Development of a Well Impairment Model for Predicting Geothermal Clogging

Ahmed Hussain

DIMOPREC project 09/04/2021

Deltares

Introduction

- Introduction and roll call.
- Aim and activities of the work packages (WP).
- Deliverables from and progress in the WP's.
 - A. A. Hussain: (numerical) model
 - B. N. Essaf: decision procedures and workflow (focused on Pb scaling)
 - C. Veegeo: skid
 - D. Deltares: experiences in other scaling programs
- Impact of COVID/change of schedules.
- Cooperation between the partners.
- Dissemination.
- **7**. A.O.B.

1 - Introduction and roll call

- Short introduction of all participants
 - Name / affiliation / function

2 - Aim and activities of the work packages (WP) (1/3)

+ 2 ½ months (started March 16th 2020)

WP of Fase 3	Korte beschrijving	Categorie: IO of EO ⁴	Uitvoerders (met namen) ⁵	Resultaat Geplande begin-	en einddatum⁵
WP 1 Sc	reening and evaluation of se	lected Dutch geoth	ermal doublets		
1a	Evaluation and screening	IO, EO	TU Delft, VeeGeo, Deltares	Upgrading the mineral database with available kinetic and reaction parameters for candidate Dutch geothermal fields.	
1b	Statistically quantification	10	TU Delft	Development of relevant statistically procedure for problem simplification based on task1.a	3-20 – 10-20
	ll-field modelling, workflow ar				
2a	Model based quantitative criteria	Ю	TU Delft, Deltares	Generic analytical model and analysis based on quantitative criteria to evaluate the importance of kinetics of geo-chemical reactions, An innovative approach to simplify the numerical simulation	5-20 – 10-20
2b	Full-field predictive model & workflow	10	TU Delft, Deltares	Numerical model development and work flow providing governing mechanism in field scale, Presenting quantitative key parameters and operational strategies being relative to avoid or treat clogging	6-20 – 9-21
WP 3 3 E	Demonstration and implemen	tation for Dutch ge	othermal reservoirs	·	
3a	Case studies for test and validation	IO, EO	TU Delft, VeeGeo, Deltares	Presenting the optimized operational parameters for relevant minerals to minimize the risk of precipitation, Detailed validated geo-chemical mechanisms of the selected pilot areas	9-20 – 10-21
3b	Development of generic decision-making tool and workflow	Ю	TU Delft, VeeGeo, Deltares	Generalization of results from pilot areas to options for national development, Development and presenting a generic decision-making tool to control clogging in Dutch geothermal doublets	9-20 – 9-21
3c	Development of a corrosion skid specific for field testing	IO, EO	TU Delft, VeeGeo, Deltares	testing of scale formation and influence on scaling rates	1-21 – 10-21
WP 4 Pro	oject management, coordinat	ion and dissemina			
4a	Project coordination	IO, EO	TU Delft	The Project Agreement agreed and signed by all project members (TU Delft)	1-20 – 12-21
4b	Project management and control	IO, EO	TU Delft	For all WP's, the dissemination and reports on final results (TU Delft, all), The periodical overview of the project (TU Delft, all partners, every 12 months)	1-20 – 12-21
4c	Dissemination	Ю	TU Delft, VeeGeo, Deltares	Presentation of the project and its findings during international conferences and in scientific peer-reviewed publications – conference proceedings, bibliographic data of scientific papers, workshops, Reporting every 12 months	1-20 – 12-21

2 - Aim and activities of the work packages (WP) Status September 2020 (2/3)

