Supporting Information

Visible-Light-Promoted Photoredox Syntheses of α,β -Epoxy Ketones from Styrenes and Benzaldehydes under Alkaline Condition

Jing Li and David Zhigang Wang*

Key Laboratory of Chemical Genomics,
School of Chemical Biology and Biotechnology,
Shenzhen Graduate School of Peking University, Shenzhen University Town,
Nanshan District, Shenzhen, China 518055

E-mail: dzw@pkusz.edu.cn

Table of Contents

(53 Pages)

Materials and methods		
Table 1. Identification of the optimal reaction conditions	S3	
General procedure for visible-light-promoted photoredox reactions	S4	
Examinations of other alkenes and aldehydes under standard conditions	S5	
Experimental probes on reaction mechanism	S 6	
¹ H NMR and ¹³ C NMR spectra data of the products	S8	
Copies of ¹ H NMR and ¹³ C NMR spectra	S19	

Materials and methods

All reactions were carried out under a nitrogen atmosphere with dry solvents under anhydrous conditions, unless otherwise noted. All the chemicals were purchased commercially, and used without further purification. Anhydrous THF and toluene were distilled from sodium-benzophenone. Dichloromethane and acetonitrile were distilled from calcium hydride. Thin-layer chromatography (TLC) was conducted with 0.25 mm Tsingdao silica gel plates (60F-254) and visualized by exposure to UV light (254 nm) or stained with potassium permanganate. Flash column chromatography was performed using Tsingdao silica gel (60, particle size 0.040-0.063 mm). Reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. ¹H NMR spectra were recorded on Bruker spectrometers (at 300, 400 or 500 MHz) and are reported relative to deuterated solvent signals. Data for ¹H NMR spectra are reported as follows: chemical shift (δ ppm), multiplicity, coupling constant (Hz) and integration. ¹³C NMR spectrawere recorded on Bruker Spectrometers (at 75, 100 or 125 MHz). Data for ¹³C NMR spectra are reported in terms of chemical shift. Mass spectrometric data were obtained using Bruker Apex IV RTMS. The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad.

Table 1. Identification of the optimal reaction conditions

entry	catalyst	base	additive	solvent	oxidant ^f	yield ^g (%)
1	Ru(bpy) ₃ Cl ₂	K ₂ CO ₃	-	MeCN	t-BuOOH	39
2	$Ru(bpy)_3Cl_2$	Ēt ₃ N	-	MeCN	t-BuOOH	trace
3	$Ru(bpy)_3Cl_2$	Cs ₂ CO ₃	-	MeCN	<i>t</i> -BuOOH	61
4 ^a	$Ru(bpy)_3Cl_2$	Cs_2CO_3	=	MeCN	t-BuOOH	46
5^b	Ru(bpy) ₃ Cl ₂	Cs ₂ CO ₃	$Mg(CIO_4)_2$	MeCN	t-BuOOH	trace
6	Ru(bpy) ₃ Cl ₂	Cs_2CO_3	4 Å MS	MeCN	<i>t-</i> BuOOH	82
7	Ru(bpy) ₃ Cl ₂	Cs_2CO_3	4 Å MS	DMSO	<i>t</i> -BuOOH	trace
8	Ru(bpy) ₃ Cl ₂	Cs_2CO_3	4 Å MS	DMF	<i>t</i> -BuOOH	37
9	Ru(bpy) ₃ Cl ₂	Cs_2CO_3	4 Å MS	toluene	<i>t</i> -BuOOH	trace
10	Ru(bpy) ₃ Cl ₂	Cs_2CO_3	4 Å MS	CH_2CI_2	<i>t-</i> BuOOH	trace
11	Ru(bpy) ₃ Cl ₂	Cs_2CO_3	4 Å MS	Et ₂ O	<i>t</i> -BuOOH	21
12	Ru(bpy) ₃ Cl ₂	Cs_2CO_3	4 Å MS	MeOH	<i>t</i> -BuOOH	trace
13	Ru(bpy) ₃ Cl ₂	Cs_2CO_3	4 Å MS	THF	<i>t-</i> BuOOH	35
14	Ru(bpy) ₃ Cl ₂	Cs_2CO_3	4 Å MS	MeCN	$(BzO)_2$	0
15	Ru(bpy) ₃ Cl ₂	Cs_2CO_3	4 Å MS	MeCN	(<i>t</i> -BuO) ₂	0
16	Ru(bpy) ₃ Cl ₂	Cs_2CO_3	4 Å MS	MeCN	$K_2S_2O_8$	0
17	Ru(bpy) ₃ Cl ₂	Cs_2CO_3	4 Å MS	MeCN	H_2O_2	0
18	Ru(bpy) ₃ Cl ₂	Cs_2CO_3	4 Å MS	MeCN	<i>m</i> -CPBA	0
19	lr(ppy)₃	Cs_2CO_3	4 Å MS	MeCN	<i>t</i> -BuOOH	trace
20	Eosin Y	Cs_2CO_3	4 Å MS	MeCN	<i>t</i> -BuOOH	0
21 ^c	Ru(bpy) ₃ Cl ₂	Cs_2CO_3	4 Å MS	MeCN	t-BuOOH	0
22	-	Cs_2CO_3	4 Å MS	MeCN	<i>t</i> -BuOOH	0
23	Ru(bpy) ₃ Cl ₂	Cs_2CO_3	4 Å MS	MeCN	-	0
24	Ru(bpy) ₃ Cl ₂	DBU	4 Å MS	MeCN	t-BuOOH	trace
25	Ru(bpy) ₃ Cl ₂	pyridine	4 Å MS	MeCN	t-BuOOH	0
26	Ru(bpy) ₃ Cl ₂	NaH	4 Å MS	MeCN	t-BuOOH	0
27	Ru(bpy) ₃ Cl ₂	NaHCO ₃	4 Å MS	MeCN	t-BuOOH	trace
28	Ru(bpy) ₃ Cl ₂	Na ₂ CO ₃	4 Å MS	MeCN	t-BuOOH	32
29	Ru(bpy) ₃ Cl ₂	CsF	4 Å MS	MeCN	t-BuOOH	52
30	Ru(bpy) ₃ Cl ₂	LiOH	4 Å MS	MeCN	t-BuOOH	54
31	Ru(bpy) ₃ Cl ₂	NaOH	4 Å MS	MeCN	t-BuOOH	51
32	Ru(bpy) ₃ Cl ₂	KOH	4 Å MS	MeCN	t-BuOOH	21
33	Ru(bpy) ₃ Cl ₂	LiO <i>t</i> -Bu	4 Å MS	MeCN	t-BuOOH	36
34	Ru(bpy) ₃ Cl ₂	NaOt-Bu	4 Å MS	MeCN	t-BuOOH	0
35	Ru(bpy) ₃ Cl ₂	KO <i>t-</i> Bu	4 Å MS	MeCN	t-BuOOH	0
36 ^d	Ru(bpy) ₃ Cl ₂	Cs ₂ CO ₃	4 Å MS	MeCN	t-BuOOH	64
37 ^e	Ru(bpy) ₃ Cl ₂	Cs ₂ CO ₃	4 Å MS	MeCN	t-BuOOH	61

 $[^]a\mathrm{Cs_2CO_3}$ (0.5 equiv) was used. $^b\mathrm{Mg}(\mathrm{CIO_4})_2$ (1.0 equiv) was used. $^c\mathrm{No}$ light. $^d\mathbf{2a}$ (2.0 equiv) was used. $^et\mathrm{-BuOOH}$ 70% in water.

 f_t -BuOOH 5.5 M in decane. g_t Yield was determined by f_t 1 NMR.

General procedure for visible-light-promoted photoredox reactions

To a solution of alkenes compounds (0.2 mmol, 1.0 equiv), aldehydes compounds (0.8 mmol, 4.0 equiv), Ru(bpy)₃Cl₂ (0.004 mmol, 0.02 equiv), 4 Å MS (80 mg, 2 wt %), Cs₂CO₃ (0.4 mmol, 2.0 equiv) in a solvent of MeCN (4.0 mL) was added t-BuOOH (5.5 M in decane) (0.8 mmol, 4.0 equiv). Then the reaction was irradiated by a household bulb (45 W) under a balloon-argon atmosphere at room temperature. The reaction was monitored by TLC to establish the consumption of starting material. After the reaction was complete, the reaction mixture was filtrated through celite and washed with ether. Then the filtrate was concentrated under reduced pressure, and the crude product was purified by flash column chromatography on silica gel (n-Hexane/Ethyl Acetate = 20/1) to afford desired pure products in 51–86% isolated yields. $^{1-4}$

Examinations of other alkenes and aldehydes under standard conditions

1. Examinations of other alkenes

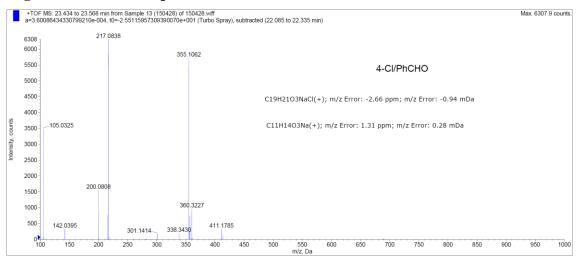
2. Examinations of other aldehydes

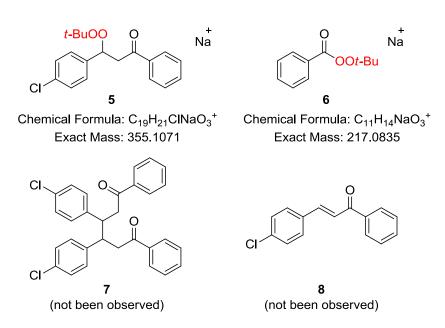
Ru(bpy)₃Cl₂ (0.02 equiv)

$$t$$
-BuOOH (4.0 equiv), Cs₂CO₃ (2.0 equiv)

+ R CHO

4 Å MS (2 wt %), MeCN
concn = 0.05 M, RT, 36 h
(4.0 equiv)


 v isible light (45 W house bulb)


CHO
CHO
CHO
CHO
CHO
nc CHO
nc CHO
nc CHO
nc CHO
nc CHO
nc CHO

Other alkenes and aldehydes had been examined. However, we did not obtain desired products under standard comditions.

Experimental probes on reaction mechanism

High resolution mass spectrum f 5 and 6

Both structures $\mathbf{5}$ and $\mathbf{6}$ were detected by high-resolution mass spectrum (HRMS) analysis of the reaction mixture when the base Cs_2CO_3 was absent. Structure $\mathbf{5}$ was inseparable and labile. Futhermore, structures $\mathbf{7}$ and $\mathbf{8}$ were not detected by HRMS and NMR under standard conditions.

