 8.18(\mathrm{br}, 1 \mathrm{H}), 8.67-$ $8.68(\mathrm{~m}, 1 \mathrm{H}), 8.85-8.87(\mathrm{~m}, 1 \mathrm{H}), 10.18(\mathrm{~s}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 25.27,45.24,47.05,102.30$, $110.44,116.31,121.27,121.44,122.12,124.17,124.67,127.42,127.81,127.90,129.06,134.63,134.76,136.16$, 138.82, 148.11, 176.73; HRMS (ESI): $\mathrm{M}+\mathrm{H}^{+}$found $343.1676 ; \mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{1}$ requires 343.1685.

2,2-dimethyl- N -(quinolin-8-yl)-3-(thiazol-2-yl)propanamide (3d)

This amide was obtained $32.3 \mathrm{mg}(52 \%)$ as yellow viscous oil. $\mathrm{R}_{f}=0.24$ (petroleum ether/ethyl acetate $=60: 1$); δ_{H} ($400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}$) $1.52(\mathrm{~s}, 6 \mathrm{H}), 3.48(\mathrm{~s}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.57(\mathrm{~m}$, $2 \mathrm{H}), 7.66(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.14-8.16(\mathrm{~m}, 1 \mathrm{H}), 8.77-8.79(\mathrm{~m}, 1 \mathrm{H}), 8.83-8.85(\mathrm{~m}, 1 \mathrm{H}), 10.28(\mathrm{~s}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}(100$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 25.56,43.49,45.09,116.45,119.23,121.56,121.59,127.43,127.92,134.39,136.29,138.79$, $142.07,148.28,166.78,175.21$; $\mathrm{HRMS}(\mathrm{ESI}): \mathrm{M}+\mathrm{H}^{+}$found $311.1088 ; \mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{1} \mathrm{~S}_{1}$ requires 311.1092 .

6. Application of Thiophenes Products

3-(5-bromothiophen-2-yl)-2,2-dimethylpropanoic acid (4)

3-(5-bromothiophen-2-yl)-2,2-dimethyl- N -(quinolin-8-yl)propanamide 2a ($155.2 \mathrm{mg}, 0.4 \mathrm{mmol}$) and NaOH (96 $\mathrm{mg}, 2.4 \mathrm{mmol}$) were heated in ethanol $(0.7 \mathrm{~mL})$ for 12 h at $100^{\circ} \mathrm{C}$. After completion, water was added to the reaction mixture followed by extraction with ether ($3 \times 5 \mathrm{~mL}$). These ether extracts were discarded. Aqueous layer was acidified with 1 N NaHSO 4 until $\mathrm{pH} \sim 2$ followed by extraction with ether ($3 \times 10 \mathrm{~mL}$). Ether extracts from acidified aqueous layer were combined and dried over MgSO_{4}. Evaporation of solvent gave $96.4 \mathrm{mg}(92 \%)$ of brown liquid. $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.25(\mathrm{~s}, 6 \mathrm{H}), 3.01(\mathrm{~s}, 2 \mathrm{H}), 6.57-6.58(\mathrm{~m}, 1 \mathrm{H}), 6.87-6.88(\mathrm{~m}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}$ ($100 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}$) 24.79, 40.40, 43.41, 110.21, 127.55, 129.46, 141.36, 182.86; Ms (EI): $m / z=264.3$ $[\mathrm{M}+\mathrm{H}]^{+}$.

2,2-dimethyl-3-(5-phenylthiophen-2-yl)-N-(quinolin-8-yl)propanamide (5)