	WP of	Korte beschrijving	Categorie:	Uitvoerders	Resultaat	Geplande begi	n- en einddatum⁵
	Fase 3	eening and evaluation of sel	IO of EO ⁴	(met namen) ⁵		St	atus September 2020
	1a	Evaluation and	IO, EO	TU Delft, VeeGeo,	Upgrading the mineral database with	available kinetic	1-20 – 5-20
	ıa	screening	10, 20	Deltares	and reaction parameters for candidat		
•		screening		Deltales	fields.	e Dutch geother	ilai
	1b	Statistically	10	TU Delft	Development of relevant statistically	procedure for	3-20 - 10-20
		quantification		TO BOIL	problem simplification based on task		0.20 10.20
	WP 2 Full-	field modelling, workflow an	nd quantifying		problem empireduen bacca en tach	7.0	
	2a	Model based	10	TU Delft, Deltares	Generic analytical model and analysi	is based on	
		quantitative criteria		,	quantitative criteria to evaluate the in	portance of kine	tics 5 20 40 20
		Ť	Ongoing		of geo-chemical reactions, An innova	tive approach to	5-20 – 10-20
		•			simplify the numerical simulation		
	2b	Full-field predictive	10	TU Delft, Deltares	Numerical model development and w		g
		model & workflow	Ongoing		governing mechanism in field scale,		6-20 - 9-21
			Ongoing		quantitative key parameters and operational strategies		3 0-20 - 3-21
					being relative to avoid or treat cloggii	ng	
		emonstration and implement					
	3a	Case studies for test	IO, EO	TU Delft, VeeGeo,	Presenting the optimized operational		
		and validation		Deltares	relevant minerals to minimize the risk Detailed validated geo-chemical med		9-20 - 10-21
					selected pilot areas	nanisms of the	
	3b	Development of generic	10	TU Delft, VeeGeo,	Generalization of results from pilot ar	roas to ontions for	-
	30	decision-making tool	10	Deltares	national development, Development		
		and workflow		Bollaros	generic decision-making tool to contr		
		and normon			geothermal doublets	or ologging in Ea	
	3c	Development of a	IO, EO	TU Delft, VeeGeo,	testing of scale formation and influen	ce on scaling rate	es
		corrosion skid specific	,	Deltares			1-21 - 10-21
		for field testing	Ongoing				
	WP 4 Proj	ect management, coordinat	a atic				
	4a	Project coordination	IO, EO	TU Delft	The Project Agreement agreed and s	signed by all proje	ect 1-20 – 12-21
					members (TU Delft)		
	4b	Project management	IO, EO	TU Delft	For all WP's, the dissemination and		1-20 – 12-21
		and control			results (TU Delft, all), The periodical		
	4-	Discouring tion	10	THE DAIR WAR CO.	project (TU Delft, all partners, every		4 20 42 24
	4c	Dissemination	Ю	TU Delft, VeeGeo, Deltares	Presentation of the project and its fin		1-20 – 12-21
	/				international conferences and in scie		eu
V	Se	nt extended abstra	ct to EAGE co	nference	publications – conference proceeding data of scientific papers, workshops,		12
					months	Reporting every	12
			I	1	Honds		1

2 - Aim and activities of the work packages (WP) Status March 2021 (3/3)

	WP of Fase 3	Korte beschrijving	Categorie: IO of EO⁴	Uitvoerders (met namen) ⁵	Resultaat	Geplande begin- en Status March	
	WP 1 Scre	ening and evaluation of sel	ected Dutch geother			Status March	
√	1a	Evaluation and screening	IO, EO	TU Delft, VeeGeo, Deltares	Upgrading the mineral database with and reaction parameters for candidat fields.	te Dutch geothen Sta	1-20 – 5-20 rt after WP 2↓
	1b	Statistically quantification	10	TU Delft	Development of relevant statistically problem simplification based on task		3-20 – 10-20
1		field modelling, workflow an	d quantifying				
	2a	Model based quantitative criteria	Ongoing (sent abstract	J Delft, Deltares	Generic analytical model and analysi quantitative criteria to evaluate the in of geo-chemical reactions, An innova simplify the numerical simulation	nportance or kinelics	5-20 – 10-20
	2b	Full-field predictive model & workflow	Ongoing (sent abstract	<u>* </u>	Numerical model development and w governing mechanism in field scale, quantitative key parameters and ope being relative to avoid or treat cloggii	Presenting rational strategies	6-20 – 9-21
I	WP 3 3 Demonstration and implementation for Dutch geothermal reservoirs						
	3a	Case studies for test and validation	Ongoing (Najoua)	TU Delft, VeeGeo, Deltares	Presenting the optimized operational relevant minerals to minimize the risk Detailed validated geo-chemical med selected pilot areas	of precipitation, chanisms of the	9-20 – 10-21
	3b	Development of generic decision-making tool and workflow	Ongoing (Najoua)	TU Delft, VeeGeo, Deltares	Generalization of results from pilot ar national development, Development generic decision-making tool to contr geothermal doublets	and presenting a rol clogging in Dutch	9-20 – 9-21
	3c	Development of a corrosion skid specific for field testing	IO, EO	TU Delft, VeeGeo, Deltares	testing of scale formation and influen	ce on scaling rates	1-21 – 10-21
/	WP 4 Proj	ect management, coordinati	on and disseminatio	n			
V	4a	Project coordination	IO, EO	TU Delft	The Project Agreement agreed and s members (TU Delft)		1-20 – 12-21
	4b	Project management and control	See submissi	TU Delft ons on RVO site	For all WP's, the dissemination and results (TU Delft, all), The periodical project (TU Delft, all partners, every	overview of the 12 months)	1-20 – 12-21
✓	4c Ak	Dissemination ostract and present	ation at EGU 2	TU Delft, VeeGeo, Deltares 021 conference	Presentation of the project and its fin international conferences and in scie publications – conference proceeding data of scientific papers, workshops,	dings during ntific peer-reviewed gs, bibliographic	1-20 – 12-21
					months		