Structure 6 was isolated in 62% yield under the above condition.

¹H NMR and ¹³C NMR spectra data of products

3-(2-fluorophenyl)oxiran-2-yl)(phenyl)methanone (**3a):** ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, J = 7.5 Hz, 2H), 7.61 (t, J = 7.4 Hz, 1H), 7.48 (t, J = 7.7 Hz, 2H), 7.34 (dd, J = 13.6, 7.0 Hz, 2H), 7.18 (t, J = 7.5 Hz, 1H), 7.11 – 7.04 (m, 1H), 4.33 (s, 1H), 4.30 (d, J = 1.7 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 192.8, 162.6, 160.2, 135.2, 134.0, 130.3, 128.8, 128.2, 126.3, 124.5, 122.9, 115.5, 115.3, 59.8, 54.1; HRMS calculated for C₁₅H₁₁FO₂Na (M + Na⁺): 265.0635, found: 265.0635. (Pale yellow oil, 30.5 mg, 63% isolated yield).

3-(3-fluorophenyl)oxiran-2-yl)(phenyl)methanone (3b): ¹H NMR (400 MHz, CDCl₃) δ 8.06 – 7.94 (m, 2H), 7.63 (t, J = 7.4 Hz, 1H), 7.50 (t, J = 7.7 Hz, 2H), 7.37 (ddd, J = 8.8, 7.9, 5.7 Hz, 1H), 7.17 (d, J = 7.7 Hz, 1H), 7.12 – 7.01 (m, 2H), 4.26 (d, J = 1.8 Hz, 1H), 4.08 (d, J = 1.5 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 192.6, 164.2, 161.8, 138.1, 135.2, 134.0, 130.4, 128.8, 128.3, 121.5, 116.1, 115.8, 112.6, 112.3, 60.7, 58.5; HRMS calculated for C₁₅H₁₁FO₂Na (M + Na⁺): 265.0635, found: 265.0636. (White solid, 29.6 mg, 61% isolated yield).

3-(4-fluorophenyl)oxiran-2-yl)(phenyl)methanone (**3c):** ¹H NMR (400 MHz, CDCl₃) δ 8.03 – 7.96 (m, 2H), 7.62 (t, J = 7.4 Hz, 1H), 7.48 (t, J = 7.7 Hz, 2H), 7.37 – 7.31 (m, 2H), 7.08 (dd, J = 12.0, 5.3 Hz, 2H), 4.26 (d, J = 1.8 Hz, 1H), 4.06 (d, J = 1.7 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 192.8, 164.3, 161.8, 135.3, 134.0, 131.2, 128.8, 128.2, 127.5, 115.8, 115.6, 60.8, 58.7; HRMS calculated for C₁₅H₁₁FO₂Na (M + Na⁺): 265.0635, found: 265.0633. (Pale yellow oil, 30.5 mg, 63% isolated yield).

3-(2-chlorophenyl)oxiran-2-yl)(phenyl)methanone (**3d):** ¹H NMR (300 MHz, CDCl₃) δ 8.09 – 7.99 (m, 2H), 7.62 (t, J = 7.4 Hz, 1H), 7.49 (t, J = 7.6 Hz, 2H), 7.39 (tt, J = 5.7, 3.0 Hz, 2H), 7.31 (dt, J = 4.7, 3.6 Hz, 2H), 4.40 (d, J = 1.7 Hz, 1H), 4.17 (d, J = 1.8 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 192.8, 135.3, 134.1, 133.7, 133.3, 129.8, 129.3, 128.9, 128.4, 127.3, 126.1, 60.0, 57.1; HRMS calculated for C₁₅H₁₁ClO₂Na (M + Na⁺): 281.0340, found: 281.0338. (Pale yellow oil, 32.1 mg, 62% isolated yield).

3-(3-chlorophenyl)oxiran-2-yl)(phenyl)methanone (**3e):** ¹H NMR (400 MHz, CDCl₃) δ 8.04 – 7.95 (m, 2H), 7.62 (dd, J = 10.6, 4.3 Hz, 1H), 7.49 (t, J = 7.7 Hz, 2H), 7.37 – 7.23 (m, 4H), 4.26 (d, J = 1.8 Hz, 1H), 4.05 (d, J = 1.7 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 192.5, 137.5, 135.2, 134.8, 134.0, 130.0, 129.1, 128.8, 128.3, 125.6, 124.0, 60.7, 58.4; HRMS calculated for C₁₅H₁₁ClO₂Na (M + Na⁺): 281.0340, found: 281.0338. (Pale yellow oil, 35.2 mg, 68% isolated yield).

3-(4-chlorophenyl)oxiran-2-yl)(phenyl)methanone (**3f):** ¹H NMR (400 MHz, CDCl₃) δ 8.05 – 7.94 (m, 2H), 7.63 (t, J = 7.4 Hz, 1H), 7.49 (t, J = 7.7 Hz, 2H), 7.38 (dd, J = 6.2, 4.6 Hz, 2H), 7.30 (d, J = 8.5 Hz, 2H), 4.25 (d, J = 1.8 Hz, 1H), 4.06 (d, J = 1.7 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 192.6, 135.3, 134.8, 134.0, 133.9, 128.9, 128.8, 128.2, 127.0, 60.8, 58.6; HRMS calculated for C₁₅H₁₁ClO₂Na (M + Na⁺): 281.0340, found: 281.0341. (Pale yellow oil, 37.2 mg, 72% isolated yield).

3-(2-bromophenyl)oxiran-2-yl)(phenyl)methanone (3g): ¹H NMR (500 MHz, CDCl₃) δ 8.08 – 8.00 (m, 2H), 7.61 (t, J = 7.4 Hz, 1H), 7.54 (d, J = 7.9 Hz, 1H), 7.48 (t, J = 7.8 Hz, 2H), 7.40 – 7.31 (m, 2H), 7.22 (td, J = 8.0, 2.1 Hz, 1H), 4.32 (d, J = 1.7 Hz, 1H), 4.15 (d, J = 1.9 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 192.7, 135.4, 135.3, 134.0, 132.5, 130.1, 128.8, 128.4, 127.8, 126.4, 122.5, 60.0, 59.3; HRMS calculated for C₁₅H₁₁BrO₂Na (M + Na⁺): 324.9835, found: 324.9835. (Pale yellow oil, 44.9 mg, 74% isolated yield).

3-(3-bromophenyl)oxiran-2-yl)(phenyl)methanone (3h): 1 H NMR (400 MHz, CDCl₃) δ 8.04 – 7.91 (m, 2H), 7.61 (t, J = 7.4 Hz, 1H), 7.47 (dd, J = 9.1, 4.3 Hz, 4H), 7.26 (dt, J = 14.5, 7.8 Hz, 2H), 4.25 (d, J = 1.8 Hz, 1H), 4.02 (d, J = 1.6 Hz, 1H); 13 C NMR (101 MHz, CDCl₃) δ 192.5, 137.8, 135.2, 134.0, 132.0, 130.3, 128.8, 128.5, 128.3, 124.5, 122.9, 60.7, 58.3; HRMS calculated for C₁₅H₁₁BrO₂Na (M + Na⁺): 324.9835, found: 324.9834. (Pale yellow oil, 44.3 mg, 73% isolated yield).

3-(4-bromophenyl)oxiran-2-yl)(phenyl)methanone (**3i):** ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 7.5 Hz, 2H), 7.62 (t, J = 7.4 Hz, 1H), 7.55 – 7.43 (m, 4H), 7.25 (t, J = 6.2 Hz, 2H), 4.25 (d, J = 1.8 Hz, 1H), 4.04 (d, J = 1.4 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 192.6, 135.2, 134.5, 134.0, 131.9, 128.8, 128.2 127.3, 123.0, 60.8, 58.6; HRMS calculated for C₁₅H₁₁BrO₂Na (M + Na⁺): 324.9835, found: 324.9833. (Pale yellow oil, 50.3 mg, 83% isolated yield).

phenyl(3-(o-tolyl)oxiran-2-yl)methanone (**3j):** ¹H NMR (500 MHz, CDCl₃) δ 8.09 – 8.01 (m, 2H), 7.64 (t, J = 7.4 Hz, 1H), 7.51 (t, J = 7.8 Hz, 2H), 7.34 (dd, J = 6.9, 2.1 Hz, 1H), 7.29 – 7.23 (m, 2H), 7.21 – 7.17 (m, 1H), 4.23 (d, J = 1.7 Hz, 1H), 4.21 (d, J = 1.9

Hz, 1H), 2.37 (s, 3H); 13 C NMR (126 MHz, CDCl₃) δ 193.3, 136.3, 135.4, 134.0, 133.9, 130.1, 128.9, 128.5, 128.3, 126.3, 124.2, 60.1, 57.7, 18.8; HRMS calculated for $C_{16}H_{14}O_2Na$ (M + Na⁺): 261.0886, found: 261.0884. (Pale yellow oil, 40.5 mg, 85% isolated yield).

phenyl(3-(*m*-tolyl)oxiran-2-yl)methanone (3k): 1 H NMR (400 MHz, CDCl₃) δ 8.05 – 7.97 (m, 2H), 7.67 – 7.56 (m, 1H), 7.48 (t, J = 7.7 Hz, 2H), 7.33 – 7.26 (m, 1H), 7.19 (t, J = 6.5 Hz, 3H), 4.30 (d, J = 1.9 Hz, 1H), 4.04 (d, J = 1.8 Hz, 1H), 2.38 (s, 3H); 13 C NMR (101 MHz, CDCl₃) δ 193.0, 138.5, 135.4, 135.3, 133.9, 129.7, 128.8, 128.6, 128.2, 126.2, 122.9, 60.9, 59.4, 21.3; HRMS calculated for C₁₆H₁₄O₂Na (M + Na⁺): 261.0886, found: 261.0888. (White solid, 32.4 mg, 68% isolated yield).

phenyl(3-(p-tolyl)oxiran-2-yl)methanone (3l): ¹H NMR (400 MHz, CDCl₃) δ 8.01 (dd, J = 8.3, 1.1 Hz, 2H), 7.64 – 7.58 (m, 1H), 7.48 (dd, J = 10.7, 4.7 Hz, 2H), 7.24 (dd, J = 21.9, 8.0 Hz, 4H), 4.30 (d, J = 1.9 Hz, 1H), 4.04 (d, J = 1.8 Hz, 1H), 2.38 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 193.1, 139.0, 135.4, 133.8, 132.4, 129.4, 128.8, 128.2, 125.7, 61.0, 59.3, 21.2; HRMS calculated for C₁₆H₁₄O₂Na (M + Na⁺): 261.0886, found: 261.0883. (Pale yellow oil, 36.2 mg, 76% isolated yield).