To a solution of 3-(5-bromothiophen-2-yl)-2,2-dimethyl- N -(quinolin-8-yl)propanamide $\mathbf{2 a}$ ($77.6 \mathrm{mg}, 0.2 \mathrm{mmol}$) and phenylboronic acid ($28.6 \mathrm{mg}, 0.22 \mathrm{mmol}$, 1.1 equiv) in THF (0.5 mL), 2 M aqueous solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(42.4$ $\mathrm{mg}, 0.4 \mathrm{mmol}, 2$ equiv) and tetrakis(triphenylphosphine) palladium (0) (11.4 mg) were added. The reaction mixture was heated at $80^{\circ} \mathrm{C}$ for 12 h . After removing THF, the aqueous layer was extracted with ethyl acetate. The combined organic layer was dried over anhydrous magnesium sulfate and filtered. The solvent was removed, and the crude product was purified by column chromatography (silica gel) using hexane/ EtOAc (20:1, v/v) as eluent to yield $70.3 \mathrm{mg}(91 \%)$ as pale white oil. $\mathrm{R}_{f}=0.27$ (petroleum ether/ethyl acetate $\left.=60: 1\right) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$; $\left.\mathrm{Me}_{4} \mathrm{Si}\right) 1.42(\mathrm{~s}, 6 \mathrm{H}), 3.17(\mathrm{~s}, 2 \mathrm{H}), 6.71-6.72(\mathrm{~m}, 1 \mathrm{H}), 6.99-7.00(\mathrm{~m}, 1 \mathrm{H}), 7.10-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.50(\mathrm{~m}, 5$ H), 8.04-8.06 (m, 1 H$), 8.67-8.68(\mathrm{~m}, 1 \mathrm{H}), 8.76-8.78(\mathrm{~m}, 1 \mathrm{H}), 10.18(\mathrm{~s}, 1 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}^{2}\right)$ $25.44,41.16,45.10,116.44,121.47,121.53,122.70,125.53,127.04,127.44,127.93,128.05,128.72,134.49$, $134.54,136.25,138.82,139.66,142.93,148.24,175.65$; HRMS (ESI): $\mathrm{M}+\mathrm{H}^{+}$found $386.1448 ; \mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{~S}_{1} \mathrm{O}_{1}$ requires 386.1453 .

7. Deuterium Labeling Experiment

A $10-\mathrm{mL}$ Schlenk tube was charged with $\mathbf{1 h}(45.6 \mathrm{mg}, 0.15 \mathrm{mmol}),\left[\mathbf{D}_{\mathbf{3}}\right] \mathbf{- 1 h}(46.1 \mathrm{mg}, 0.15 \mathrm{mmol})$, 2-bromothiophene ($146.7 \mathrm{mg}, 0.9 \mathrm{mmol}$), $\mathrm{NiBr}_{2}(6.6 \mathrm{mg}, 0.03 \mathrm{mmol})$, $\mathrm{MesCOOH}(9.8 \mathrm{mg}, 0.06 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}$ $(63.6 \mathrm{mg}, 0.6 \mathrm{mmol})$, TBAI $(147.6 \mathrm{mg}, 0.4 \mathrm{mmol})$ and DMF $(0.7 \mathrm{~mL})$. The vial was evacuated and filled with N_{2}, and stirred at $160{ }^{\circ} \mathrm{C}$ for 1 h . The mixture was then cooled to room temperature, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$, filtered through a celite pad, analyzed by GC-MS, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel, eluting with EtOAc/Hexane (1:100 $\sim 1: 20, \mathrm{v} / \mathrm{v})$, to afford the heteroarylated product. The ratio of $\mathbf{2 t}$ and $\left[\mathbf{D}_{\mathbf{2}}\right] \mathbf{- 2 t}$ was determined by ${ }^{1} \mathrm{H}$ NMR.
The mixture of $\mathbf{2 t}$ and $\left[\mathbf{D}_{\mathbf{2}}\right] \mathbf{- 2 t}: \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 1.06(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.14-2.26(\mathrm{~m}, 2 \mathrm{H}), \mathbf{3 . 6 3}$, $\mathbf{3 . 8 3}\left(\mathrm{AB}, \boldsymbol{J}_{\boldsymbol{A} \boldsymbol{B}}=\mathbf{1 5 . 2} \mathrm{Hz}, 1.7 \mathrm{H}\right), 6.50-6.51(\mathrm{~m}, 1 \mathrm{H}), 6.78-6.81(\mathrm{~m}, 1 \mathrm{H}), 7.00-7.02(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.53(\mathrm{~m}, 8 \mathrm{H})$, 8.08-8.10(m, 1 H$), 8.58-8.59(\mathrm{~m}, 1 \mathrm{H}), 8.77-8.79(\mathrm{~m}, 1 \mathrm{H}), 9.82(\mathrm{~s}, 1 \mathrm{H})$.

