Supporting Information

Unprecedented Phthalocyanines Bearing Eight Di-butylamino Peripheral

Substituents: Synthesis, Spectroscopy, and Structure

Yuxiang Chen, ${ }^{\dagger}$ Wei Cao, ${ }^{\dagger}$ Kang Wang, ${ }^{\dagger}{ }^{\dagger, *}$ and Jianzhuang Jiang ${ }^{\dagger,{ }^{\dagger}}$

Scheme S1. Synthesis of 1-4.
Figure S1. Experimental and simulated isotopic patterns for 1-4.
Figure S2. ${ }^{1} \mathrm{H}$ NMR spectrum of 2 recorded in $\mathrm{CDCl}_{3} /\left[\mathrm{D}_{5}\right]$ pyridine $(\mathrm{v} / \mathrm{v}=150: 1)$ at $25^{\circ} \mathrm{C}$.
Figure S3. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4}$ recorded in CDCl_{3} at $25^{\circ} \mathrm{C}$.
Figure S4. Electronic absorption spectra of $\mathrm{M}\left\{\mathrm{Pc}\left[\mathrm{N}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2}\right]_{8}\right\}(\mathrm{M}=2 \mathrm{H}, \mathrm{Mg}, \mathrm{Cu}, \mathrm{Zn})$ (1-4) in CHCl_{3}.

Figure S5. IR spectra of $\mathrm{M}\left\{\mathrm{Pc}\left[\mathrm{N}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2}\right]_{8}\right\}(\mathrm{M}=2 \mathrm{H}, \mathrm{Mg}, \mathrm{Cu}, \mathrm{Zn})(\mathbf{1 - 4})$.
Figure S6. Cyclic voltammograms of 1-4 (from top to bottom) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /pyridine (50:1) containing $0.1 \mathrm{~mol} \mathrm{dm}^{-3}\left[\mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{ClO}_{4}\right]$ at a scan rate of $30 \mathrm{mV} \mathrm{s}^{-1}$.

Figure S7. The two adjacent $\mathrm{H}_{2}\left\{\mathrm{Pc}\left[\mathrm{N}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2}\right]_{8}\right\}$ (1) molecules and 1-D supramolecular structure of $\mathbf{1}$.

Figure S8. The three dimensional structure of $\mathrm{H}_{2}\left\{\mathrm{Pc}\left[\mathrm{N}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2}\right]_{8}\right\}$ (1).
Figure S9. The two adjacent $\mathrm{Zn}\left\{\mathrm{Pc}\left[\mathrm{N}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2}\right]_{8}\right\}$ (4) molecules and 1-D supramolecular structure of 4 .

Figure S10. The three dimensional structure of $\mathrm{Zn}\left\{\mathrm{Pc}\left[\mathrm{N}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2}\right]_{8}\right\}$ (4).
Table S1. Analytical and mass spectrometric data for 1-4.
Table S2. ${ }^{1} \mathrm{H}$ NMR data (δ) for $\mathbf{1 , 2}$, and $\mathbf{4}$ recorded with the concentration of $c a .1 .0 \times$ $10^{-3} \mathrm{M}$ at $25^{\circ} \mathrm{C}$.

Table S3. Crystal data and structure refinements for 1 and 4.
Table S4. Selected bond lengths of $\mathbf{1}$.
Table S5. Selected bond lengths of 4.

$$
\mathrm{R}=\mathrm{N}\left(n-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2}
$$

$\stackrel{\mathrm{M}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}}{\text { DMAE }}$

$\stackrel{\mathrm{M}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}}{\text { DMAE }}$

Scheme S1. Synthesis of 1-4.

Figure S1. (a) Experimental and (b) simulated isotopic patterns for 1; (c) Experimental and (d) simulated isotopic patterns for 2; (e) Experimental and (f) simulated isotopic patterns for 3; (g) Experimental and (h) simulated isotopic patterns for 4.

Figure S2. ${ }^{1} \mathrm{H}$ NMR spectrum of 2 recorded in $\mathrm{CDCl}_{3} /\left[\mathrm{D}_{5}\right]$ pyridine $(\mathrm{v} / \mathrm{v}=150: 1)$ at $25^{\circ} \mathrm{C}$. The signals due to the residue $\mathrm{CHCl}_{3}, \mathrm{H}_{2} \mathrm{O}$, and petroleum ether are denoted as *.

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectrum of 4 recorded in CDCl_{3} at $25^{\circ} \mathrm{C}$. The signals due to the residue CHCl_{3} and petroleum ether are denoted as *.

Figure S4. Electronic absorption spectra of $\mathrm{M}\left\{\mathrm{Pc}\left[\mathrm{N}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2}\right]_{8}\right\}(\mathrm{M}=2 \mathrm{H}, \mathrm{Mg}, \mathrm{Cu}, \mathrm{Zn})$ (1-4) in CHCl_{3}.