(3-(4-methoxyphenyl)oxiran-2-yl)(phenyl)methanone (3m): 1 H NMR (400 MHz, CDCl₃) δ 8.05 – 7.96 (m, 2H), 7.61 (dd, J = 10.6, 4.3 Hz, 1H), 7.49 (t, J = 7.7 Hz, 2H), 7.34 – 7.27 (m, 2H), 6.97 – 6.90 (m, 2H), 4.29 (d, J = 1.9 Hz, 1H), 4.03 (d, J = 1.8 Hz, 1H), 3.83 (s, 3H); 13 C NMR (101 MHz, CDCl₃) δ 193.2, 160.2, 135.4, 133.8, 128.7, 128.2, 127.2, 127.1, 114.1, 61.0, 59.3, 55.3; HRMS calculated for $C_{16}H_{14}O_{3}Na$ (M +

Na⁺): 277.0835, found: 277.0837. (Pale yellow oil, 38.6 mg, 76% isolated yield).

(3-(4-(*tert*-butyl)phenyl)oxiran-2-yl)(phenyl)methanone (3n): 1 H NMR (500 MHz, CDCl₃) δ 8.01 (d, J = 8.0 Hz, 2H), 7.61 (t, J = 7.4 Hz, 1H), 7.51 – 7.41 (m, 4H), 7.32 (d, J = 8.2 Hz, 2H), 4.33 (s, 1H), 4.06 (s, 1H), 1.34 (s, 9H); 13 C NMR (126 MHz, CDCl₃) δ 193.2, 152.3, 135.5, 133.9, 132.5, 128.8, 128.3, 125.7, 125.6, 60.9, 59.4, 34.7, 31.3; HRMS calculated for $C_{19}H_{20}O_{2}Na$ (M + Na⁺): 303.1356, found: 303.1356. (Pale yellow oil, 35.9 mg, 64% isolated yield).

(3-(4-(chloromethyl)phenyl)oxiran-2-yl)(phenyl)methanone (3o): 1 H NMR (300 MHz, CDCl₃) δ 8.07 – 7.94 (m, 2H), 7.63 (dd, J = 10.5, 4.3 Hz, 1H), 7.56 – 7.32 (m, 6H), 4.61 (s, 2H), 4.29 (d, J = 1.8 Hz, 1H), 4.08 (d, J = 1.7 Hz, 1H); 13 C NMR (75 MHz, CDCl₃) δ 192.8, 138.4, 135.8, 135.3, 134.1, 129.0, 128.9, 128.3, 126.2, 61.0, 59.0, 45.7; HRMS calculated for C₁₆H₁₃ClO₂Na (M + Na⁺): 295.0496, found: 295.0499. (Pale yellow oil, 33.3 mg, 61% isolated yield).

phenyl(3-phenyloxiran-2-yl)methanone (3p): 1 H NMR (500 MHz, CDCl₃) δ 8.07 – 7.95 (m, 2H), 7.62 (dd, J = 10.6, 4.3 Hz, 1H), 7.49 (t, J = 7.8 Hz, 2H), 7.43 – 7.34 (m, 5H), 4.30 (d, J = 1.9 Hz, 1H), 4.08 (d, J = 1.7 Hz, 1H); 13 C NMR (126 MHz, CDCl₃) δ 193.1, 135.5, 134.0, 129.0, 128.9, 128.8, 128.3, 125.8, 61.0, 59.4; HRMS calculated for $C_{15}H_{12}O_2Na$ (M + Na^+): 247.0730, found: 247.0730. (White solid, 29.6 mg, 66% isolated yield).

(3-(naphthalen-2-yl)oxiran-2-yl)(phenyl)methanone (3q): 1 H NMR (400 MHz, CDCl₃) δ 8.07 – 7.98 (m, 2H), 7.93 – 7.82 (m, 4H), 7.62 (t, J = 7.4 Hz, 1H), 7.55 – 7.39 (m, 5H), 4.40 (d, J = 1.8 Hz, 1H), 4.25 (d, J = 1.6 Hz, 1H); 13 C NMR (101 MHz, CDCl₃) δ 192.9, 135.4, 133.9, 133.6, 133.0, 132.8, 128.8, 128.7, 128.3, 127.8, 127.7, 126.6, 126.5, 125.8, 122.3, 61.1, 59.5; HRMS calculated for $C_{19}H_{15}O_{2}$ (M + H⁺): 275.1067, found: 275.1067. (Pale yellow oil, 31.8 mg, 58% isolated yield).

(3-methyl-3-phenyloxiran-2-yl)(phenyl)methanone (3r): 1 H NMR (500 MHz, CDCl₃) δ 8.01 – 7.91 (m, 2H), 7.61 (d, J = 7.4 Hz, 1H), 7.52 – 7.46 (m, 4H), 7.43 (t, J = 7.5 Hz, 2H), 7.38 (d, J = 7.2 Hz, 1H), 4.16 (s, 1H), 1.64 (s, 3H); 13 C NMR (126 MHz, CDCl₃) δ 193.0, 140.4, 135.6, 133.9, 128.9, 128.7, 128.2, 125.1, 66.8, 62.8, 17.0; 1 H NMR (500 MHz, CDCl₃) δ 7.86 – 7.78 (m, 2H), 7.53 (t, J = 7.4 Hz, 1H), 7.41 (t, J =

7.7 Hz, 2H), 7.34 – 7.29 (m, 2H), 7.22 – 7.12 (m, 3H), 4.34 (s, 1H), 1.93 (s, 3H); 13 C NMR (126 MHz, CDCl₃) δ 192.5, 136.7, 135.5, 133.5, 128.6, 128.1, 128.0, 127.8, 126.2, 66.1, 64.5, 24.4; HRMS calculated for $C_{16}H_{14}O_2Na$ (M + Na⁺): 261.0886, found: 261.0890. (Pale yellow oil, 30.0 mg, 63% isolated yield, dr = 1:1).

(3,3-diphenyloxiran-2-yl)(phenyl)methanone (3s): 1 H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 7.4 Hz, 2H), 7.58 (t, J = 7.4 Hz, 1H), 7.49 – 7.30 (m, 9H), 7.24 – 7.19 (m, 3H), 4.68 (s, 1H); 13 C NMR (101 MHz, CDCl₃) δ 191.8, 139.0, 135.6, 134.8, 133.6, 128.7, 128.6, 128.5, 128.2, 128.0, 127.9, 126.8, 67.6, 66.7; HRMS calculated for $C_{21}H_{16}O_{2}Na$ (M + Na⁺): 323.1043, found: 323.1045. (White solid, 38.4 mg, 64% isolated yield).

phenyl(3-(pyridin-4-yl)oxiran-2-yl)methanone (3t): 1 H NMR (500 MHz, CDCl₃) δ

8.59 (d, J = 5.3 Hz, 2H), 7.95 (d, J = 7.6 Hz, 2H), 7.58 (d, J = 7.4 Hz, 1H), 7.45 (t, J = 7.7 Hz, 2H), 7.26 (d, J = 5.2 Hz, 2H), 4.23 (d, J = 1.1 Hz, 1H), 4.04 (s, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 192.1, 150.1, 144.6, 135.2, 134.2, 128.9, 128.3, 120.5, 60.5, 57.5; HRMS calculated for C₁₄H₁₁NO₂Na (M + Na⁺): 248.0682, found: 248.0683. (Yellow solid, 28.4 mg, 63% isolated yield).

(3-(perfluorophenyl)oxiran-2-yl)(phenyl)methanone (3u): 1 H NMR (400 MHz, CDCl₃) δ 8.22 – 7.95 (m, 2H), 7.67 (t, J = 7.4 Hz, 1H), 7.54 (t, J = 7.7 Hz, 2H), 4.79 (d, J = 2.0 Hz, 1H), 4.25 (d, J = 1.8 Hz, 1H); 13 C NMR (101 MHz, CDCl₃) δ 192.3, 135.0, 134.3, 128.9, 128.3, 55.6, 55.5, 50.4; HRMS calculated for C₁₅H₇F₅O₂Na (M + Na⁺): 337.0258, found: 337.0258. (Pale yellow oil, 32.0 mg, 51% isolated yield).

(3-(4-chlorophenyl)oxiran-2-yl)(o-tolyl)methanone (4a): 1 H NMR (400 MHz, CDCl₃) δ 7.82 – 7.75 (m, 2H), 7.43 (d, J = 7.6 Hz, 1H), 7.40 – 7.34 (m, 3H), 7.33 – 7.28 (m, 2H), 4.25 (d, J = 1.9 Hz, 1H), 4.05 (d, J = 1.8 Hz, 1H), 2.41 (s, 3H); 13 C NMR (101 MHz, CDCl₃) δ 192.8, 138.8, 135.3, 134.8, 134.0, 128.9, 128.7, 128.6, 127.0, 125.5, 60.7, 58.6, 21.2; HRMS calculated for $C_{16}H_{13}ClO_{2}Na$ (M + Na⁺): 295.0496, found: 295.0494. (Pale yellow oil, 35.4 mg, 65% isolated yield).

(3-(4-chlorophenyl)oxiran-2-yl)(m-tolyl)methanone (4b): 1 H NMR (400 MHz, CDCl₃) δ 7.79 (d, J = 11.5 Hz, 2H), 7.43 (d, J = 7.6 Hz, 1H), 7.37 (dt, J = 7.1, 3.2 Hz, 3H), 7.30 (d, J = 8.5 Hz, 2H), 4.24 (d, J = 1.8 Hz, 1H), 4.05 (d, J = 1.7 Hz, 1H), 2.40 (s, 3H); 13 C NMR (101 MHz, CDCl₃) δ 192.8, 138.8, 135.3, 134.9, 134.8, 134.0, 128.9, 128.7, 128.6, 127.0, 125.5, 60.7, 58.6, 21.2; HRMS calculated for $C_{16}H_{13}ClO_{2}Na$ (M + Na⁺): 295.0496, found: 295.0494. (Pale yellow oil, 36.5 mg, 67% isolated yield).

