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Image-Based Radar Cross-Section Synthesis
for a Cluster of Multiple Static Targets

Takuma Watanabe, Member, IEEE

Abstract—In this article, we propose a novel image-based
method for radar cross-section (RCS) prediction of a cluster
of multiple static targets by synthesizing replicas of an original
radar image. In this approach, we first measure the near-
field backscattering of a target and reconstruct a corresponding
radar image. Then, modified copies of this image with rotation,
translation, and spatial filtering, are generated according to the
predefined desired arrangement, and they are coherently summed
to create a single synthesized image in which all scattering
contributions contained in the modified images are virtually
included. Finally, the synthesized image is utilized to predict
the far-field RCS of the multiple targets, based on the theory
of image-based near-field-to-far-field transformation (NFFFT).
By employing the proposed algorithm, we can avoid building
multiple test targets, resulting in the reduction of the production
costs of them. Moreover, we can easily test several different
experimental layouts of the multiple targets without repeating
a real measurement. Numerical simulations and experiments are
provided to demonstrate the validity of the proposed image-based
RCS synthesis.

Index Terms—Radar cross-section (RCS), multiple targets,
near-field-to-far-field transformation (NFFFT), synthetic aper-
ture imaging

I. INTRODUCTION

COST-effective radar cross-section (RCS) testing is impor-
tant in developing radar hardware and signal processing

algorithms. As is well-known, RCS is normally defined in the
far-field distance which is proportional to the dimension of the
target and inversely proportional to the operating wavelength.
Therefore, direct measurement of the RCS of an electrically
large target is usually difficult owing to the requirement
of a large test range and the high costs for building the
measurement facility.

To deal with the aforementioned problems, several near-
field-to-far-field transformation (NFFFT) algorithms [1]–[13]
have been developed to achieve the near-field RCS measure-
ment without requiring a large test site. One major approach
is the “image-based NFFFT” [6]–[12] where we generate a
radar image of a target based on the synthetic aperture signal
processing. By considering the reconstructed image as a dis-
tribution of point scatterers, one can predict the backscattered
field at an arbitrary location including the far-field region in
which the RCS is defined.

The majority of existing literature considers RCS prediction
and measurement of a unit target. However, as presented in
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[14], [15], a scene to be measured is not necessarily constituted
by a single object, and one may need to evaluate the RCS of
a cluster of multiple targets. In this case, different problems
arise; that is, costs for manufacturing multiple test objects and
effort to try several experiments under different arrangements
of the targets. In this article, we propose a novel approach
for RCS synthesis to estimate the backscattering of a cluster
of multiple static targets based on the image-based NFFFT to
solve these problems.

The basic idea of the proposed algorithm is quite simple
as follows: Fist, we measure the near-field backscattering of
a real target and reconstruct a corresponding radar image.
Then, modified replicas of this original image with rotation,
translation, and spatial filtering are generated according to the
predefined scenario, and they are coherently summed to create
a single synthesized image in which all scattering contributions
in the replicated images are included. This synthesized image
virtually represents a scene of multiple targets. Finally, the
synthesized image is utilized to predict the far-field RCS of
the multiple targets, based on the theory of the image-based
NFFFT [6]–[12]. The development of this RCS synthesizing
algorithm and its experimental validation are the main novelty
and contribution of this article.

A similar topic was treated in [14], [15], where an RCS
pattern of a single metallic aircraft model simulated using
a numerical electromagnetic solver was used to synthesize
the RCS of a scene containing multiple targets with identi-
cal shape. In this previous research work, a complex-valued
backscattering pattern of a single target was replicated with
multiplication of an appropriate phase factor of the assumed
arrangement, and the modified replicas are coherently summed
to synthesize the RCS of the multiple targets. This algorithm
was based on the idea of array factor in the field of antenna
arrays. The objective was to avoid rigorous calculation of the
RCS of multiple targets to reduce the computational burden.
On the other hand, the novel approach proposed in this article
is intended to be applied for experimental data. Moreover, by
generating a radar image of a target, spatial filtering [2], [16],
[18] can be applied to extract or reject a desired part of the
target, which is a distinctive advantage of the radar imaging.

The remainder of this article is organized as follows. In
Section II, we briefly review the image-based RCS determi-
nation. Section III describes the proposed image-based RCS
synthesis accompanied by simple numerical examples. Based
on the developed theory, Section IV discuss the experimental
validation carried out in an anechoic chamber. In this mea-
surement, metallic trihedral reflectors and aircraft models are
used for the demonstration of the proposed algorithm. Finally,
Section V concludes the research presented in this article.

This work has been submitted to the IEEE for possible publication.
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Fig. 1. Concept of the RCS determination with the image-based NFFFT.
(a) Backscattering measurement with an arbitrary antenna-scanning curve. (b)
Representation of a target with a cloud of point scatterers.

II. IMAGE-BASED RCS DETERMINATION

In this section, we briefly review the image-based RCS de-
termination [6]–[12]. Fig. 1 illustrates a system model of near-
field RCS measurement with an arbitrary antenna-scanning
curve. As shown in Fig. 1(a), a target under test is placed on
the origin of the 2-D (x, y)-plane, and an antenna moves along
an arbitrary curve enclosing the target. The antenna transmits
an electromagnetic wave and receives the scattered wave from
the target during the scanning, where the main antenna beam
is maintained toward the target throughout the measurement.

In the image-based NFFFT, we model a target as a cloud of
point scatterers with unknown reflectivity as depicted in Fig.
1(b), where the mutual interaction between the scatterers is ig-
nored. This modeling is the so-called Born or single-scattering
approximation [17] which is commonly employed in radar
signal processing. Based on this model, we reconstruct the
unknown reflection coefficients from the measured near-field
backscattering. Once the reflectivity distribution are known,
the scattered field at an arbitrary spatial location, including
the far-field region in which the RCS is defined, can be
determined. In the following, we formulate the aforementioned
approach.

