Supporting Information

Unprecedented Phthalocyanines Bearing Eight Di-butylamino Peripheral Substituents: Synthesis, Spectroscopy, and Structure

Yuxiang Chen, [†] Wei Cao, [†] Kang Wang, ^{†,*} and Jianzhuang Jiang ^{†,*}

Scheme S1. Synthesis of 1-4.

Figure S1. Experimental and simulated isotopic patterns for 1-4.

Figure S2. ¹H NMR spectrum of 2 recorded in CDCl₃/[D₅]pyridine (v/v = 150:1) at 25°C.

Figure S3. ¹H NMR spectrum of **4** recorded in CDCl₃ at 25°C.

Figure S4. Electronic absorption spectra of $M\{Pc[N(C_4H_9)_2]_8\}$ (M = 2H, Mg, Cu, Zn) (1-4) in CHCl₃.

Figure S5. IR spectra of M{ $Pc[N(C_4H_9)_2]_8$ } (M = 2H, Mg, Cu, Zn) (1-4).

Figure S6. Cyclic voltammograms of **1-4** (from top to bottom) in CH₂Cl₂/pyridine (50:1) containing 0.1 mol dm⁻³ [Bu₄N][ClO₄] at a scan rate of 30 mV s⁻¹.

Figure S7. The two adjacent $H_2\{Pc[N(C_4H_9)_2]_8\}$ (1) molecules and 1-D supramolecular structure of 1.

Figure S8. The three dimensional structure of $H_2\{Pc[N(C_4H_9)_2]_8\}$ (1).

Figure S9. The two adjacent $Zn\{Pc[N(C_4H_9)_2]_8\}$ (4) molecules and 1-D supramolecular structure of 4.

Figure S10. The three dimensional structure of $Zn\{Pc[N(C_4H_9)_2]_8\}$ (4).

Table S1. Analytical and mass spectrometric data for **1-4**.

Table S2. ¹H NMR data (δ) for **1**, **2**, and **4** recorded with the concentration of ca. 1.0 × 10⁻³ M at 25°C.

Table S3. Crystal data and structure refinements for 1 and 4.

Table S4. Selected bond lengths of **1**.

Table S5. Selected bond lengths of **4**.

Scheme S1. Synthesis of 1-4.

Figure S1. (a) Experimental and (b) simulated isotopic patterns for 1; (c) Experimental and (d) simulated isotopic patterns for 2; (e) Experimental and (f) simulated isotopic patterns for 3; (g) Experimental and (h) simulated isotopic patterns for 4.

Figure S2. ¹H NMR spectrum of **2** recorded in CDCl₃/[D₅]pyridine (v/v = 150:1) at 25°C. The signals due to the residue CHCl₃, H_2O , and petroleum ether are denoted as *.

Figure S3. ¹H NMR spectrum of **4** recorded in CDCl₃ at 25°C. The signals due to the residue CHCl₃ and petroleum ether are denoted as *.

Figure S4. Electronic absorption spectra of $M\{Pc[N(C_4H_9)_2]_8\}$ (M = 2H, Mg, Cu, Zn) (1-4) in CHCl₃.

Figure S5. IR spectra of $M\{Pc[N(C_4H_9)_2]_8\}$ (M = 2H, Mg, Cu, Zn) (1-4).

Figure S6. Cyclic voltammograms of **1-4** (from top to bottom) in CH_2Cl_2 /pyridine (50:1) containing 0.1 mol dm⁻³ [Bu₄N][ClO₄] at a scan rate of 30 mV s⁻¹.

Figure S7. (A) Two adjacent $H_2\{Pc[N(C_4H_9)_2]_8\}$ (1) molecules connected depending mainly on the C-H···N hydrogen bonds formed between two C-H(α) bonds of one phthalocyanine and the meso-N atom of the another phthalocyanine with all the di-butylamino groups omitted for clarity. (B) 1-D supramolecular structure of 1 with all hydrogen atoms omitted for clarity.

Figure S8. The three dimensional structure of $H_2\{Pc[N(C_4H_9)_2]_8\}$ (1) with all hydrogen atoms omitted for clarity.

Figure S9. (A) Two adjacent $Zn\{Pc[N(C_4H_9)_2]_8\}$ (4) molecules connected depending mainly on the C-H···N hydrogen bonds formed between two C-H(α) bonds of one phthalocyanine and the meso-N atom of the another phthalocyanine with all the di-butylamino groups omitted for clarity. (B) 1-D supramolecular structure of 4 with all hydrogen atoms omitted for clarity.