(3-(4-chlorophenyl)oxiran-2-yl)(p-tolyl)methanone (4c): ¹H NMR (500 MHz, CDCl₃) δ 7.90 (d, J = 8.2 Hz, 2H), 7.37 (d, J = 8.4 Hz, 2H), 7.32 – 7.26 (m, 4H), 4.23 (d, J = 1.7 Hz, 1H), 4.04 (d, J = 1.5 Hz, 1H), 2.42 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 192.2, 145.2, 134.8, 134.2, 132.9, 129.6, 129.0, 128.4, 127.1, 60.8, 58.6, 21.8; HRMS calculated for C₁₆H₁₃ClO₂Na (M + Na⁺): 295.0496, found: 295.0495. (White solid, 37.1 mg, 68% isolated yield).

3-(4-chlorophenyl)oxiran-2-yl)(2-methoxyphenyl)methanone (**4d**): ¹H NMR (400 MHz, CDCl₃) δ 7.81 (dd, J = 7.7, 1.6 Hz, 1H), 7.59 – 7.46 (m, 1H), 7.34 (dd, J = 22.8, 8.5 Hz, 4H), 7.04 (t, J = 7.5 Hz, 1H), 6.93 (d, J = 8.4 Hz, 1H), 4.26 (d, J = 1.8 Hz, 1H), 3.97 (d, J = 1.5 Hz, 1H), 3.62 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 194.3, 159.4, 135.0, 134.9, 134.4, 130.6, 128.7, 127.0, 125.7, 121.0, 111.5, 64.3, 58.9, 55.6; HRMS calculated for C₁₆H₁₃ClO₃Na (M + Na⁺): 311.0445, found: 311.0447. (White solid, 35.8mg, 62% isolated yield).

3-(4-chlorophenyl)oxiran-2-yl)(3-methoxyphenyl)methanone (**4e**): ¹H NMR (500 MHz, CDCl₃) δ 7.59 – 7.48 (m, 2H), 7.41 – 7.33 (m, 3H), 7.29 (d, J = 8.5 Hz, 2H), 7.18 – 7.13 (m, 1H), 4.23 (d, J = 1.8 Hz, 1H), 4.04 (d, J = 1.7 Hz, 1H), 3.84 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 192.5, 160.0, 136.6, 134.9, 134.0, 129.9, 129.0, 127.1, 120.9, 120.6, 112.4, 60.9, 58.7, 55.5; HRMS calculated for C₁₆H₁₃ClO₃Na (M + Na⁺): 311.0445, found: 311.0445. (White solid, 47.4 mg, 82% isolated yield).

3-(4-chlorophenyl)oxiran-2-yl)(4-methoxyphenyl)methanone (**4f):** ¹H NMR (500 MHz, CDCl₃) δ 8.02 – 7.96 (m, 2H), 7.39 – 7.34 (m, 2H), 7.29 (d, J = 8.5 Hz, 2H), 6.98 – 6.92 (m, 2H), 4.20 (d, J = 1.8 Hz, 1H), 4.04 (d, J = 1.7 Hz, 1H), 3.87 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 190.9, 164.3, 134.8, 134.3, 130.7, 129.0, 128.5, 127.1, 114.1, 60.8, 58.4, 55.5; HRMS calculated for C₁₆H₁₃ClO₃Na (M + Na⁺): 311.0445, found: 311.0445. (White solid, 41.6 mg, 72% isolated yield).

3-(4-chlorophenyl)oxiran-2-yl)(4-ethylphenyl)methanone (**4g):** ¹H NMR (500 MHz, CDCl₃) δ 7.96 – 7.89 (m, 2H), 7.40 – 7.34 (m, 2H), 7.34 – 7.28 (m, 4H), 4.24 (d, J = 1.9 Hz, 1H), 4.05 (d, J = 1.8 Hz, 1H), 2.72 (q, J = 7.6 Hz, 2H), 1.25 (t, J = 7.6 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 192.2, 151.3, 134.9, 134.2, 133.1, 129.0, 128.6, 128.4, 127.1, 60.9, 58.6, 29.0, 15.1; HRMS calculated for C₁₇H₁₅ClO₂Na (M + Na⁺): 309.0653, found: 309.0652. (Pale yellow oil, 38.9 mg, 68% isolated yield).

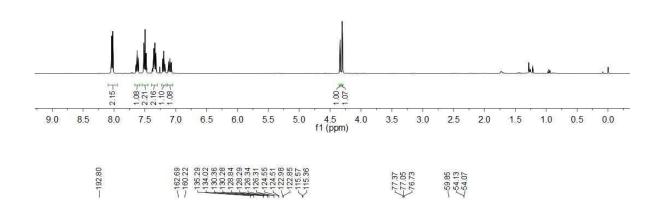
(3-(4-chlorophenyl)oxiran-2-yl)(4-isopropylphenyl)methanone (4h): 1 H NMR (400 MHz, CDCl₃) δ 7.97 – 7.91 (m, 2H), 7.41 – 7.27 (m, 6H), 4.24 (d, J = 1.9 Hz, 1H), 4.04 (d, J = 1.8 Hz, 1H), 2.97 (dt, J = 13.8, 6.9 Hz, 1H), 1.26 (d, J = 6.9 Hz, 6H); 13 C NMR (101 MHz, CDCl₃) δ 192.1, 155.8, 134.8, 134.1, 133.2, 128.9, 128.5, 127.0, 126.9, 60.8, 58.5, 34.3, 23.5; HRMS calculated for $C_{18}H_{17}ClO_{2}Na$ (M + Na⁺): 323.0809, found: 323.0804. (Pale yellow oil, 36.7 mg, 61% isolated yield).

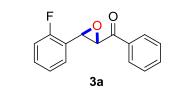
3-(4-chlorophenyl)oxiran-2-yl)(4-fluorophenyl)methanone (**4i):** ¹H NMR (400 MHz, CDCl₃) δ 8.05 (dd, J = 8.7, 5.4 Hz, 2H), 7.37 (d, J = 8.4 Hz, 2H), 7.29 (d, J = 8.4 Hz, 2H), 7.16 (t, J = 8.6 Hz, 2H), 4.19 (d, J = 1.6 Hz, 1H), 4.05 (d, J = 1.2 Hz, 1H); ¹³C

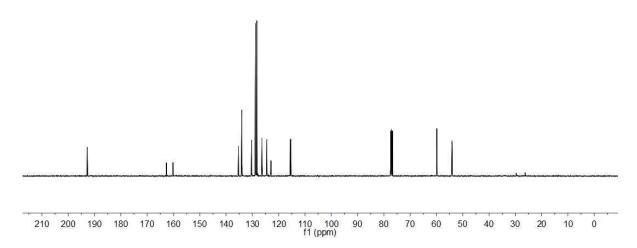
NMR (101 MHz, CDCl₃) δ 191.1, 167.5, 164.9, 134.9, 133.8, 131.7, 131.6, 131.1, 131.0, 128.9, 127.0, 116.2, 116.0, 60.8, 58.5; HRMS calculated for $C_{15}H_{10}ClFO_2Na$ (M + Na⁺): 299.0246, found: 299.0244. (Pale yellow oil, 39.3 mg, 71% isolated yield).

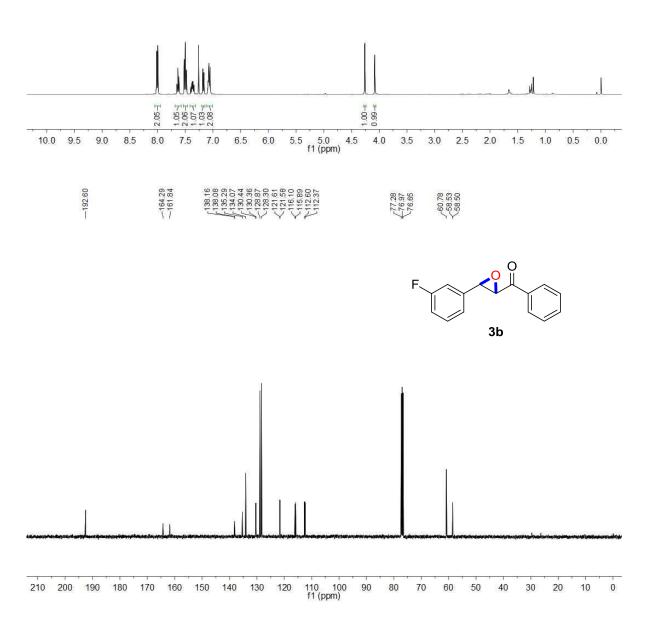
(4-chlorophenyl)(3-(4-chlorophenyl)oxiran-2-yl)methanone (4j): 1 H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 8.6 Hz, 2H), 7.47 (d, J = 8.6 Hz, 2H), 7.38 (d, J = 8.5 Hz, 2H), 7.29 (d, J = 8.5 Hz, 2H), 4.18 (d, J = 1.8 Hz, 1H), 4.05 (d, J = 1.6 Hz, 1H); 13 C NMR (101 MHz, CDCl₃) δ 191.1, 140.6, 135.0, 133.7, 133.5, 129.7, 129.2, 129.0, 127.0, 60.9, 58.6; HRMS calculated for C₁₅H₁₀Cl₂O₂Na (M + Na⁺): 314.9950, found: 314.9950. (Pale yellow oil, 36.3 mg, 62% isolated yield).

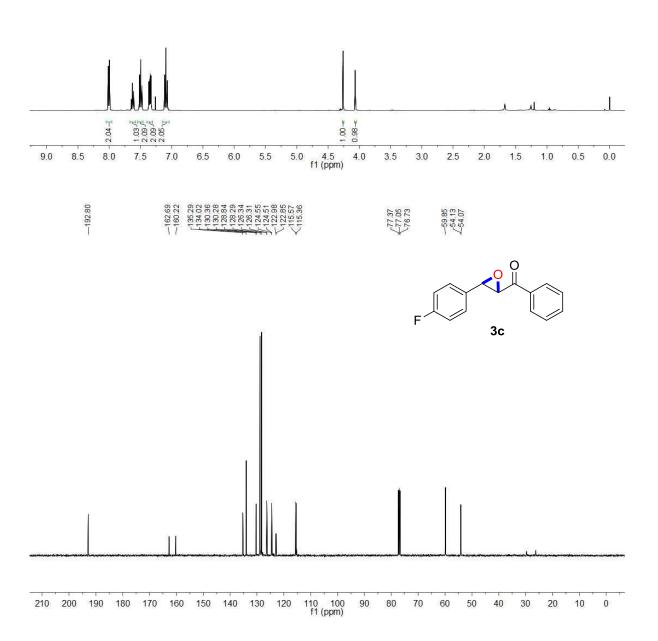
(4-bromophenyl)(3-(4-chlorophenyl)oxiran-2-yl)methanone (4k): ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 8.6 Hz, 2H), 7.64 (d, J = 8.6 Hz, 2H), 7.33 (dd, J = 34.6, 8.5 Hz, 4H), 4.18 (d, J = 1.8 Hz, 1H), 4.05 (d, J = 1.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 191.8, 135.0, 133.9, 133.7, 132.2, 129.7, 129.4, 129.0, 127.0, 60.8, 58.6; HRMS calculated for C₁₅H₁₀ClBrO₂Na (M + Na⁺): 358.9445, found: 358.9443. (White solid, 52.6 mg, 78% isolated yield).