A. Signal Model
As shown in Fig. 1, we consider the 2-D (x, y)-plane in

which a target under test and an antenna are placed. The
arbitrary antenna-scanning curve shown in Fig. 1(a) is denoted
by a vector r0(u) which is parametrized by a variable u, and
an arbitrary spatial location is represented by a vector r. These
vectors are explicitly defined as follows:

r0(u) = x0(u)x̂+ y0(u)ŷ (1a)
r = xx̂+ yŷ, (1b)

where x̂ and ŷ are the unit vectors along x- and y-direction,
respectively.

If the reflectivity at the point r is represented as a continu-
ous function C(r), the scattered wave received at an antenna
location r0(u) on the curve can be modeled as follows:

Es(k, r0) =
k2√
4π

∫
S

P 2(k, r0, r)C(r)
e−2jk|r0−r|

|r0 − r|2
dr, (2)

where S is the spatial domain of the integration; k = ω/c
represents the wavenumber with the angular frequency ω and

the wave propagation speed c; P (k, r, r0) is the antenna
amplitude pattern in the direction from the antenna location
r0(u) toward the point r. When the reflectivity C(r) can be
modeled as a sum of discrete point scatterers as illustrated in
Fig. 1(b), the reflectivity function is expressed by

C(r) =
∑
i

Ciδ(|r − ri|) =
∑
i

Ciδ(x− xi)δ(y − yi), (3)

where Ci and ri are the reflectivity and location of the ith
point scatterer, respectively, and δ(·) is the delta function. Sub-
stituting Eq. (3) into Eq. (2) yields the following expression:

Es(k, r0) =
k2√
4π

∑
i

P 2(k, r0, ri)Ci
e−2jk|r0−ri|

|r0 − ri|2
. (4)

Eq. (4) is the received signal model of a target composed
of discrete point scatterers as shown in Fig. 1(b). This dis-
crete scatterer model is used to numerically demonstrate the
proposed approach in Section III.

B. Image Reconstruction

The next task is to reconstruct the reflectivity distribution
C(r) or Ci, which is what we call a “radar image,” from the
received signal Es(k, r0). The scatterer location ri is assumed
to be known as it is considered as a point on a Cartesian
grid. As an example, we assume a single point scatterer at
r1 = (x1, y1). The ideal image for this scatterer is defined by
Eq. (3) with i = {1} as follows:

ψ(r) = C1δ(x− x1)δ(y − y1). (5)

The received signal corresponding to Eq. (5) is given by Eq.
(4) with i = {1} as follows:

Es(k, r0) =
k2√
4π
P 2(k, r0, r1)C1

e−2jk|r0−r1|

|r0 − r1|2
. (6)

The image reconstruction is generally accomplished by
the following integral transformation of the received signal
Es(k, r0) with a weighting function F (k, r0, r):

ψ(r) =

∫ ∞

0

∫
D
Es(k, r0)F (k, r0, r) du dk, (7)

where D is the domain of the integration with respect to u.
The weighting function F (k, r0, r) in Eq. (7) is referred to as
the “focusing factor” and defined as

F (k, r0, r) = g(k, r0, r)
|r0 − r|2

P 2(k, r0, r)
e2jk|r0−r|. (8)

In Eq. (8), g(k, r0, r) is called the “correction factor” [9]–
[11] which is defined such that the integral transformation of
Eq. (6) is reduced to the ideal image of a single point scatterer
given in Eq. (5). The definition of the correction factor is [9]

g(k, r0, r) =
2

π
3
2 k

∣∣∣∣dαdu
∣∣∣∣ , (9)

where α(u) represents the local azimuth angle of the antenna
viewed from the scatterer location r1, expressed as

α(u) = tan−1[Ry(u)/Rx(u)], (10)
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with
Rx(u) = x0(u)− x, Ry(u) = y0(u)− y. (11)

As discussed in [9]–[11], one can prove that the image
reconstruction given in Eq. (7) reduces to the ideal image
defined in Eq. (5) by incorporating the correction factor of
Eq. (9) into the focusing factor of Eq. (8).

When the antenna-scanning curve shown in Fig. 1(a) is
a simple circle of radius ρ0 centered at the origin of the
coordinate, the expression of the curve is given by

x0(u) = ρ0 cosu, y0(u) = ρ0 sinu. (12)

In this case, the corresponding correction factor is explicitly
derived as follows [9]:

g(k, r0, r) =
2ρ0 |Rx cosu+Ry sinu|

π3/2k
(
R2

x +R2
y

) . (13)

Note that an arbitrary scanning curve can be used by
calculating the derivative in the correction factor of Eq. (9)
via a numerical differentiation algorithm [10], [11].

C. RCS Determination

The final step of the image-based NFFFT is to compute
the RCS from the reconstructed image. As depicted in Fig.
1(b), the reconstructed spatial image can be considered as a
cloud of point scatterers, where now that the reflectivity of the
ith scatterer Ci is known. Therefore, the scattered field at an
arbitrary antenna location r0, including the far-field region in
which the RCS is defined, can be recovered via Eq. (4).