Figure S10. The three dimensional structure of $Zn\{Pc[N(C_4H_9)_2]_8\}$ (4) with all hydrogen atoms omitted for clarity.

Table S1. Analytical and mass spectrometric data for 1-4.^a

compound	$[M+H]^+(m/z)$		Analysis	
		C	Н	N
1	1533.4 (1533.3) ^b	74.38 (74.42) ^c	9.90 (10.05) ^c	14.50 (14.41) ^c
2	1555.4 (1555.2) ^b	$72.29 (72.25)^{d}$	$9.95 (9.95)^{d}$	$13.89 (13.82)^{d}$
3	1594.4 (1594.2) ^b	71.79 (71.79) ^e	$9.59 (9.64)^{e}$	$13.78 (13.88)^{e}$
4	1596.6 (1596.2) ^b	$71.52 (71.51)^{f}$	9.87 (9.64) ^f	$13.95 (13.83)^{f}$

[a] Calculated values given in parentheses. [b] By MALDI-TOF mass spectrometry. [c] Contain 0.125 equiv. solvated CHCl₃ and 0.25 equiv. solvated CH₃OH. [d] Contain 1.0 equiv. solvated H₂O and 1.5 equiv. solvated CH₃OH. [e] Contain 0.25 equiv. solvated H₂O and 0.5 equiv. solvated CH₃OH. [f] Contain 0.5 equiv. solvated H₂O and 0.5 equiv. solvated CH₃OH.

Table S2. ¹H NMR data (δ) for **1**, **2**, and **4** recorded with the concentration of ca. 1.0×10^{-3} M at 25°C.

	NIII	α-Рс	n-Bu			
	NH		CH ₂	CH ₂	CH ₂	CH ₃
1	0.20 (s, 2 H)	8.94 (s, 8 H)	3.66 (t, J = 6.96 Hz, 32 H)	1.71 (m, J = 7.30 Hz, 32 H)	1.44 (m, J = 7.23 Hz, 32 H)	0.98 (t, J = 7.28 Hz, 48 H)
2ª		8.96 (s, 8 H)	3.65 (t, J = 7.38 Hz, 32 H)	1.70 (m, J = 7.29 Hz, 32 H)	1.42 (m, J = 7.32 Hz, 32 H)	0.96 (t, J = 7.32 Hz, 48 H)
4		8.96 (s, 8 H)	3.67 (t, J = 7.38 Hz, 32 H)	1.71 (m, J = 7.34 Hz, 32 H)	1.44 (m, J = 7.31 Hz, 32 H)	0.98 (t, J = 7.32 Hz, 48 H)

[a] recorded in CDCl₃/[D₅]pyridine (150:1).

 $\label{eq:continuous} \textbf{Table S3.} \ \textbf{Crystal data} \ \textbf{and} \ \textbf{structure} \ \textbf{refinements} \ \textbf{for} \ \textbf{1} \ \textbf{and} \ \textbf{4}.$

Compound	1	4
formula	$C_{96}H_{154}N_{16}$	$C_{100}H_{160}N_{16}OZn$
fw	1532.35	1667.81
crystal system	monoclinic	orthorhombic
space group	C2/c	$C222_{1}$
a	20.0317(10)	16.7399(6)
b	27.6755(11)	28.7996(16)
c	18.5820(9)	40.3572(10)
α	90.00	90.00
β	116.117(6)	90.00
γ	90.00	90.00
V	9249.8(7)	19456.3(14)
Z	4	8
θ range (deg)	3.14-63.00	3.05-63.00
$F_{\rm calcd}$ (g/cm ³)	1.100	1.139
μ (mm ⁻¹)	0.497	0.759
F(000)	3368	7280
$R_1 (I > 2\theta)$	0.0575	0.1137
$R_{w2} (I > 2\theta)$	0.1426	0.3004
R_{w2} for all	0.1557	0.3215
GOF on F^2	1.046	1.256
CCDC number	1412942	1412943

 Table S4. Selected bond lengths of 1.

Bonds	1
C(18)-N(4)	1.424(3)
C(20)-N(5)	1.422(3)
C(23)-N(6)	1.418(3)
C(24)-N(7)	1.416(3)

Table S5. Selected bond lengths of **4**.

Bonds	4
N(1)-C(4)	1.44(3)
N(2)-C(5)	1.44(4)
N(3)-C(12)	1.40(3)
N(4)- $C(13)$	1.43(3)
N(5)-C(20)	1.43(2)
N(6)-C(21)	1.42(2)
N(7)-C(28)	1.435(18)
N(8)-C(29)	1.452(18)