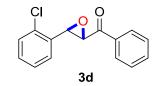

(4-chlorophenyl)oxiran-2-yl)(thiophen-2-yl)methanone (4l): 1 H NMR (500 MHz, CDCl₃) δ 7.99 (dd, J = 3.9, 1.0 Hz, 1H), 7.75 (dd, J = 4.9, 1.0 Hz, 1H), 7.39 – 7.33 (m, 2H), 7.30 – 7.25 (m, 2H), 7.18 (dd, J = 4.9, 3.9 Hz, 1H), 4.14 (d, J = 1.6 Hz, 1H), 4.03 (d, J = 1.8 Hz, 1H); 13 C NMR (126 MHz, CDCl₃) δ 186.1, 140.8, 135.4, 134.9, 133.8, 133.7, 129.0, 128.5, 127.1, 61.9, 58.7; HRMS calculated for C_{13} H₉ClSO₂Na (M + Na⁺): 286.9904, found: 286.9909. (White solid, 43.9 mg, 83% isolated yield).

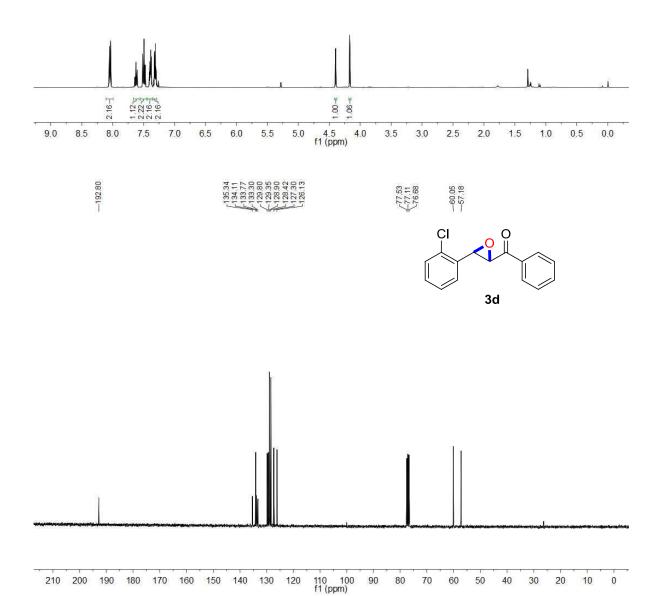

tert-butyl benzoperoxoate (6): 1 H NMR (400 MHz, CDCl₃) δ 8.00 – 7.88 (m, 2H), 7.61 – 7.54 (m, 1H), 7.48 – 7.41 (m, 2H), 1.41 (s, 9H); 13 C NMR (101 MHz, CDCl₃) δ 164.3, 133.2, 129.0, 128., 127.6, 83.8, 26.16 (s); HRMS calculated for C₁₁H₁₃O₃Na (M + Na⁺): 217.0835, found: 217.0837. (Pale yellow oil, 38.8 mg, 62% isolated yield).

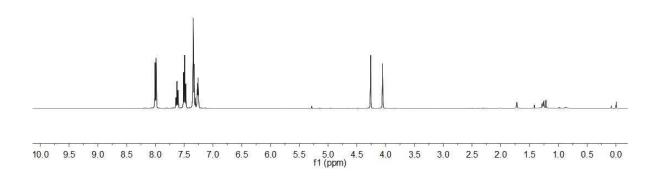

References:

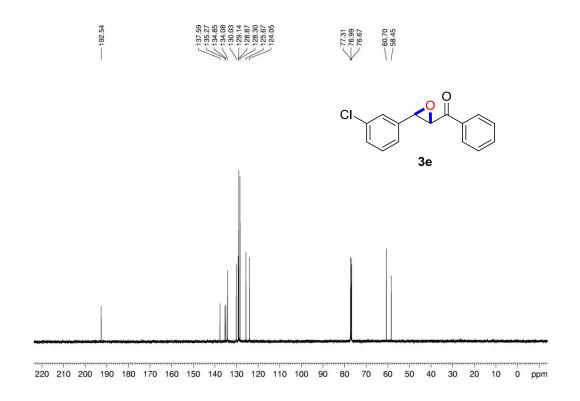

- (1) Liu, W.; Li, Y.; Liu, K.; Li, Z. J. Am. Chem. Soc. 2011, 133, 10756.
- (2) Wei, W. T; Yang, X. H.; Li, H. B.; Li, J. H. Adv. Synth. Catal. 2015, 357, 59.
- (3) Ke, Q.; Zhang, B.; Hu, B.; Jin, Y.; Lu, G. Chem. Commun. 2015, 51, 1012.
- (4) Xiang, M.; Ni, X.; Yi, X.; Zheng, A.; Wang, W.; He, M.; Xiong, J.; Liu, T.; Ma, Y.; Zhu, P.; Zheng, X.; Tang, T. *ChemCatChem* **2015**, *7*, 521.