The general definition of RCS is

σ (kr) = lim
r0→∞

4πr20

∣∣∣∣Es(k, r0)

Ei(k, r0)

∣∣∣∣2 , (14)

where r0 = |r0|, kr = 2kr0/r0, and Ei(k, r0) is the incident
field. If we define the incident field as

Ei
0(k, r0) =

e−jkr0

r0
, (15)

the RCS can be computed as follows [9]–[11]:

σ (kr) = k4
∣∣∣∣∫ ∞

−∞

∫ ∞

−∞
ψ(r) exp(jkr · r) dx dy

∣∣∣∣2
= k4

∣∣∣F−1
(x,y) [ψ(x, y)]

∣∣∣2 , (16)

where F−1
(x,y)[·] is the 2-D inverse Fourier transform with

respect to the spatial variables (x, y). Therefore, once a radar
image is obtained, the corresponding RCS is given by the 2-D
inverse Fourier transform of that image.

III. IMAGE-BASED RCS SYNTHESIS

In this section, we describe the proposed image-based RCS
synthesis. A simple numerical simulation based on the discrete
scatterer model of Eq. (4) is provided to demonstrate the
proposed concept.

Image 1

Step 3: synthesized image

Coherent
summation

Σ

Image 2

Image n

RCS 1

RCS 2

RCS n

Step 1: base image Step 4: synthesized RCSStep 2: transformed image

Fig. 2. Processing flow of the proposed image-based RCS synthesis.

A. Processing Flow

Fig. 2 represents the processing flow of the proposed image-
based RCS synthesis. As illustrated in Fig. 2, an original
radar image is repeatedly replicated with transformation (e.g.,
rotation, translation, and spatial filtering) to create multi-
ple images, and they are coherently summed to generate a
single image; then, we compute the corresponding RCS of
the synthesized image according to Eq. (16). A step-by-step
description of Fig. 2 is as follows:

1) As shown in Step 1 of Fig. 2, reconstruct an original
radar image from the measured data based on Eq. (7).
We refer to this image as a “base image.” A single target
or multiple targets can be contained in it.

2) The base image is duplicated and transformed to gener-
ate a new image. As discussed in the Sections III-D
to III-E, possible image transformations are rotation,
translation, and spatial filtering. This image is called
a “transformed image.” As illustrated in Step 2 of
Fig. 2, multiple transformed images having different
transformation parameters can be generated. Steps 1 and
2 are repeated for other desired targets, if any.

3) All the transformed images obtained through the above
Steps 1 and 2 are coherently summed to create a single
image, as shown in Step 3 of Fig. 2. This image is
referred to as a “synthesized image” where all scattering
contributions of the transformed images are virtually
included. Note that the synthesized image can be used
as a base image to generate another transformed image
(i.e., a modified replica of the synthesized image).

4) Finally, we compute the corresponding RCS by Fourier-
transforming the synthesized image according to Eq.
(16) (Step 4 of Fig. 2). We refer to the obtained RCS
as the “synthesized RCS.”

The aforementioned algorithm is expressed as follows: We
denote mth base image by ψm(x, y),m ∈ {1, 2, . . .}, and
we represent nth (n ∈ {1, 2, . . .}) image transformation
(i.e., rotation, translation, spatial filtering, and repetition and
combination of them) operated on the mth image by Tm,n[·].
Then, the synthesized image ψΣ(x, y) is written as

ψΣ(x, y) =
∑
m

∑
n

Tm,n [ψm(x, y)] . (17)

By using Eq. (16) with ψ(x, y) → ψΣ(x, y), one can compute
the synthesized RCS of the multiple targets.
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Fig. 3. Simulation setup and location of point scatterers. (a) Simulation setup.
(b) F-shaped scatterer. (c) J-shaped scatterer. (d) FJ-shaped scatterer.

TABLE I
SIMULATION PARAMETERS

Center frequency 10.2GHz
Bandwidth 4GHz
Frequency sampling interval 20MHz
Angular sampling interval 0.4◦

Angular range [0◦, 360◦]
Radius of trajectory 2m

In the following discussion, we demonstrate the proposed
approach by point-scatterer simulations.

B. Overview of the Simulation

The simulation is based on the discrete scatterer model
defined in Eq. (4). Fig. 3 shows the simulation setup and the
location of point scatterers, and Table I lists the simulation
parameters. Note that these parameters were selected to ensure
consistency with the experimental validation in Section IV.

As illustrated in Fig. 3(a), the point scatterers were dis-
tributed on a 2-D (x, y)-plane like in Fig. 1(b). The locations
of the scatterers were designated in Figs. 3(b), (c), and (d),
where the three types of arrangement, namely, “F”-, “J”-, and
“FJ”-shaped objects were shown, respectively. The antenna
was fixed at 2m away from the origin of the coordinate, while
the (x, y)-axes and the scatterers were rotated simultaneously
to create a circular synthetic aperture. The antenna pattern was
assumed to be isotropic. The center frequency and bandwidth
were 10.2GHz and 4GHz, respectively, and the angular
sampling interval was 0.4◦. The received signals for each
scatterer arrangement were generated based on Eq. (4), and
the base images were reconstructed according to Eq. (7).
The reflection coefficients Ci of these point scatterers were

determined assuming the conductive spheres of equivalent
radii ai = 1.5mm, as follows [9], [19]:

Ci = 3
√
πa3i (18)

Note that Eq. (18) is valid for a sphere having the radius
sufficiently small compared to the wavelength (i.e., kai < 0.4).

C. Base Images

Figs. 4(a)–6(a) show the reconstructed base images for the
arrangement presented in Figs. 3(b), (c), and (d), respectively,
and Figs. 4(b)–6(b) show the corresponding RCS derived from
the image shown in Figs. 4(a)–6(a), respectively. In Figs.
4(b)–6(b), the theoretical RCS is also plotted, of which the
expression is defined as follows [9]:

σ = k4

∣∣∣∣∣∑
i

Ci exp (jkxxi + jkyyi)

∣∣∣∣∣
2

(19a)

kx = 2k cosϕ, ky = 2k sinϕ (19b)

where ϕ represents the azimuth angle. Note that throughout
this article, the RCS was computed at 10GHz. One can
confirm from Figs. 4(b)–6(b) that the reconstructed RCS via
the image-based NFFFT well agrees with those obtained from
the theoretical expression of Eq. (19).

