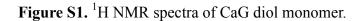
Electronic Supplementary Information for:

High Thermal Stability of Bio-based Polycarbonates Containing Cyclic Ketal Moieties


Gwang-Ho, Choi^{\dagger}, *Da Young, Hwang*^{\dagger} and *Dong Hack, Suh*^{\dagger^*}

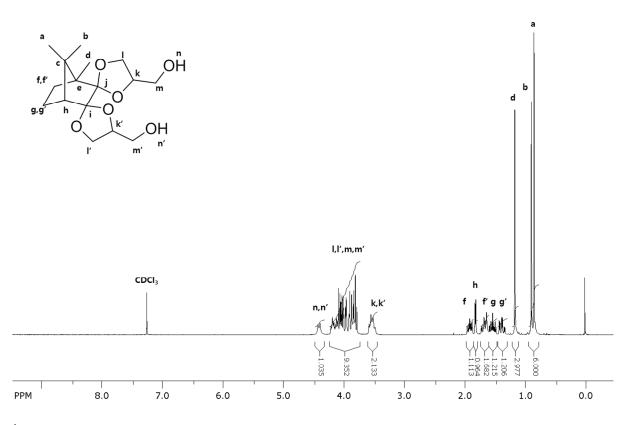
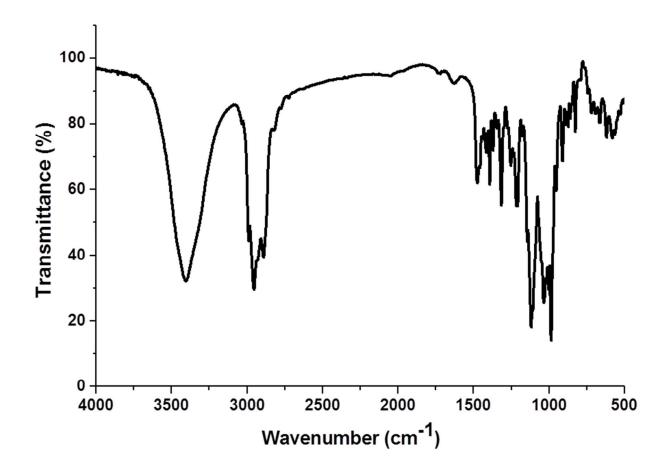

[†]Dept. of Chemical Engineering, College of Engineering, Hanyang University, 222 Wangsimniro, Seongdong-gu, Seoul, 133-791, Korea. ^{*}Email: dhsuh@hanyang.ac.kr

Table of Contents

Characterization of CaG diol monomer							
Characterization of PCaGC homopolymers	4						


Characterization of CaG diol monomer

¹H NMR (299.9 MHz, CDCl₃), δ (ppm): 4.42 (d, 2H, OH), 4.23-3.73 (m, 8H, OC*H*₂CH), 3.55 (m, 2H, OCH), 1.91 (m, 1H, CC*H*₂CH₂), 1.81(d, 1H, CC*H*), 1.67(m, 1H, CHC*H*₂CH₂), 1.53(m, 1H, CC*H*₂CH₂), 1.38(m, 1H, CHC*H*₂CH₂), 1.16(s, 3H, CCH₃), 0.89(s, 3H, CCH₃), 0.84(s, 3H, CCH₃)

Figure S2. FT- IR spectrum of CaG diol monomer recorded at room temperature. The spectrum shows frequency ranges from 500 to 4000 cm⁻¹

FT-IR: $v(cm^{-1}) = 3430, 2954, 2894, 1476, 1392, 1315, 1209, 1119, 1035, 986.$

Characterization of PCaGC homopolymers

Entry	Molar composition			Molecular weight			Thermal properties (°C)		
	CaG	DPC	Yield (%)	Mnª	Mw ^a	Dª	T _{5%} b	T _d c	$\mathbf{T}_{\mathbf{g}}^{d}$
1	1.0	1.0	37.8	7664	14105	1.84	324.0	399.0	127.3
2	1.0	1.1	46.0	8283	18652	2.25	298.0	357.7	128.3
3	1.0	1.2	42.5	7573	14480	1.91	328.4	357.8	125.6
4	1.0	1.3	51.0	5629	9019	1.62	314.5	376.1	119.8
5	1.0	1.4	29.0	6583	11050	1.68	267.8	326.8	127.8

Table S1. Molar composition, yield, molecular weight and thermal properties of PCaGCs.

^aNumber-average and weight-average molecular weights in g mol⁻¹ and dispersities measured by GPC in THF against PS standards. ^bTemperature at which 5% weights loss was observed. ^cTemperature for the maximum degradation rate. ^dGlass-transition temperature taken as the inflection point of the heating DSC traces.

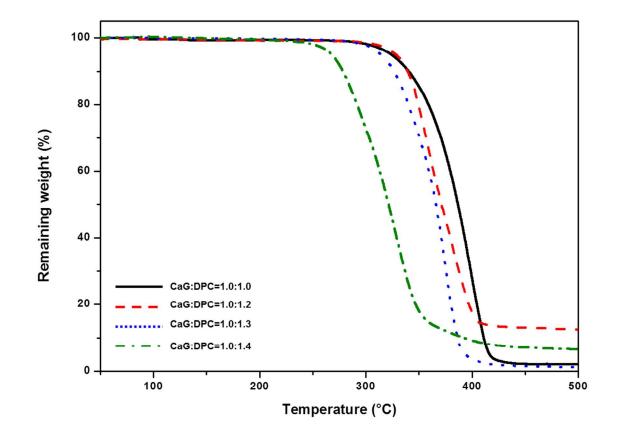
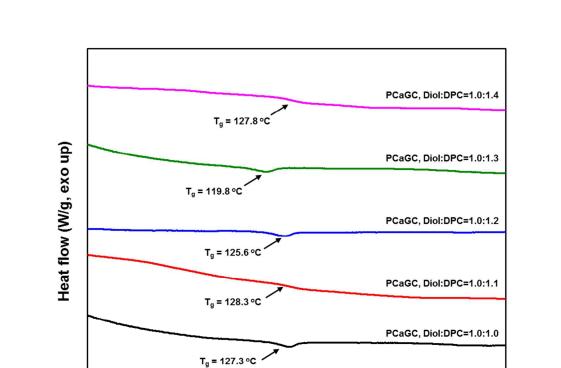



Figure S3. TGA traces of PCaGCs recorded from 50 to 500 $^{\circ}\text{C}$ at 10 $^{\circ}\text{C/min}$ under N_2 atmosphere.

Temperature (°C)

Figure S4. DSC curves of PCaGCs. The experiments were carried out from 60 to 200 °C at a heating rate of 10 °C/min