Figure S5. IR spectra of $\mathrm{M}\left\{\mathrm{Pc}\left[\mathrm{N}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2}\right]_{8}\right\}(\mathrm{M}=2 \mathrm{H}, \mathrm{Mg}, \mathrm{Cu}, \mathrm{Zn})(\mathbf{1 - 4})$.

Figure S6. Cyclic voltammograms of 1-4 (from top to bottom) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ pyridine (50:1) containing $0.1 \mathrm{~mol} \mathrm{dm}^{-3}\left[\mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{ClO}_{4}\right]$ at a scan rate of $30 \mathrm{mV} \mathrm{s}^{-1}$.

(A) :

(B)

Figure S7. (A) Two adjacent $\mathrm{H}_{2}\left\{\mathrm{Pc}\left[\mathrm{N}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2}\right]_{8}\right\}$ (1) molecules connected depending mainly on the $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds formed between two $\mathrm{C}-\mathrm{H}(\alpha)$ bonds of one phthalocyanine and the meso- N atom of the another phthalocyanine with all the di-butylamino groups omitted for clarity. (B) 1-D supramolecular structure of $\mathbf{1}$ with all hydrogen atoms omitted for clarity.

Figure S8. The three dimensional structure of $\mathrm{H}_{2}\left\{\mathrm{Pc}\left[\mathrm{N}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2}\right]_{8}\right\}$ (1) with all hydrogen atoms omitted for clarity.

Figure S9. (A) Two adjacent $\mathrm{Zn}\left\{\mathrm{Pc}\left[\mathrm{N}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2}\right]_{8}\right\}$ (4) molecules connected depending mainly on the $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds formed between two $\mathrm{C}-\mathrm{H}(\alpha)$ bonds of one phthalocyanine and the meso-N atom of the another phthalocyanine with all the di-butylamino groups omitted for clarity. (B) 1-D supramolecular structure of 4 with all hydrogen atoms omitted for clarity.

Figure S10. The three dimensional structure of $\mathrm{Zn}\left\{\mathrm{Pc}\left[\mathrm{N}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2}\right]_{8}\right\}$ (4) with all hydrogen atoms omitted for clarity.

Table S1. Analytical and mass spectrometric data for 1-4. ${ }^{\text {a }}$

compound	$[\mathrm{M}+\mathrm{H}]^{+}(\mathrm{m} / \mathrm{z})$	Analysis		
		C	H	N
$\mathbf{1}$	$1533.4(1533.3)^{\mathrm{b}}$	$74.38(74.42)^{\mathrm{c}}$	$9.90(10.05)^{\mathrm{c}}$	$14.50(14.41)^{\mathrm{c}}$
$\mathbf{2}$	$1555.4(1555.2)^{\mathrm{b}}$	$72.29(72.25)^{\mathrm{d}}$	$9.95(9.95)^{\mathrm{d}}$	$13.89(13.82)^{\mathrm{d}}$
$\mathbf{3}$	$1594.4(1594.2)^{\mathrm{b}}$	$71.79(71.79)^{\mathrm{e}}$	$9.59(9.64)^{\mathrm{e}}$	$13.78(13.88)^{\mathrm{e}}$
$\mathbf{4}$	$1596.6(1596.2)^{\mathrm{b}}$	$71.52(71.51)^{\mathrm{f}}$	$9.87(9.64)^{\mathrm{f}}$	$13.95(13.83)^{\mathrm{f}}$

[a] Calculated values given in parentheses. [b] By MALDI-TOF mass spectrometry. [c] Contain 0.125 equiv. solvated CHCl_{3} and 0.25 equiv. solvated $\mathrm{CH}_{3} \mathrm{OH}$. [d] Contain 1.0 equiv. solvated $\mathrm{H}_{2} \mathrm{O}$ and 1.5 equiv. solvated $\mathrm{CH}_{3} \mathrm{OH}$. [e] Contain 0.25 equiv. solvated $\mathrm{H}_{2} \mathrm{O}$ and 0.5 equiv. solvated $\mathrm{CH}_{3} \mathrm{OH}$. [f] Contain 0.5 equiv. solvated $\mathrm{H}_{2} \mathrm{O}$ and 0.5 equiv. solvated $\mathrm{CH}_{3} \mathrm{OH}$.

Table S2. ${ }^{1} \mathrm{H}$ NMR data (δ) for 1, 2, and 4 recorded with the concentration of $c a .1 .0 \times$ $10^{-3} \mathrm{M}$ at $25^{\circ} \mathrm{C}$.