According to the algorithm described in Section III-A,
several image transformations were applied to these base
images, and synthesized images were generated by summing
the multiple transformed images; then, the corresponding RCS
was computed. To evaluate the effectiveness of the proposed
RCS synthesis, we compared the RCS reconstructed from the
synthesized image and those obtained from a “real image”
which is generated from the received signal assuming that the
point scatterers were deployed such that the arrangement was
exactly same as those assumed in the synthesized scenario.
We refer to the RCS of a real image as the “real RCS.”

D. Image Rotation and Translation

In this section, we explain image rotation and translation
algorithms which are suitable for our purpose. First, we
describe the former operation. In digital image processing
where an 2-D image is represented as a real-valued matrix,
the image rotation is generally done via 2-D interpolation
algorithms such as bi-nearest neighbor, bilinear, and bicubic
interpolation.

Although such an approach can be used for a complex-
valued radar image, the image rotation can be efficiently
processed without interpolation based on the multiple 1-D
Fourier transforms. As discussed in [21]–[23], the image
rotation is represented as three shear operations, and these can
be accomplished by the following six 1-D Fourier transforms
[23]:

ψx(x, y) = F(kx)

[
e−jkxay F−1

(x) [ψ(x, y)]
]

(20a)

ψxy(x, y) = F(ky)

[
e−jkybx F−1

(y) [ψx(x, y)]
]

(20b)

ψθ(x, y) = F(kx)

[
e−jkxay F−1

(x) [ψxy(x, y)]
]

(20c)
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Fig. 4. Base image and RCS (F-shaped scatterer). (a) Spatial image. (b) RCS
determined from (a).
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Fig. 5. Base image and RCS (J-shaped scatterer). (a) Spatial image. (b) RCS
determined from (a).
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Fig. 6. Base image and RCS (FJ-shaped scatterer). (a) Spatial image. (b)
RCS determined from (a).

where F(kx)[·] is the 1-D Fourier transform with respect to the
spatial frequency kx, and F−1

(x) [·] is the 1-D inverse Fourier
transform with respect to spatial variable x; similar definitions
can be established for ky and y; a and b are the amount of
the shear in x- and y-direction, respectively. If the angle of
rotation is θ, a and b are given by [21]–[23]

a = tan(θ/2), b = − sin θ. (21)

In Eq. (20), ψx(x, y), ψxy(x, y), and ψθ(x, y) represent the
image of the first shear in x-direction applied to the original
image ψ(x, y), the second shear in y-direction applied to the
x-sheared image ψx(x, y), and the final shear in x-direction
applied to the (x, y)-sheared image ψxy(x, y), respectively,
where ψθ(x, y) is the desired θ-rotated image. As these Fourier
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Fig. 7. Image rotated by three shears and the resultant RCS (FJ-shaped
scatterer). The rotation angle was θ = 70◦. (a) First shear ψx(x, y).
(b) Second shear ψxy(x, y). (c) Rotated spatial image ψθ(x, y). (d) RCS
determined from (c).

transforms can be implemented by the fast Fourier transform
(FFT), an efficient image rotation can be achieved [23].

It is worth mentioning that the aforementioned algorithm is
valid for a rotation angle up to 90◦. For an angle greater than
90◦, an image must be rotated through an integer multiply
of 90◦, represented by nπ/2 (n ∈ {1, 2, 3}), so that the
remaining rotation angle is less than 90◦; then, the rotation
through θ−nπ/2 is processed. Alternatively, 90◦-, 180◦-, and
270◦-rotated base images must be additionally reconstructed
by replacing the azimuth angle ϕ0 → ϕ0 + nπ/2, followed
by the shear-based rotation. Note that the aforementioned 2-D
image rotation was extended to a 3-D case in [24].

Fig. 7 represents the process of image rotation and the RCS
determined from the rotated image, where the FJ-shaped base
image was used for this demonstration; the rotation angle
was 70◦. Figs. 7(a), (b), and (c) show the x-sheared image
ψx(x, y), (x, y)-sheared image ψxy(x, y), and rotated image
ψθ(x, y), respectively. One can confirm that the image rotation
was correctly accomplished by Eq. (20) with Eq. (21). Fig.
7(d) shows the RCS reconstructed from the rotated image of
Fig. 7(c), plotted with the real RCS (i.e., those reconstructed
from the image of the FJ-shaped point scatterers placed on
the 70◦-rotated position) for reference. As these RCS patterns
exactly agree with each other, the correctness of the image
transformation is proved.

The latter operation, translation, can be readily accom-
plished based on the well-known shift property of the Fourier
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Fig. 8. Translated image ψ∥(x, y) and RCS (F-shaped scatterer). (a) Spatial
image. (b) RCS determined from (a).

transform, as follows:

ψ∥(x, y) = F(kx,ky)

[
e−jkxx

′−jkyy
′
F−1

(x,y) [ψ(x, y)]
]

(22)

where (x′, y′) represent the amount of translation with respect
to x- and y-direction, respectively; F(x,y)[·] and F−1

(kx,ky)
[·]

are the 2-D forward and inverse spatial Fourier transform with
respect to the variables (x, y) and (kx, ky), respectively.

Fig. 8(a) depicts the translated image of the F-shaped
scatterer shown in Fig. 4(a), and Fig. 8(b) represents the
corresponding RCS reconstructed from the translated image
of Fig. 8(a). As the shape and orientation of the target was
unchanged after the translation operation, the reconstructed
RCS pattern in Fig. 8(b) is exactly same as those presented in
Fig. 4(b).