3 - Deliverables from and progress in the WP's

A. Hussain (TU Delft)

Numerically modelling: optimize for computation expense

- Three reaction speed categories:
 - 'Slow': can neglect reaction altogether
 - 'Intermediate': take into account reaction speed
 - 'Fast': can assume reaction occurs instantaneously
- Why categories: can reduce computation time → can consider more scaling reactions with practical simulation time.

Definitions of scaling reaction categories

Region of interest: 10m from injection-well Injection well radius: 0.05m

- Slow
 - @ 10m from injection-well less than 1% of the total scaling has occurred
- Fast
 - @ 0.0005m from injection well more than 99% of the total scaling has occurred
- Intermediate
 - Between 'Fast' and 'Slow'

QC stage -> compare simulation results to analytic solution Example: injection of supersaturated calcite solution into reservoir

Calcium concentration vs r, both dimensionless

QC stage -> compare simulation results to analytic solution Example: injection of supersaturated calcite solution into reservoir

Calcium concentration vs r, both dimensionless

QC stage → compare simulation results to analytic solution 2D model, radial

QC stage → compare simulation results to analytic solution 2D model, radial

Flowchart activities Ahmed

3 - Deliverables from and progress in the WP's

N. Essaf (TU Delft)

Lead scale in geothermal systems

Najoua Essaf TU Delft - Master Geo-Energy Engineering Veegeo

MSc research project

- Location: province South-Holland
- Installation description:
 - Synthetic material (GRE) for tubing/piping vs metal in other Dutch projects
- Scaling
 - More radioactive lead-210 scaling found than in other projects
 - No scaling inhibitor
- Aim of the research
 - Mitigation strategies for lead-210 scaling

Schematic overview of the installation

- Heat used for greenhouses
- Hot brine ~87 C
- Cooled brine ~ 35 C°
- Consequence: scale production

greenhouses

Schematic overview of the installation

- Degasser
 - $ightharpoonup C_nH_n(~93\%), CO_2(~5\%), N_2(~2\%) extraction$
 - Pressure change

- Heat exchanger
 - Heat extraction from brine
 - ightharpoonup T_{prod} 87 °C , T_{inj} 35 °C

Schematic overview of the installation

- Through time fluctuation in production water composition
- Reason: Water originates from various parts of the reservoir rock
- Scale is captured at the production and injection filter
- Scale compositions from the different filters are mostly similar
- However, some mineral percentages may differ considerably