Copies of ¹H NMR and ¹³C NMR spectra

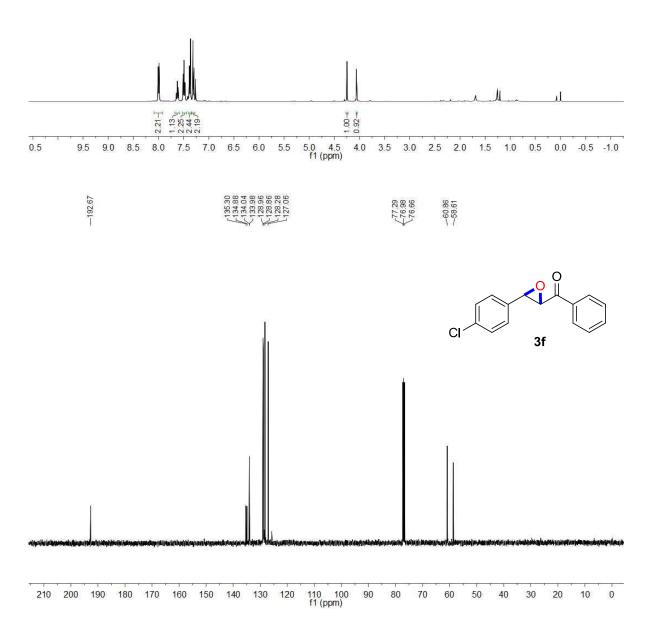


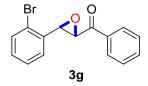


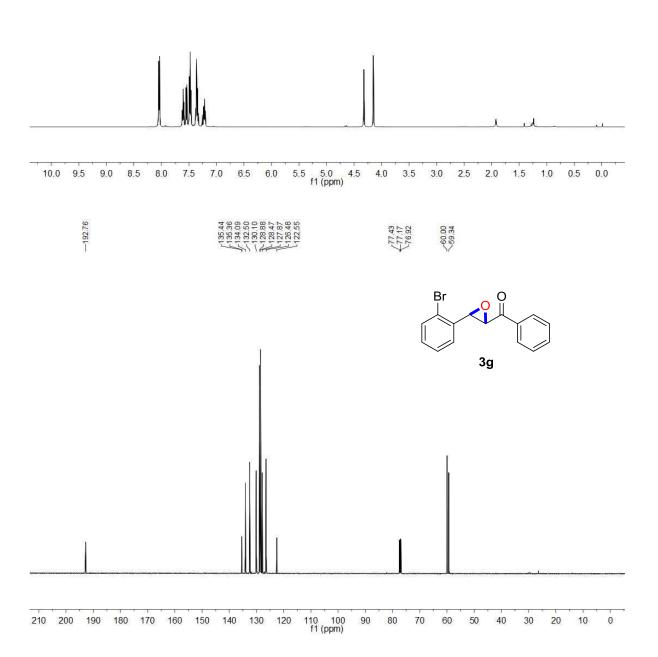


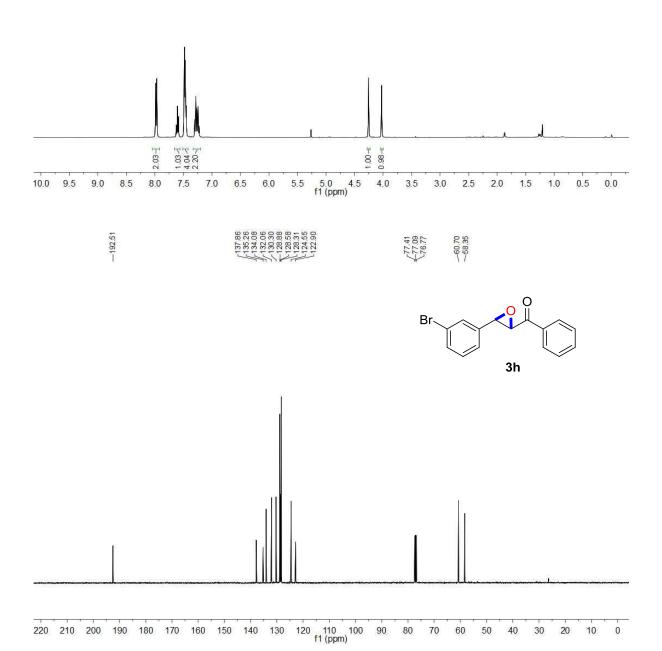


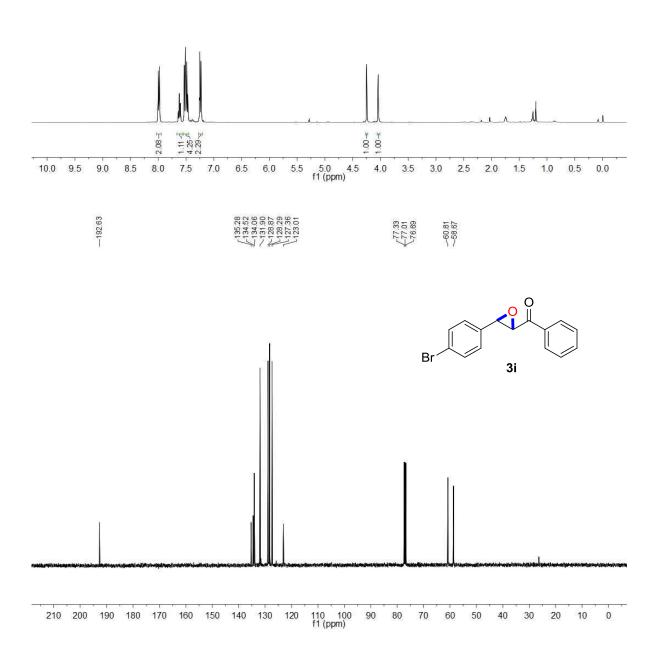


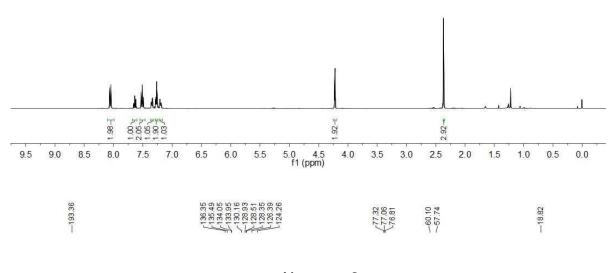


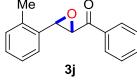


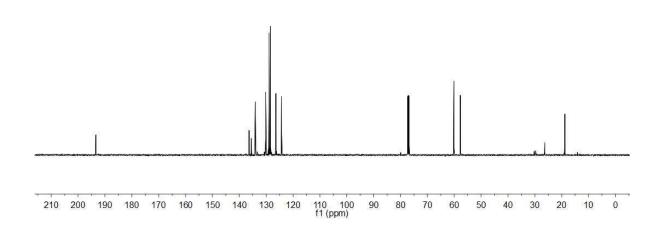


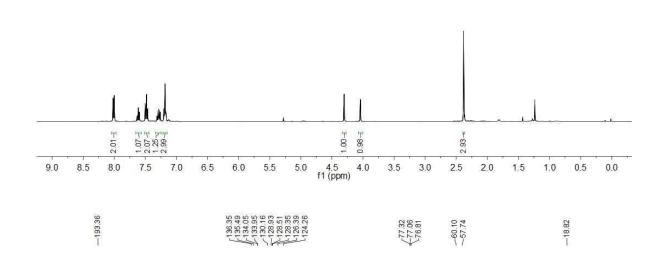


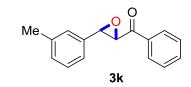


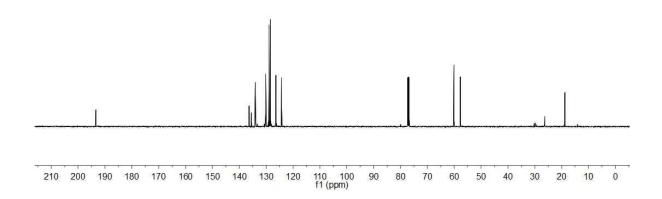


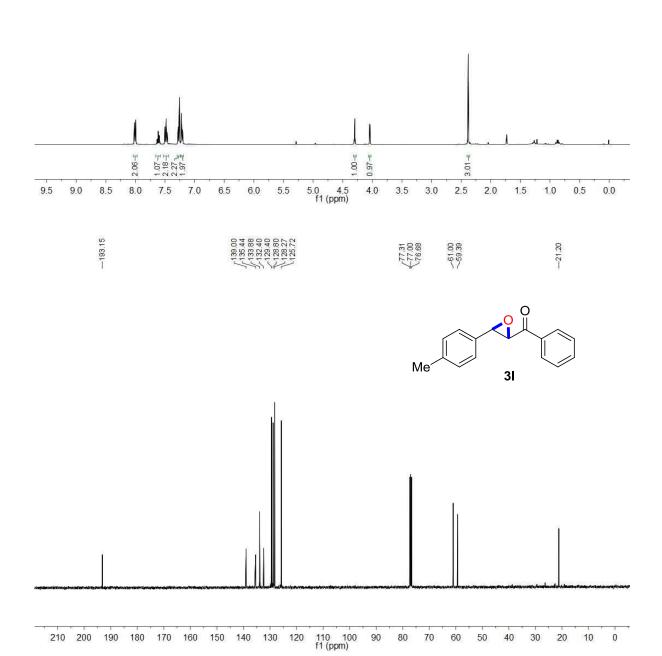


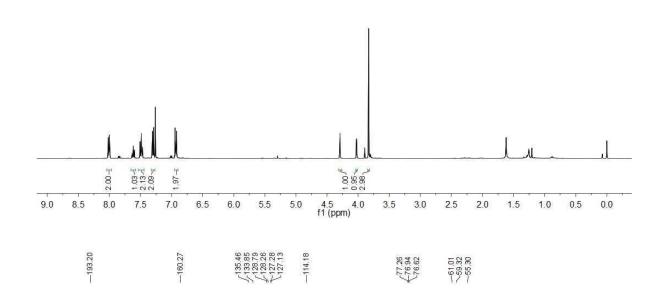


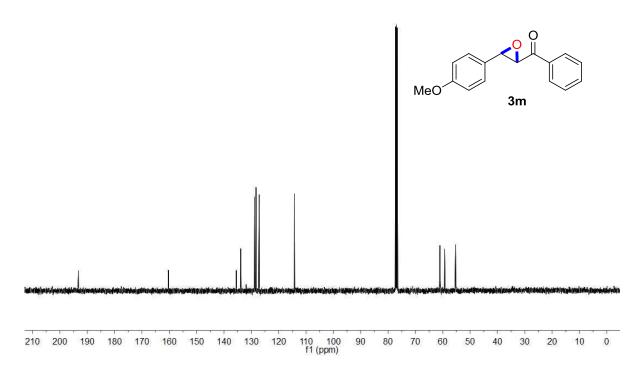