E. Image Filtering and Insertion

Other important operations are image filtering and insertion,
where the former refers to the extraction of a desired portion
of an image by applying a spatial window to the image, and
the latter means the replacement of a part of a image with
another image. Note that the spatial filtering of a radar image
was also investigated in [2], [16], [18].

For example, we consider the following circular “band-pass”
filter function of radius ρΠ centered at the spatial origin (0, 0):

Π(x, y) =

{
1,

√
x2 + y2 < ρΠ

0, otherwise.
(23)

Similarly, the following circular “band-stop” filter function can
be defined:

Πc(x, y) =

{
0,

√
x2 + y2 < ρΠ

1, otherwise.
(24)

If our objective is to extract or reject a circular region of
radius ρΠ centered at (xc, yc) from the spatial image ψ(x, y),
the following operation can be used:

ψΠ(x, y) = Π(x− xc, y − yc)ψ(x, y) (25a)
ψΠc(x, y) = Πc(x− xc, y − yc)ψ(x, y) (25b)

Note that other 2-D spatial filter functions, such as a rectan-
gular, elliptical, and Gaussian window, are applicable as well.
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Fig. 9. Band-pass filtered image and RCS (J-shaped scatterer created from
FJ-shaped scatterer). (a) Spatial image. (b) RCS determined from (a).
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Fig. 10. Band-stop filtered image and RCS (F-shaped scatterer created from
FJ-shaped scatterer). (a) Spatial image. (b) RCS determined from (a).

Figs. 10 and 9 show the band-pass and band-stop filtered
images of the FJ-shaped scatterer of Fig. 6(a) and the cor-
responding RCS, where the J- and F-portion were extracted,
respectively, using the filter radius ρΠ = 15 cm centered at
(xc, yc) = (15, 0) cm. The reconstructed RCS in Figs. 10(b)
and 9(b) exactly agree with the real RCS, and the patterns are
same as those presented in Figs. 5(b) and 4(b), respectively,
indicating the validity of the filtering approach.

Next, we explain the image insertion which is a combination
of a spatially filtered image and another transformed image.
As an example, we created an “FF”-shaped synthesized image
by coherently adding the translated F-shaped image shown
in Fig. 8(a) and the band-stop filtered image depicted in
10(a). The resultant image and RCS are represented in Figs.
11(a) and (b), respectively. By comparing the synthesized
and real RCS shown in Fig. 11(b), we can confirm that the
RCS of the FF-shaped scatterer is correctly recovered from
the synthesized image, demonstrating the effectiveness of the
proposed approach.

F. Frequency-Domain Synthesis

Before moving on to the experimental validation, we
note the frequency-domain synthesis approach instead of the
spatial-domain synthesis discussed so far. When we need
to synthesize two images such that these are considerably
separated away from each other, simply generating a large
spatial image is an unsuitable option because such an image
contains many redundant pixels with zero. In this case, image
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Fig. 11. Inserted image and RCS (FF-shaped scatterer). The translated F-
shaped base image of Fig. 8(a) was inserted to the band-stop filtered image
of Fig. 10(a). (a) Spatial image. (b) RCS determined from (a).

synthesis can be efficiently done in the frequency domain
without adding the large amount of zero-valued pixels.

By substituting the translated image defined in Eq. (22) into
the NFFFT equation of Eq. (16), the RCS σ∥(kx, ky) of an
translated image ψ∥(x, y) is expressed as follows:

σ∥(kx, ky) = k4
∣∣Ψ∥(kx, ky)

∣∣2 (26)

where

Ψ∥(kx, ky) = e−jkxx
′−jkyy

′
F−1

(x,y) [ψ(x, y)] (27)

is the translated image in the spatial frequency domain.
As an example, let us consider generating a synthesized im-

age from a set of translated images ψ∥,m(x, y),m ∈ {1, 2, . . .}
of a base image ψ(x, y), where the amount of translation for
the mth image is (x′m, y

′
m). In this case, the corresponding

mth frequency-domain image Ψ∥,m(kx, ky) is

Ψ∥,m(kx, ky) = e−jkxx
′
m−jkyy

′
m F−1

(x,y) [ψ(x, y)] . (28)

Using the frequency-domain image Ψ∥,m(kx, ky) defined in
Eq. (28), the synthesized RCS σΣ(kx, ky) can be computed
via the following expression:

σΣ(kx, ky) = k4

∣∣∣∣∣∑
m

Ψ∥,m(kx, ky)

∣∣∣∣∣
2

(29)

In this approach, padding a large amount of zeros in the
base image to reserve a space for long-range translation is
unnecessary.

Note that this frequency-domain RCS synthesis is similar to
the array-factor-based algorithm discussed in [14], [15], where
a numerically simulated complex-valued scattering pattern was
used to synthesize the RCS of a cluster of multiple targets. The
major merit of the image-based RCS synthesis presented in
this article compared to the previous work is the availability of
the spatial filtering which is a distinctive feature of generating
the radar image, as presented in Section III-E.

In the following discussion, we only employed the spatial-
domain synthesis for simplicity.

IV. EXPERIMENTAL VALIDATION

In this section, we discuss experimental validation of the
proposed algorithm.

VNA

Horn antennas

Azimuth angle

2 m

Rotation

Amplifier

Tx Rx

Targets

Fig. 12. Experimental setup.