Mineral scale composition at injection well

XRD analysis

		wt.%
Quarz	SiO ₂	25,3
Magnesioferrit	Fe ₂ MgO ₄	8,8
Hämatit	Fe ₂ O ₃	1,7
Talk	Mg ₃ (OH) ₂ (Si ₄ O ₁₀)	3,5
Galenit	PbS	15,1
Blei	Pb	6,9
Fluorit	CaF ₂	6,8
Halit	NaCl	5,7
Chalkopyrit	CuFeS ₂	4,4
Lepidokrokit	FeO(OH)	8,3
Zink	Zn	2,0
Montetrisait	Cu ₆ (SO ₄)(OH) ₁₀ ·2 H ₂ O	2,9
Goethit	FeO(OH)	6,8
Muskovit	KAI ₃ (OH) ₂ Si ₄ O ₁₀	1,9

Lead concentration at different points in the facility

Flow chart

- A. Production filter-bag: When lead scaling is mostly found at the production filter, it could be a result of changes in the degasser or upstream from the degasser (well / reservoir)
- B. Injection filter-bag: When lead scaling is mostly found at the injection filter-bag, it could be a result of the heat exchanger or upstream (slower reaction)
- C. Injection filter-candle: When lead scaling is mostly found at the injection filter-candle, it could be a result of the heat exchanger or upstream (slower reaction). The lead scaling could then consist of particles <5 μm and > 1 μm
- D. Different sections: Having lead scaling evenly spread over the different sections within the installation can be (among other) caused by a slower reaction that forms gradually within the brine
- Mitigation strategies depend on the cause. Possible mitigation: 1) adding inhibitor, 2) control physical changes (p, T, Q) of the installation 3) other

Done so far

- Data analyses
 - Filter data
 - Well logs (density, gamma ray, resistivity)
- Literature research
 - Paragenesis of lead carbonate and lead sulfate
 - Potential mineralization forms under changing pressure and temperature conditions
- Relating findings to the field of interest
- Flow chart

Conclusions so far

- Lead-210 produced from reservoir
- Pressure, pH value and temperature can influence the reaction rate and solubility.
 - Both degasser and heat exchanger may be important for lead scaling

Upcoming activities

- New measurements on pH value (including from skid)
- New analyses based on new filter data
 - Filters are placed and changed simultaneously → to exclude external factors (e.g., brine composition fluctuations over time or changes in process conditions)
- Modelling geochemical processes (PHREEQC) on the geothermal project to confirm conclusions are in line with theory

3 - Deliverables from and progress in the WP's

Veegeo

VEEGEO SKID

- The Veegeo SKID is a mobile sidestream for geochemical analyses
- One of its kind specifically designed to test at geothermal facilities
- Geochemical analyses such as water tests, coupons, corrosivity etc.

Design and characteristics

Design and characteristics

Design and characteristics

Progress so far

Fase	Progress
Design	Completed
RFQ	Completed
Building	Completed
Pressure tested	Completed
Transport to location	Completed
Choose point of connection	Completed
Connection to installation	50 %
Basic field test	0 %

8/4/21

39

Next steps

- Finish installation and calibration at location
- Basic field test
- Model result field test design (planned to start in autumn):
 - What are the model results?
 - What do we verify?
 - Coupling of model and field measurements; specifications
 - Organisation of skid field-data acquisition, comparison of fluid and mineral analysis vs model results

4 - Impact of COVID/change of schedules

Covid-19 related reasons:

- **Illness:** personal experience with COVID-19 resulted in absence for some time and concentration problems the period afterwards.
- **Laptop**: longer delivery time for laptop: laptop arrived 3 months after start of project. Could not work properly on my old personal laptop.
- **Field access**: very limited access to geothermal fields: cannot collect samples, investigate facilities nor investigate practical limitation.
- COVID- connection problems: must conduct simulations with a VPN network license: cannot reliably conduct modelling work overnight due to disconnection of VPN after some hours. Therefore, only simulations during day time, limiting modelling efficiency.