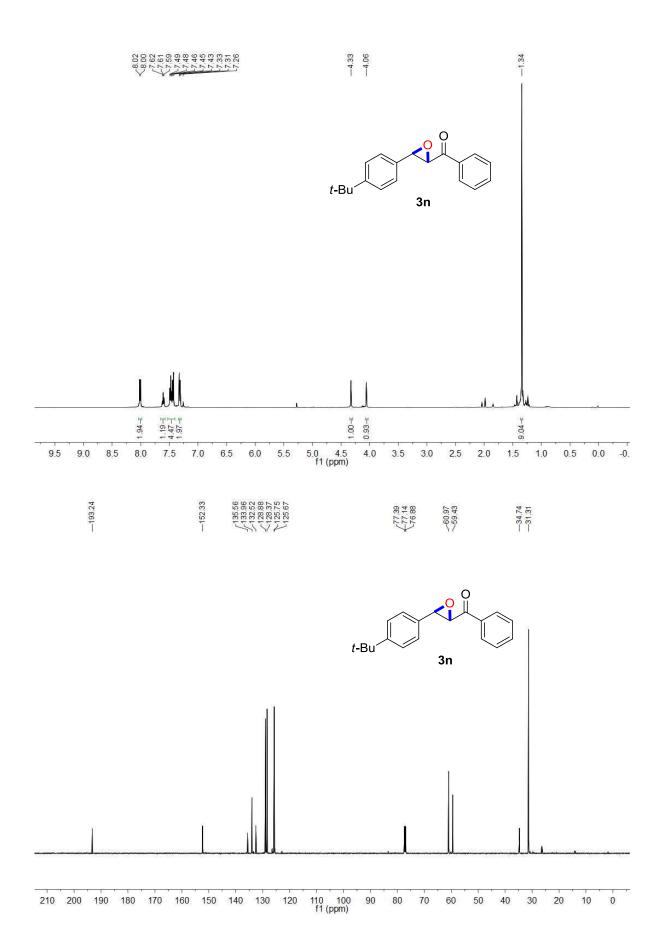


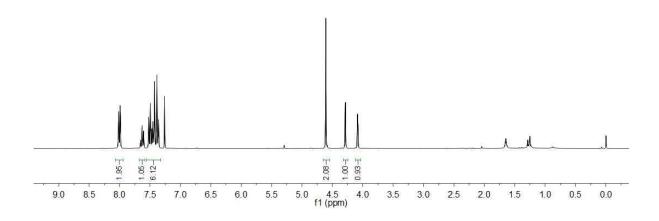


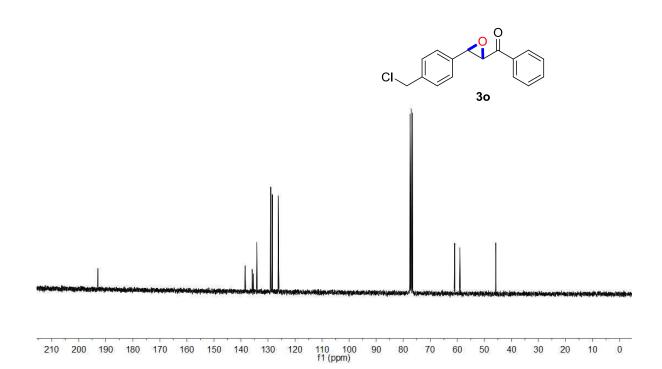


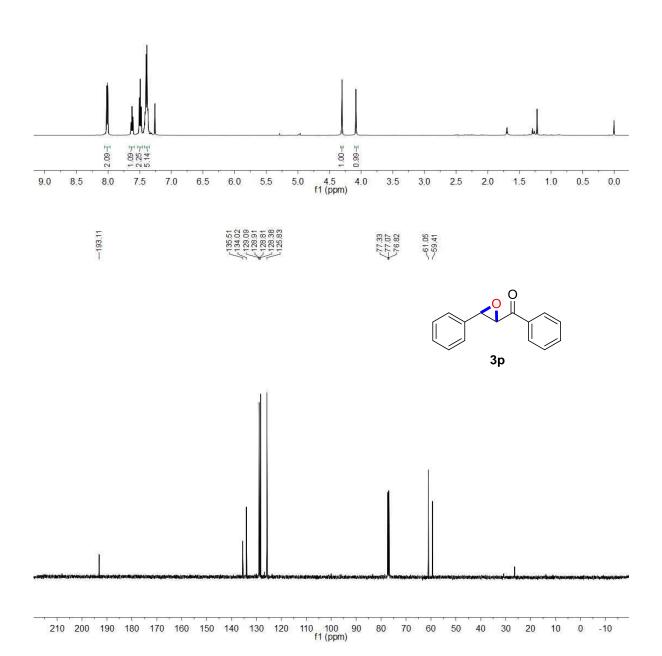


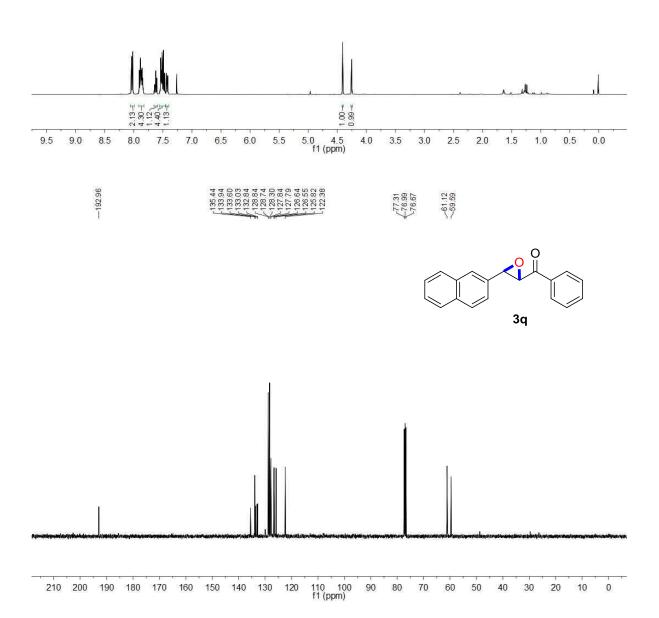


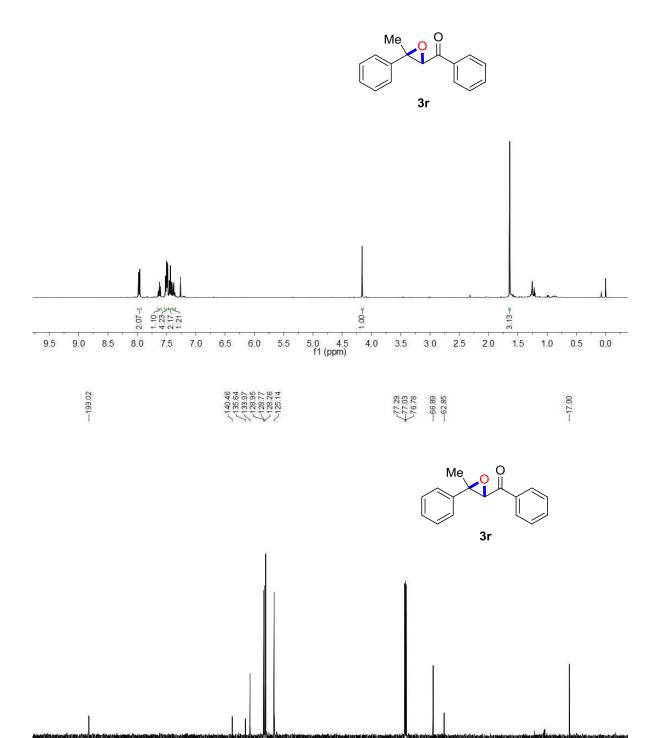

31








-192.88


136.22 136.22 128.38 128.38 128.38

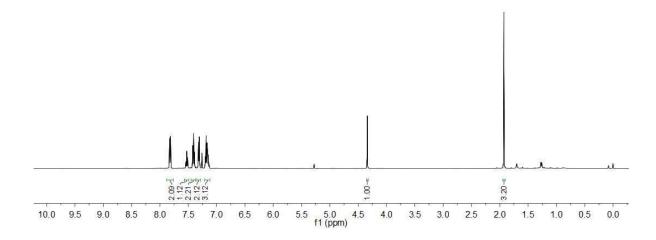
77.26 77.06 77.06 76.63 -59.03

80 70

60

50

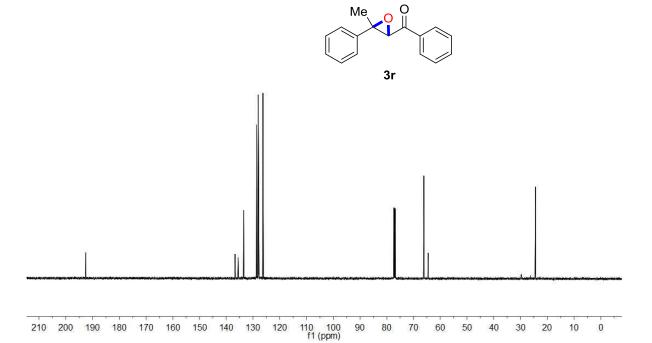

40

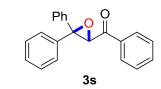

30

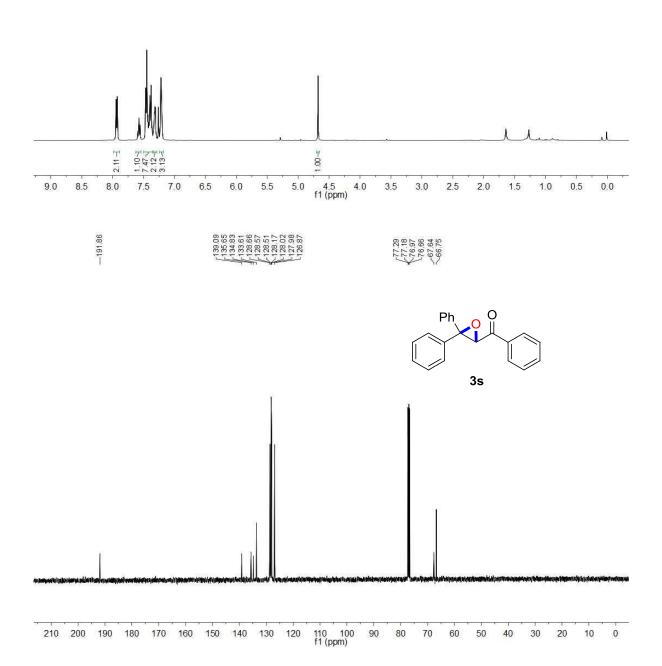
20

10

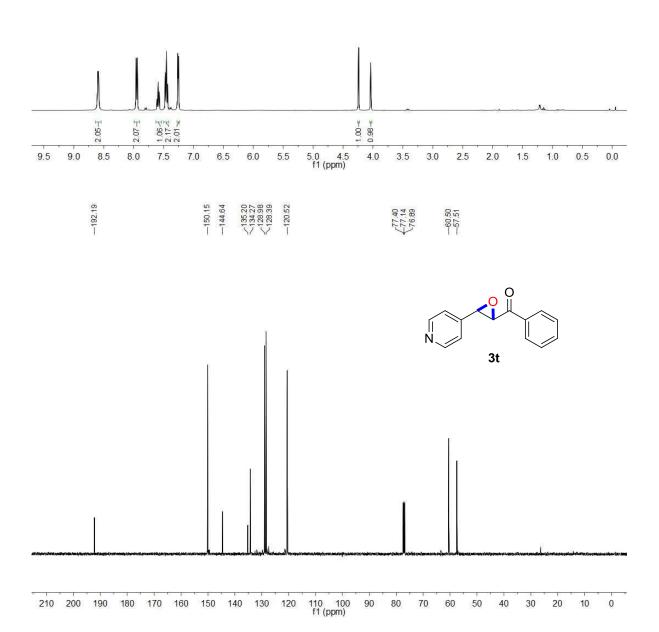
210 200 190 180 170 160 150 140 130 120 110 100 f1 (ppm)