TABLE II
EXPERIMENTAL PARAMETERS

Polarization HH
Center frequency 10.2GHz
Bandwidth 4GHz
Frequency sampling interval 20MHz
Angular sampling interval 0.4◦

Angular range [0◦, 360◦]
Radius of trajectory 2m

A. Overview of the Experiment

Fig. 12 illustrates the experimental setup, and Fig. 13
depicts the photographs of the experiment; the experimental
parameters are listed in Table II. These parameters are exactly
same as those employed in the numerical simulation presented
in Section III. The experiments were carried out in an anechoic
chamber.

As shown in Fig. 12, a single target or multiple targets
were placed around the origin of the 2-D (x, y)-plane, and the
transmitting and receiving antennas were fixed at 2m away
from the origin. As shown in Fig. 13(a), targets were deployed
on a styrene foam support mounted on a turntable and rotated
to create a circular synthetic aperture. The angular sampling
interval was 0.4◦.

As shown in Fig. 13(b), two standard gain horn antennas
(Model 640, Narda-MITEQ, USA) were mounted on a tripod.
The radiation pattern for these antennas was calculated using a
theoretical expression given in [20], and the pattern was used
as P (k, r0, r) in the image reconstruction defined in Eq. (7).
The antennas were aligned such that the backscattering for
horizontally polarized transmission and reception (HH) can
be measured. These antennas where connected to a vector
network analyzer (VNA, N5225B, Keysight Technologies,
USA) through microwave coaxial cables. As illustrated in Fig.
12, a 25 dB-gain power amplifier (GT-1040A, Giga-tronics,
USA) was inserted in the receiving path. The center frequency
was 10.2GHz, and the bandwidth was 4GHz, where the
frequency sampling interval was 20MHz.

The general strategy of this experiment was as follows:
First, we measured a single target to create a base image.
Then, according to the algorithm presented in Section III, we
synthesized an image in which multiple targets were virtually
deployed, followed by the computation of the corresponding
RCS. Finally, the accuracy of the reconstructed RCS was
evaluated by comparing it with the real RCS determined from
a real image obtained by an experiment where multiple targets
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Targets

(a)

VNA

Antennas

Amplifier

(b)

Fig. 13. Photographs of the experiment. (a) Targets. (b) VNA, horn antennas,
and amplifier.

15 cm

(a)

7.5 cm

(b)

Fig. 14. Photographs of the trihedrals. (a) Large trihedral. (b) Small trihedral.

were actually placed.
The following mean error σe was used for the evaluation:

σe =
1

N

N∑
n=1

|σdB[n]− σ̃dB[n]| , (30)

where σdB[n] and σ̃dB[n] represent the nth sample of the RCS
pattern defined in dBsm-scale reconstructed from a real and a
synthesized image, respectively; N is the total number of the
samples. Note that throughout this experimental validation, the
RCS was computed at 10GHz.

B. RCS Synthesis of Trihedrals

In this section, trihedral reflectors were employed for
demonstration. Various arrangements were tested to show the
validity and limitation of the proposed image-based RCS
synthesis. Fig. 14 shows the photographs of the trihedrals.
A 15 cm- and 7.5 cm-trihedral were used, where we refer to
them as a large and a small trihedral, respectively.

1) Base Images and RCS: First, we show the base images.
In the measurement, the trihedral was aligned such that the
axis of symmetry was along with the x-axis, the aperture
was directed toward the positive x-direction, and the inner
corner was coincide with the center of the rotation. The
reconstructed base images are shown in Fig. 15, where (a)
and (b) correspond to the image of the large and the small
trihedral, respectively. The image intensity was normalized by
the maximum value of the image of the large trihedral. The
responses from these trihedrals are clearly imaged around the
origin of the coordinate.

The RCS computed from the spatial images of Figs. 15(a)
and (b) are displayed in Figs. 16(a) and (b), respectively,
plotted with simulated RCS using a numerical electromagnetic
solver for reference. The measured RCS generally agrees with
the simulated one, indicating the validity of the image-based
NFFFT used in this study.

(a) (b)

Fig. 15. Base images (single large and small trihedral reflectors). The image
was normalized by the maximum image intensity of the large trihedral. (a)
Large trihedral. (b) Small trihedral.
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Fig. 16. RCS of the base images (trihedral reflectors). (a) Large trihedral. (b)
Small trihedral.

2) Synthesis of Two Trihedrals: Next, we provide simple
examples of the image-based RCS synthesis where the two
large trihedrals were deployed. Using the base image shown in
Fig. 15(a), we synthesized two different layouts shown in Fig.
17, where (a) illustrates two trihedrals on the x-axis of which
the apertures were directed toward the positive y-direction
(i.e., 90◦-direction), and (b) depicts the similar trihedrals but
both of the apertures were directed toward the positive x-
direction (i.e., 0◦-direction).

Figs. 18(a) and (b) show the real and the synthesized image
corresponding to the cases shown in Figs. 17(a) and (b),
respectively. As the trihedrals were sufficiently separated from
each other, we can hardly notice the difference between these
images. Therefore, similar RCS patterns were expected to be
obtained.

Fig. 19 compares the real and the synthesized RCS re-
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Trihedral

15 cm 15 cm

(a)

Trihedral

15 cm 15 cm

(b)

Fig. 17. Layout of the fixed two large trihedrals. (a) y-directed trihedrals. (b)
x-directed trihedrals.

(a) (b)

Fig. 18. Real and synthesized images (y-directed large trihedrals). (a) Real
image. (b) Synthesized image.
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Fig. 19. Real and synthesized RCS (y-directed large trihedrals).

constructed from the images shown in Figs. 18(a) and (b),
respectively. As the distance between the two trihedrals were
considerably large (30 cm ≃ 10λ at 10GHz) compared to
the operating wavelength, the obtained RCS shows the rapidly
oscillating nature for the entire azimuth angle. In this arrange-
ment, the aperture of the one trihedral was never masked
by that of the another reflector, though their apertures were
pointed toward the same direction (i.e., 90◦-direction).