Total delay: circa three months

4 - Impact of COVID/change of schedules

	Total PM						:	lst Yea	r												2nd	Year							Final reporti
Work package descriptions		Project Months Lost time estimates								Lost time estimates Lost time estimates								reporting											
		1	1 2 3		4	5	6		7	8	9	10 11 12		12				15	16	17	18	19	20	21	22		23	24	25
		1	2	3	4	- 5	6	_ 7	8	9	10	_ 11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
WP 1 Screening and Realization of selected Dutch geothermal doublets									M1									M2									M3		М
	6.0	0.0	0.0	0.0	0.6	0.3		0.6									0.0											_	
ask 1,a: Evaluation and screening	3.2	0.3	0.6	0.6	0.6	0.3 D		0.6	D1a	DO WI	hat is p	OSSIDIE					0.2											<u> </u>	
ask 1,b: Statically quantification of relevant kinetic data	4.2			0.3	0.6	0.6	0.6	0.1	0.6	0.6	0.2	Dow	hat is po	occible			0.5												
ask 1,b: Statically quantification of relevant kinetic data	total wp			0.5	0.0	0.0	0.0	0.1	0.0	0.0	0.3 D	DO W	lat is pt	JSSIDIE			0.5	D1.b											
	total wp										-							D1.0											
VP 2 Full-scale modelling, workflow and quantifying	9.7																												
ask 2,a: Model based quantitative criteria	3.2					0.5	0.6	0.4	0.6	0.6		Do w	hat is po	ossible			0.2												l
											D							D2a											<u> </u>
ask 2,b: Full-scale model & workflow	8.1						0.2	0.0	0.2	0.3	0.6	0.6	0.6	0.6	0.6	0.6	1.0	0.6	0.6	0.6	0.3	0.3	0.2	0.2		?			
	total wp															D								D			D2b		
VP 3 Assessing and quantifying a demonstration and																													Ï
mplementation framework for Dutch geothermal reservoirs	13.7																												1
ask 3,a: Case studies for test and validation	4.6										0.1		0.1		0.1	0.5	?	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.3	?			
																									D		D3a		<u> </u>
ask 3,b: Derivation of generic decision-making tool and workflow	4.5										0.1		0.1		0.5	0.5	?	0.5	0.5	0.5	0.5	0.5	0.5			?			
					_																			D			D3b	<u> </u>	<u> </u>
Task 3,c: Development of a corrosion skid specific for testing	4.6			_												0.3	?	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	?	0.3		
	total wp																								D		D3c		
VP 4 Project management, coordination and dissemination	1.6																												1
																													<u> </u>
ask 4,a: Project coordination	0.9	0.1		0.1			0.1	0.0			0.1			0.1		-	0.0	0.1			0.1			0.1		0.0		0.1	
Table 4 has Danie at an annual and an attack			1	0.1		1	-				0.1						0.0	0.1					-					0.1	
ask 4,b: Project management and control	0.4			0.1							0.1						0.0	0.1										0.1	
issk 4 st Dissemination														0.1							0.1					0.0		0.1	
ask 4,c: Dissemination	0.3			-		1					-			0.1			0.0				0.1		-			0.0		0.1	
OTAL Person-months revised	total wp 59.0	0.4	0.6	1.1	1.2	1.4	1.5	1.1	1.4	1.5	1.6	0.6	0.8	0.8	1.2	1.9	1.9	2.3	2.1	2.1	2.0	1.8	1.7	1.6	0.8		0.3	0.3	
OTAL Person-months revised OTAL Person-months original	59.0	0.4 Projec			1.2	1.4	1.5	1.1	1.4	1.5	1.6	0.0	0.8	0.8	1.2	1.9	1.9	2.3	2.1	2.1	2.0	1.8	1./	1.0	0.8		0.3	0.3	
		1	2	3	4	5	6		7	8	9	10	11	12	13	1.4		15	16	17	18	19	20	21	22		23	24	2
Polft Reporting	8	1		3	4	5	D		/ leetin		9	10	11	12	13	14		/leeting		1/	19	19	20	21	22		Z3 Meetin		

5 - Cooperation between the partners

- Weekly meeting regarding progress and administration
 - K-H. Wolf
 - A. Hussain
- Weekly meeting regarding progress MSc project Najoua Essaf and available field data from Veegeo:
 - K-H. Wolf
 - H. Claringbould
 - A. Reerink
 - N. Essaf
 - A. Hussain
- Bi-weekly meeting regarding the modelling work between Deltares and TU Delft. Attendance:
 - B. Meulenbroek
 - W. Van der Star
 - N. Khoshnevis
 - A. Hussain