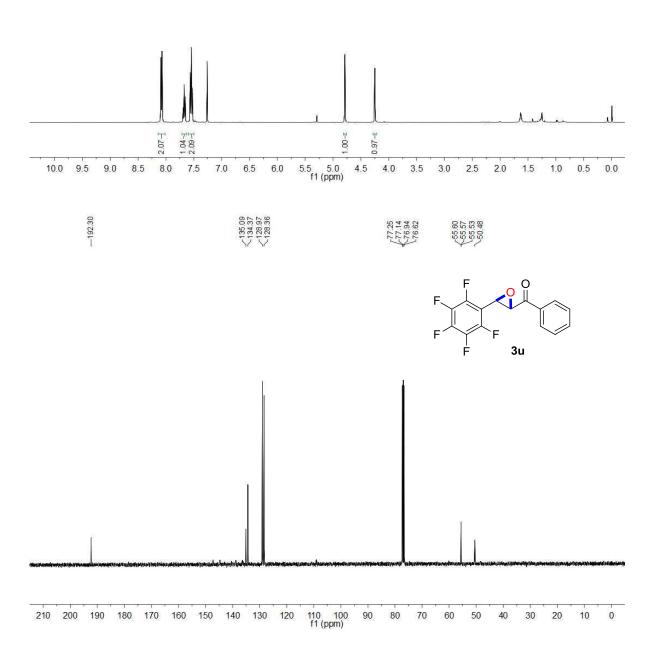


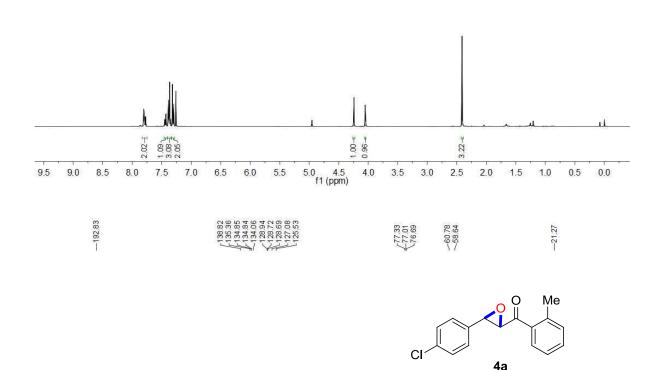

-192.52


136.71 135.57 133.51 128.62 128.00 127.86

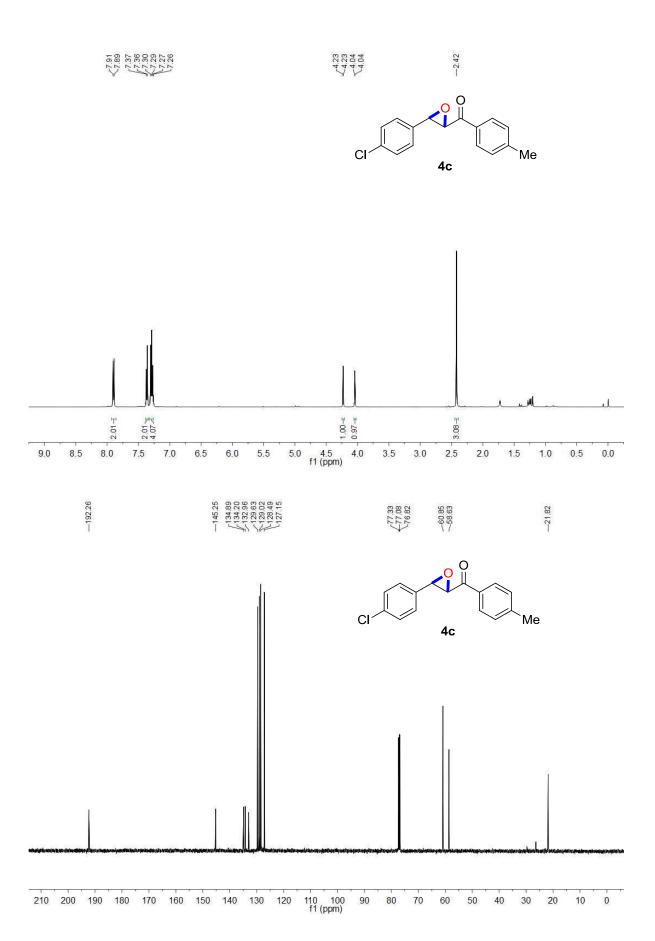
77.33 77.07 76.82 66.12 64.51

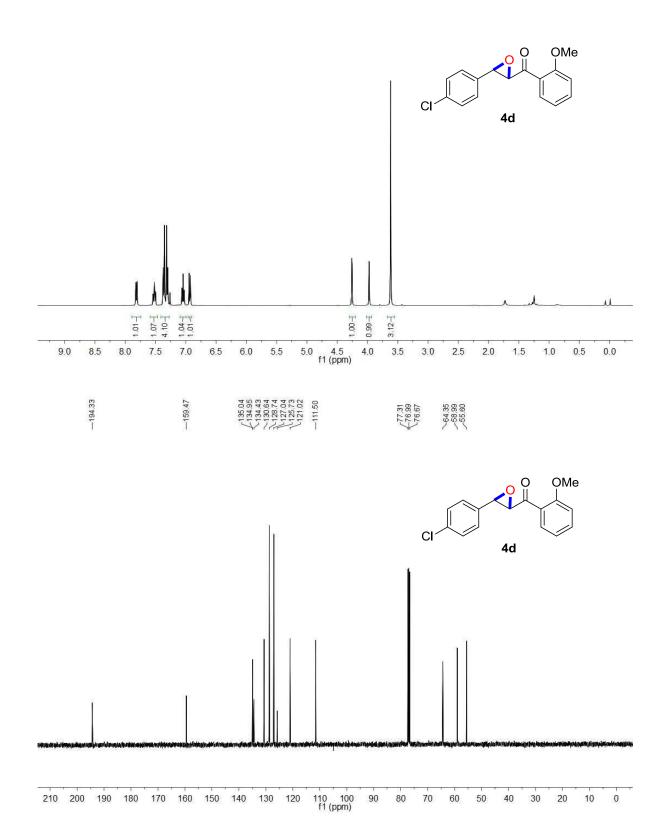

-24.43

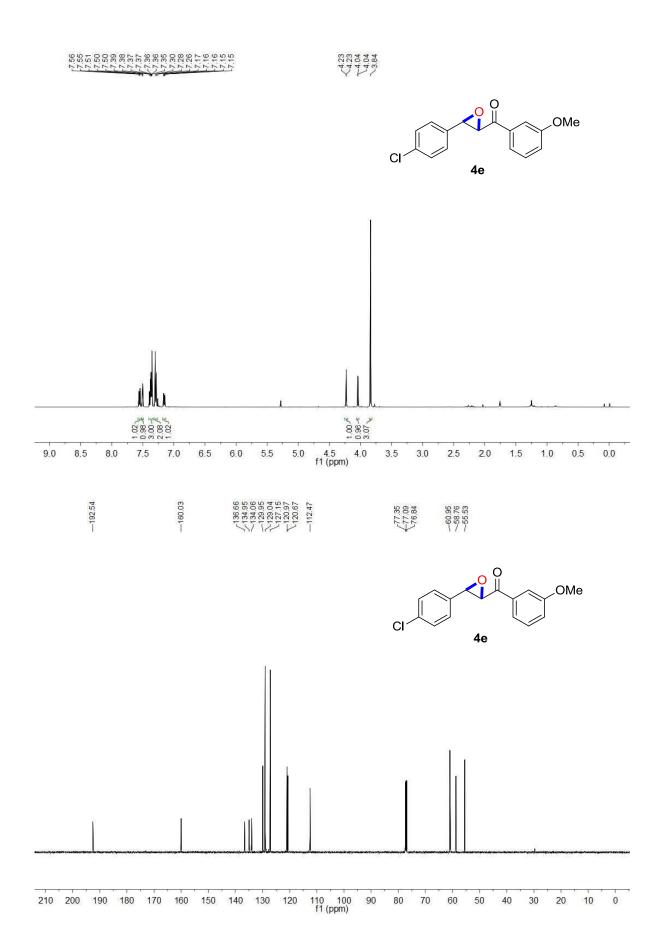


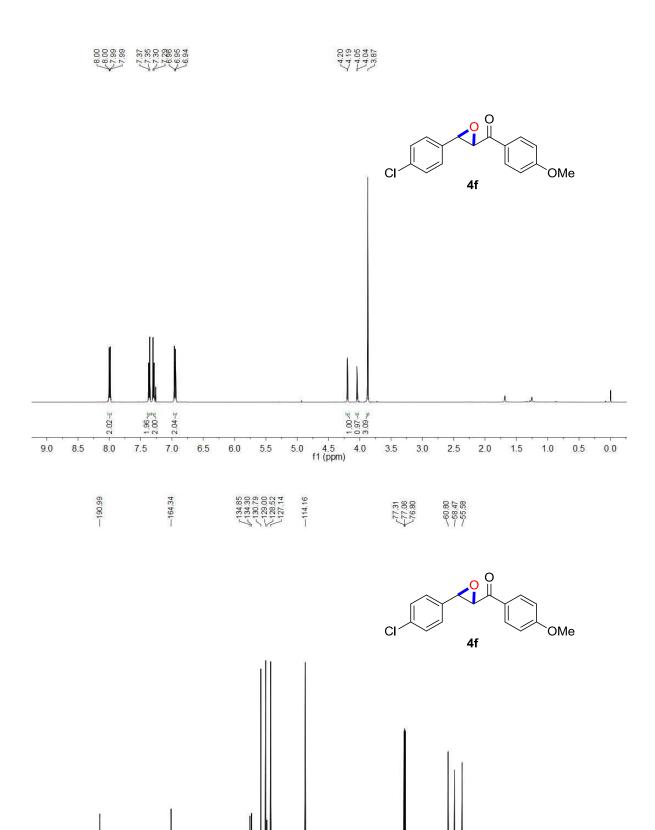


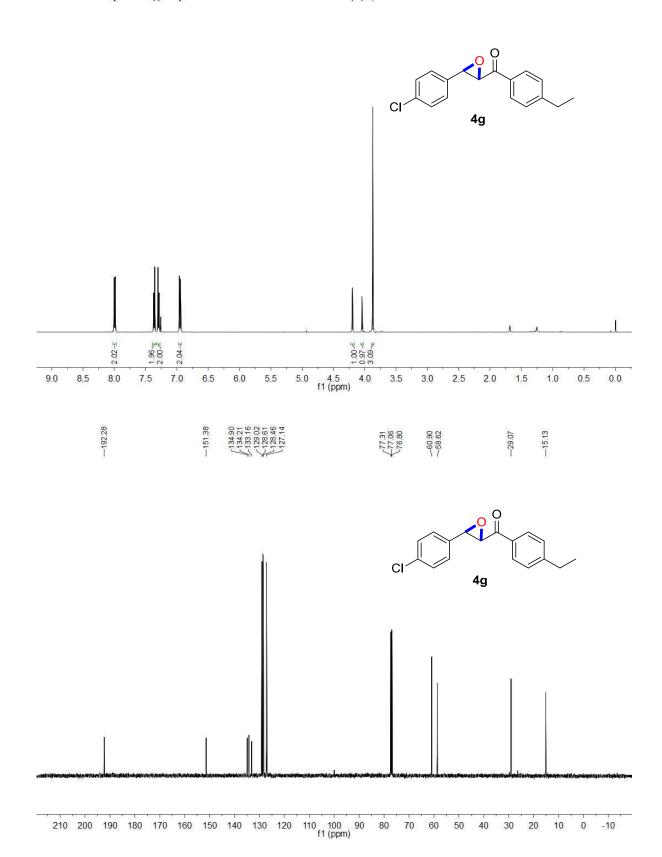


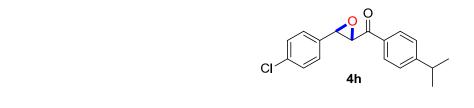


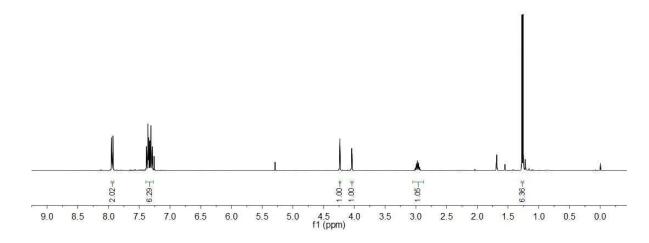




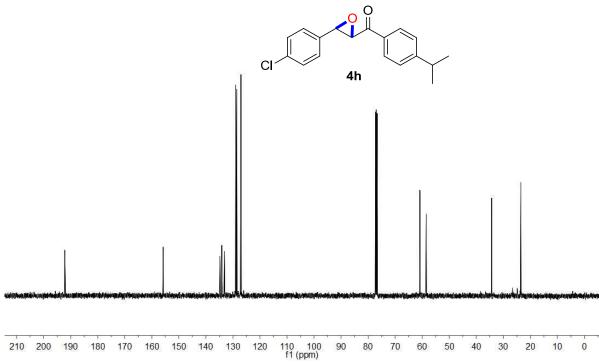








80 70


210 200 190 180 170 160 150 140 130 120 110 100 f1 (ppm)