As the real and the synthesized RCS in Fig. 19 exhibit
the almost same pattern, the validity of the proposed RCS
synthesis is understood. However, a close examination around
0◦ and ±180◦ reveals that the real RCS values at these angles
are approximately 3-dB lower than the synthesized RCS. As
was expected, this difference was attributed to the shadowing
effect where the one trihedral was invisible from the antennas
because the another trihedral was laid between them. The mean
RCS error for this case was 3.1 dB.

Similarly, Figs. 20(a) and (b) show the real and the synthe-
sized image corresponding to the case shown in Fig. 17(b),
respectively. Unlike Fig. 18, the trihedral on the left in Fig.
20(a) exhibits the weaker intensity compared to that in Fig.

(a) (b)

Fig. 20. Real and synthesized images (x-directed large trihedral reflectors).
(a) Real image. (b) Synthesized image.
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Fig. 21. Real and synthesized RCS (x-directed large trihedrals).

20(b). Since the both trihedrals were on the x-axis and the their
apertures were pointed toward the positive x-direction (i.e., 0◦-
direction), the main beam of the left trihedral was blocked by
the right trihedral. Therefore, the different image intensity was
obtained in this case. In contrast, since the synthesized image
was unable to take this shadowing effect into account, the both
trihedrals represent the identical image intensity, as displayed
in Fig. 20(b).

The difference of the image intensity affected the recon-
structed RCS. Fig. 21 compares the RCS reconstructed from
the real and the synthesized image shown in Figs. 20(a) and
(b), respectively. One can readily recognize the difference
around the azimuth angle 0◦, where the real RCS is ap-
proximately 7-dB lower than the synthesized RCS at 0◦. As
discussed before, this phenomenon is attributed to the fact
that the main beam of the left trihedral was masked by the
right trihedral. Although the RCS patterns differ around 0◦,
the patterns at other azimuth angles well agree with each other.
In this case, the mean RCS error was 3.5 dB.

3) Effect of the Distance Between Trihedrals: Here, we
consider a more difficult situation to investigate the limitation
of the proposed algorithm in detail. As illustrated in Fig.
22, two large trihedrals were deployed, where the lower one
was on the x-axis, and the upper one was on the y-axis at
y = 30 cm which was approximately 10λ at 10GHz. Their
apertures were directed toward the opposite directions, that is,
the upper and lower trihedrals pointed toward the negative and
positive y-directions (i.e., 270◦- and 90◦-direction), respec-
tively. As the main beams of these trihedrals were opposite
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Trihedral

d (variable)
30 cm

Fig. 22. Layout of the two large trihedrals directed toward the opposite
directions. The horizontal distance d between them was variable.

(a) (b)

Fig. 23. Real and synthesized images (two large trihedrals with variable
separation, d = 6 cm). Arrows in (a) designate the locations where multiple
scattering responses are apparent. (a) Real image. (b) Synthesized image.

(a) (b)

Fig. 24. Real and synthesized images (two large trihedrals with variable
separation, d = 30 cm). (a) Real image. (b) Synthesized image.

to each other, severe shadowing effect were expected to be
occurred when the distance was too short. Based on this layout,
the lower trihedral was moved along the x-axis to change the
horizontal distance d between the two targets.

Figs. 23 and 24 compare the (a) real and (b) the synthesized
image when the horizontal separation between the trihedrals
were d = 6 cm ≈ 2λ and d = 30 cm ≈ 10λ, respectively. As
shown in Fig. 23, the real and the synthesized image for this
case are considerably different from each other. By comparing
the peaks at the corner of the trihedrals in Figs. 23(a) and
(b), one can recognize that the responses of the real image in
Fig. 23(a) are broader than that of the synthesized image in
Fig. 23(b). This broadening was because that the main lobe of
the one reflector was masked by that of the another reflector,
shortening the effective synthetic aperture length to extend the
point spread function.

Another characteristic feature of the real image in Fig. 23(a)
compared to the synthesized image in Fig. 23(b) is that the
multiple scattering between the reflectors is presented in the
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Fig. 25. Real and synthesized RCS (two large trihedrals with variable
separation). (a) d = 2λ. (b) d = 10λ.

real image, as indicated by the arrows in Fig. 23(a). As these
shadowing and multiple scattering effect were unable to be
incorporated into the synthesized image, the RCS patterns ob-
tained from the real and the synthesized image were expected
to be significantly different as well. In contrast to Fig. 23, the
real and the synthesized image shown in Fig. 24 are almost
identical. In this case, we can expect that the real and the
synthesized RCS agree with each other.

Figs. 25(a) and (b) represent the RCS reconstructed from
the spatial images shown in Figs. 23 and 24, respectively.
As expected from the previous discussion, the real and the
synthesized RCS are considerably different from each other
in Fig. 25(a) which is the case when the horizontal separation
d = 2λ. Owing to the shadowing effect, a portion of the
main lobe of one trihedral reflector in the direction from
that reflector toward the another one was seriously attenuated
compared to the synthesized RCS. In this case, the mean
RCS error was 6.0 dB. On the other hand, the real and the
synthesized RCS are almost same in Fig. 25(b), as expected;
the mean RCS error in this case was 2.0 dB.

Fig. 26 shows the mean error between the real and the
synthesized RCS as a function of the horizontal distance d
between the trihedral reflectors. Note that the distance d was
normalized by the wavelength λ ≈ 3 cm at 10GHz. The mean
error is reduced as the increase in the horizontal separation d.
If a mean error 2 dB or lower was required, the reflectors must
be separated 10λ or longer away from each other.