6 - Recent/upcoming dissemination

Presentation at EGU 2021 (April 28th):

Modelling Mineral-Scaling in Geothermal Reservoirs Using Both a Local Equilibrium and a Kinetics Approach

Hussain, A., Khoshnevis, N., Meulenbroek, B., Van der Star, W., Bruining, H., Claringbould, J., Reerink, A., and Wolf, K.-H.: Modelling Mineral-Scaling in Geothermal Reservoirs Using Both a Local Equilibrium and a Kinetics Approach, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-16033, https://doi.org/10.5194/egusphere-egu21-16033, 2021.

7 - AOB

Back-up slides

Numerically modelling: optimize for expensive

- Different methods of modelling scaling:
 - Kinetic approach (KA)
 - Takes into account the reaction speed
 - (Pro) Closest to reality
 - (Con) Numerically expensive

Numerically modelling: optimize for expensive

- Different methods of modelling scaling:
 - Kinetic approach (KA)
 - Takes into account the reaction speed
 - (Pro) Closest to reality
 - (Con) Numerically expensive
 - Local equilibrium approach (LEA)
 - Assumes reaction occurs immediately
 - (Pro) Numerically less expensive
 - (Con) Does not take into account reaction speed

Neglect

Numerically modelling: optimize for expensive

- Different methods of modelling scaling:
 - Kinetic approach (KA)
 - Takes into account the reaction speed
 - (Pro) Closest to reality
 - (Con) Numerically expensive
 - Local equilibrium approach (LEA)
 - Neglect

Back-up slides Najoua

Different scale composition / lead concentration at different points in the facility

Production filter

Reference date:			07 January 2	021							
Analytical results			No	. 1	No. 2						
Name of the sample)		CPM 5	25	CPM 188						
Specification		Zakkenf	ilter	Zakkenfilter							
Nuclide		Units	Result	U [%]	Result	U [%]					
U-238-series											
U-238	y	Bq/kg	< 107		< 28	-					
Ra-226	Y	Bq/kg	211	30	70	30					
Pb-210	γ	Bq/kg	820000	19	13300	23					
U-235-series											
U-235	235 γ		< 13	-	< 4,5	-					
Th-232-series											
Ra-228	γ	Bq/kg	154	17	43	46					
Th-228			604	10	432	10					
Further Radionuclid	es										
K-40	γ	Bq/kg	< 60	-	126	60					
Physical parameters	S										
Dry matter		%	49,1		86,2						
Dry Mass		g	13,39		8,744						
Measured Time		S	4948	5	48718						
Further parameters											
Geometry		ml	135		75						
Diameter		mm	90		76						
Detector Brand			Canber	rra	Canberra						
Detector Type			n		n						

Injection filter

Reference date:		26 November	2019						
Analytical results	No.	1	No	. 2	No. 3				
Specification		Zakkenfi 800 CP		Kaarsfil 800 CF		Vloeistof injectietubing 100 CPM			
Nuclide	Units	Result	U [%]	Result	U [%]	Result	U [%]		
U-238-series									
U-238 γ	Bq/kg	< 10	-	< 51	-	< 97	-		
Ra-226 γ	Bq/kg	27	30	183	60	261	50		
Pb-210 γ	Bq/kg	14400	20	109000	20	190000	15		
U-235-series									
U-235 y	Bq/kg	< 1,2	-	< 7,1	-	< 7,6	-		
Th-232-series									
Ra-228 y	Bq/kg	32	17	120	22	173	31		
Th-228 γ	Bq/kg	50	12	170	14	78	26		
Further Radionuclides									
Κ-40 γ	Bq/kg	44	50	< 138	-	< 323	-		
Physical parameters									
Dry matter	%	24		97		8,4			
Dry mass	g	28,780		3,92		0,81			
Measured Time	S	63177		6596	7	47801			
Further parameters									
Geometry	ml	FIL		135		75			
Diameter	mm	49		90		74			
Detector Brand		Canber	ra	Canber	та	Canberra			
Detector Type	n		n		n				