	NH	$\alpha-\mathrm{Pc}$	$n-\mathrm{Bu}$			
			CH_{2}	CH_{2}	CH_{2}	CH_{3}
1	0.20 (s, 2 H)	8.94 (s, 8 H)	$\begin{gathered} 3.66(\mathrm{t}, \mathrm{~J} \\ =6.96 \\ \mathrm{~Hz}, 32 \end{gathered}$ H)	$\begin{gathered} 1.71(\mathrm{~m}, \\ \mathrm{J}=7.30 \\ \mathrm{~Hz}, 32 \\ \mathrm{H}) \end{gathered}$	$\begin{gathered} 1.44(\mathrm{~m}, \\ \mathrm{J}=7.23 \\ \mathrm{~Hz}, 32 \end{gathered}$ H)	$\begin{gathered} 0.98(\mathrm{t}, \mathrm{~J} \\ =7.28 \\ \mathrm{~Hz}, 48 \end{gathered}$ H)
$2^{\text {a }}$	-	8.96 (s, 8 H)	$\begin{gathered} 3.65(\mathrm{t}, \mathrm{~J} \\ =7.38 \\ \mathrm{~Hz}, 32 \end{gathered}$ H)	$\begin{gathered} 1.70(\mathrm{~m}, \\ \mathrm{J}=7.29 \\ \mathrm{~Hz}, 32 \\ \mathrm{H}) \end{gathered}$	$\begin{gathered} 1.42(\mathrm{~m}, \\ \mathrm{J}=7.32 \\ \mathrm{~Hz}, 32 \end{gathered}$ H)	$\begin{gathered} 0.96(\mathrm{t}, \mathrm{~J} \\ =7.32 \\ \mathrm{~Hz}, 48 \end{gathered}$ H)
4	-	8.96 (s, 8 H)	$\begin{gathered} 3.67(\mathrm{t}, \mathrm{~J} \\ =7.38 \\ \mathrm{~Hz}, 32 \end{gathered}$ H)	$\begin{gathered} 1.71(\mathrm{~m}, \\ \mathrm{J}=7.34 \\ \mathrm{~Hz}, 32 \\ \mathrm{H}) \end{gathered}$	$\begin{gathered} 1.44(\mathrm{~m}, \\ \mathrm{J}=7.31 \\ \mathrm{~Hz}, 32 \end{gathered}$ H)	$\begin{gathered} 0.98(\mathrm{t}, \mathrm{~J} \\ =7.32 \\ \mathrm{~Hz}, 48 \end{gathered}$ H)

[a] recorded in $\mathrm{CDCl}_{3} /\left[\mathrm{D}_{5}\right]$ pyridine (150:1).

Table S3. Crystal data and structure refinements for 1 and 4.

Compound	$\mathbf{1}$	$\mathbf{4}$
formula	$\mathrm{C}_{96} \mathrm{H}_{154} \mathrm{~N}_{16}$	$\mathrm{C}_{100} \mathrm{H}_{160} \mathrm{~N}_{16} \mathrm{OZn}$
fw	1532.35	1667.81
crystal system	monoclinic	orthorhombic
space group	$C 2 / \mathrm{c}$	$C 222_{1}$
a	$20.0317(10)$	$16.7399(6)$
b	$27.6755(11)$	$28.7996(16)$
c	$18.5820(9)$	$40.3572(10)$
α	90.00	90.00
β	$116.117(6)$	90.00
γ	90.00	90.00
V	$9249.8(7)$	$19456.3(14)$
Z	4	8
θ range $($ deg $)$	$3.14-63.00$	$3.05-63.00$
$F_{\text {calcd }}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	1.100	1.139
$\mu\left(\mathrm{~mm}^{-1}\right)$	0.497	0.759
$\mathrm{~F}(000)$	3368	7280
$\mathrm{R}_{1}(I>2 \theta)$	0.0575	0.1137
$\mathrm{R}_{\mathrm{w} 2}(I>2 \theta)$	0.1426	0.3004
$\mathrm{R}_{\mathrm{w} 2}$ for all	0.1557	0.3215
$G O F$ on F^{2}	1.046	1.256
CCDC number	1412942	1412943

Table S4. Selected bond lengths of $\mathbf{1}$.

Bonds	$\mathbf{1}$
$\mathrm{C}(18)-\mathrm{N}(4)$	$1.424(3)$
$\mathrm{C}(20)-\mathrm{N}(5)$	$1.422(3)$
$\mathrm{C}(23)-\mathrm{N}(6)$	$1.418(3)$
$\mathrm{C}(24)-\mathrm{N}(7)$	$1.416(3)$

Table S5. Selected bond lengths of 4.

Bonds	$\mathbf{4}$
$\mathrm{N}(1)-\mathrm{C}(4)$	$1.44(3)$
$\mathrm{N}(2)-\mathrm{C}(5)$	$1.44(4)$
$\mathrm{N}(3)-\mathrm{C}(12)$	$1.40(3)$
$\mathrm{N}(4)-\mathrm{C}(13)$	$1.43(3)$
$\mathrm{N}(5)-\mathrm{C}(20)$	$1.43(2)$
$\mathrm{N}(6)-\mathrm{C}(21)$	$1.42(2)$
$\mathrm{N}(7)-\mathrm{C}(28)$	$1.435(18)$
$\mathrm{N}(8)-\mathrm{C}(29)$	$1.452(18)$