Radical Trapping Experiment

A 10-mL Schlenk tube was charged with $\mathbf{1 a}(45.6 \mathrm{mg}, 0.2 \mathrm{mmol})$, TEMPO ($93.8 \mathrm{mg}, 0.6 \mathrm{mmol}, 3.0$ equiv) or BHT $(132.2 \mathrm{mg}, 0.6 \mathrm{mmol}, 3.0$ equiv) or DTBP $(87.7 \mathrm{mg}, 0.6 \mathrm{mmol}, 3.0$ equiv), 2-bromothiophene ($146.7 \mathrm{mg}, 0.9$ $\mathrm{mmol}), \mathrm{NiBr}_{2}(4.4 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathrm{MesCOOH}(6.6 \mathrm{mg}, 0.04 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(42.4 \mathrm{mg}, 0.4 \mathrm{mmol})$, TBAI (147.6 $\mathrm{mg}, 0.4 \mathrm{mmol})$ and DMF $(0.5 \mathrm{~mL})$. The vial was evacuated and filled with N_{2}, and stirred at $160^{\circ} \mathrm{C}$ for 24 h . The mixture was then cooled to room temperature, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$, filtered through a celite pad, analyzed by GC-MS, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel, eluting with EtOAc/hexane ($1: 100 \sim 1: 20, \mathrm{v} / \mathrm{v}$), to afford the heteroarylated product $\mathbf{2 a}$ (yield $=11 \%$ to 66%).

8. Reference

(a) Rui, S.; Laurean, I.; Arimasa, M.; Eiichi N. J. A. Chem. Soc. 2013, 135, 6030-6032;
(b) Wu, X-S.; Zhao, Y.; Ge, H-B. J. A. Chem. Soc. 2014, 136, 1789-1792;
(c) Aihara, Y.; Chatani, N. J. A. Chem. Soc. 2014, 136, 898-901.
(d) Lee, W.; Lee, D.-W.; Lee, M.; Hong, J.-I. Chem. Commun. 2014, 50, 14851.

9. Copies of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR Charts for the Compounds

N-(quinolin-8-yl)pivalamide (1a)

$\stackrel{\stackrel{?}{4}}{\stackrel{1}{4}}$

2－methyl－2－phenyl－ N －（quinolin－8－yl）propanamide（1b）

E芯芯

2,2-dimethyl- N-(quinolin-8-yl)butanamide (1c)

1-methyl- N-(quinolin-8-yl)cyclohexanecarboxamide (1d)

2,2-diphenyl- N -(quinolin-8-yl)propanamide (1e)

2,2-dimethyl-3-(naphthalen-2-yl)- N -(quinolin-8-yl)propanamide (1f)

3-(4-fluorophenyl)-2,2-dimethyl- N -(quinolin-8-yl)propanamide (1g)

$\stackrel{y}{\square}$

2-methyl-2-phenyl- N -(quinolin-8-yl)butanamide (1h)

$\underset{\sim}{\underset{\sim}{x}}$		 	MNNANMiNigis

[D_{3}]-2-methyl-2-phenyl-N-(quinolin-8-yl)butanamide ([$\left.\mathrm{D}_{3}\right]$-1h)

若
$\stackrel{\text { 帚 }}{1}$
Ch

2-benzyl-2-methyl- N -(quinolin-8-yl)butanamide (1i)

2,2-dimethyl-3-phenyl- N -(quinolin-8-yl)propanamide (1j)

$\frac{\stackrel{2}{8}}{\frac{1}{1}}$

2,2-dimethyl- N -(quinolin-8-yl)-3-(thiophen-2-yl)propanamide (2ba)

2-methyl- N -(quinolin-8-yl)-3-(thiophen-2-yl)-2-(thiophen-2-ylmethyl)propanamide (2bb)

8	58808
9	,

2，2－dimethyl－3－（5－methylthiophen－2－yl）－N－（quinolin－8－yl）propanamide（2ca）

率高長

2-methyl-3-(5-methylthiophen-2-yl)-2-((5-methylthiophen-2-yl)methyl)-N-(quinolin-8-yl)propanamide (2cb)

	$\frac{0}{\overline{3}}$	

3-(5-acetylthiophen-2-yl)-2,2-dimethyl-N-(quinolin-8-yl)propanamide (2d)

	 		¢	8

S39 / S66

3-(5-chlorothiophen-2-yl)-2,2-dimethyl-N-(quinolin-8-yl)propanamide (2e)

$\stackrel{\%}{\%}$

3-(5-formylthiophen-2-yl)-2,2-dimethyl- N-(quinolin-8-yl)propanamide (2f)

ethyl 5-(2,2-dimethyl-3-oxo-3-(quinolin-8-ylamino)propyl)thiophene-2-carboxylate (2g)

3-(benzo[b]thiophen-2-yl)-2,2-dimethyl- N-(quinolin-8-yl)propanamide (2h)

 $\stackrel{\%}{\tilde{\sigma}} \quad \frac{\ddot{\sigma}}{1}$

3-(5'-bromo-[2,2'-bithiophen]-5-yl)-2,2-dimethyl-N-(quinolin-8-yl)propanamide (2i)

2,2-dimethyl-N-(quinolin-8-yl)-3-(thiophen-3-yl)propanamide (2ja)

S45 / S66

2-methyl- N-(quinolin-8-yl)-3-(thiophen-3-yl)-2-(thiophen-3-ylmethyl)propanamide (2jb)

$\frac{8}{2}$	$\frac{\frac{5}{6}}{\frac{9}{i}}$	

2-methyl- N -(quinolin-8-yl)-2-(thiophen-2-ylmethyl)butanamide (2ma)

N-(quinolin-8-yl)-2,2-bis(thiophen-2-ylmethyl)butanamide (2mb)

2-methyl-2-phenyl- N-(quinolin-8-yl)-3-(thiophen-2-yl)propanamide (2na)

$\begin{aligned} & \text { \% } \\ & \stackrel{y}{\circ} \end{aligned}$		\& -	

2－phenyl－N－（quinolin－8－yl）－3－（thiophen－2－yl）－2－（thiophen－2－ylmethyl）propanamide（2nb）

ल゙弗然

S50／S66
N-(quinolin-8-yl)-1-(thiophen-2-ylmethyl)cyclohexanecarboxamide (20)

2,2-diphenyl- N-(quinolin-8-yl)-3-(thiophen-2-yl)propanamide (2p)

 $\xlongequal{\xi}$

2-methyl-3-(naphthalen-2-yl)- N -(quinolin-8-yl)-2-(thiophen-2-ylmethyl)propanamide (2q)

2-(4-fluorobenzyl)-2-methyl- N-(quinolin-8-yl)-3-(thiophen-2-yl)propanamide (2r)

$\frac{8}{1}$

2-benzyl- N-(quinolin-8-yl)-2-(thiophen-2-ylmethyl)butanamide (2s)

S55 / S66

2-phenyl- N-(quinolin-8-yl)-2-(thiophen-2-ylmethyl)butanamide (2t)

2-benzyl-2-methyl- N -(quinolin-8-yl)-3-(thiophen-2-yl)propanamide (2u)

2-methyl-2-((5-methylthiophen-2-yl)methyl)-N-(quinolin-8-yl)butanamide (2v)

2-((5-bromothiophen-2-yl)methyl)-2-methyl- N -(quinolin-8-yl)butanamide (2w)

筞	范	¢	-	\%	\%		-

3-(5-methylthiophen-2-yl)-2,2-diphenyl- N-(quinolin-8-yl)propanamide (2x)

2,2-dimethyl-3-(pyridin-2-yl)-N-(quinolin-8-yl)propanamide (3a)

ำ

3-(5-bromopyridin-2-yl)-2,2-dimethyl- N -(quinolin-8-yl)propanamide (3b)

S62 / S66

3-(1H-indol-5-yl)-2,2-dimethyl- N -(quinolin-8-yl)propanamide (3c)

$\frac{1}{1}$		$\stackrel{8}{1}$

S63 / S66

2,2-dimethyl- N -(quinolin-8-yl)-3-(thiazol-2-yl)propanamide (3d)

3-(5-bromothiophen-2-yl)-2,2-dimethylpropanoic acid (4)

2,2-dimethyl-3-(5-phenylthiophen-2-yl)-N-(quinolin-8-yl)propanamide (5)