4) Target Rejection and Insertion: In this example, we
demonstrate the concept of the target rejection and insertion
using the spatial filtering established in Section III-E. Fig. 27
illustrates the experimental layout, where Fig. 27(a) shows
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Fig. 26. Mean RCS error (two large trihedrals with variable separation). The
wavelength λ at 10GHz was assumed to normalize the distance d.

Large trihedral

Large trihedral

15 cm 15 cm

30 cm

(a)

Large trihedral

Small trihedral

15 cm 15 cm

30 cm

(b)

Fig. 27. Layout of the three trihedrals. (a) Three large trihedrals. (b) Two
large trihedrals and one small trihedral.

(a) (b)

Fig. 28. Synthesized images (three trihedrals). Similar real images were
obtained for these cases. (a) Three large trihedrals. (b) Two large trihedrals
and one small trihedral.

three large trihedrals, and Fig. 27(b) shows two large trihedrals
on the x-axis and one small trihedral on the negative y-
axis. The synthesized images corresponding to Figs. 27(a)
and (b) are presented in Figs. 28(a) and (b), respectively.
Note that we have omitted to provide the real images as
we confirmed that the real and the synthesized image were
almost identical. The RCS reconstructed from the image of
Fig. 28(a) is displayed in Fig. 29 for the sake of the following
discussion; the synthesized RCS in Fig. 29 well agrees with
the real pattern, and the mean error was 2.2 dB.

Fig. 30(a) shows a filtered image of Fig. 28(b), where the
response of the small trihedral on the y-axis was erased by ap-
plying a circular band-stop filter Πc(x, y) defined in Eq. (25b)
with the radius ρΠ = 5 cm centered at (xc, yc) = (0,−30) cm.
The corresponding RCS is presented in Fig. 31(a), where
the similar RCS patterns as those displayed in Fig. 19 were

-180 -135 -90 -45 0 45 90 135 180
Azimuth angle [deg]

-50

-40

-30

-20

-10

0

10

R
C

S
 [

dB
sm

]

Mean error: 2.2 dB

Real
Synthesized

Fig. 29. Real and synthesized RCS (three trihedrals).

(a) (b)

Fig. 30. Band-stop filtered and inserted images (three trihedrals). (a) Band-
stop filtered image of Fig. 28(b). (b) Inserted image of (a).

obtained, showing the validity of the spatial filtering; the mean
error was 1.5 dB for this case.

In Fig. 30(b), the base image of the large trihedral shown
in Fig. 15(a) was inserted to emulate the image represented
in Fig. 28(a) of which the layout is drawn in Fig. 27(a). The
RCS reconstructed from the synthesized image of Fig. 30(b)
is displayed in Fig. 31(b). As the reconstructed RCS patterns
in Figs. 29 and 31(b) are almost identical, the validity of the
proposed image-based RCS synthesis with the spatial filtering
is proved; the mean error was 1.8 dB for this case.

In conclusion of the series of the experiments using trihedral
reflectors discussed so far, the proposed image-based RCS
synthesis functions properly when the mutual interactions
between the targets can effectively be ignored, that is, the
multiple reflection is not significant as the targets are suffi-
ciently separated, and the major backscattering of a target is
free from the shadowing by another object.

C. RCS Synthesis of Aircraft Models

As the final experiment, we show the synthesis of more
complex targets—aircraft models.

1) Base Images and RCS: As depicted in Fig. 32, two
aircraft models were used, where Fig. 32(a) and (b) show an
aluminum- and resin-made model, respectively. The surface
of the resin-made model were completely coated with highly
conductive paint which contains silver-copper particles. This
resin-made model was employed just for reducing the man-
ufacturing cost. The length, height, and width of the model
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Fig. 31. Real and synthesized RCS (target rejection and insertion). (a)
Obtained from Fig. 30(a). (b) Obtained from Fig. 30(b).

26.0 cm

16.6 cm

(a) (b)

Fig. 32. Photographs of the aircraft models. (a) Aluminum-made model. (b)
Resin-made model coated with conductive paint.

were 26.0 cm, 4.4 cm, and 16.6 cm, respectively, where the
size was 1/40 of the full-scale model. Note that the shape is
similar to the model which was investigated in the literature
[10]–[12].

Figs. 33(a) and (b) show the reconstructed base images for
the aluminum- and resin-made aircraft model, respectively.
Comparing Figs. 33(a) and (b) reveals that the almost identical
images are obtained, representing the equivalence of these
models. The corresponding RCS patterns are displayed in
Fig. 33, plotted with the simulated RCS using a numerical
electromagnetic solver. We can confirm that the measured RCS
patterns are almost same, and these patterns well agree with
the simulation.

2) Synthesis of Two Aircraft Models: As shown in Fig.
35, the two aircraft models were deployed on the x-axis,
where the headings of the left- and right-side model were
the negative and positive y-directions (i.e., 270◦- and 90◦-
direction), respectively. The distance between the centers of
these models were 30 cm which was approximately 10λ at
10GHz.

Fig. 36 compares the real and the synthesized image of

(a) (b)

Fig. 33. Base images (aircraft models). (a) Aluminum-made model. (b) Resin-
made model.
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Fig. 34. RCS of the base images (aircraft models).

Aircraft model

30 cm

Fig. 35. Layout of the two aircraft models.

the two aircraft models. One can confirm that the almost
identical images are obtained. Therefore, the resultant real and
the synthesized RCS shown in Fig. 37 well agree with each
other. The difference between the patterns is relatively large
at 0◦ and ±180◦, where around these azimuth angles, one
aircraft model was shaded by the another model to reduce
the accuracy of the RCS synthesis. The mean RCS error was
2.6 dB for this case of the two aircraft model. Therefore, the
proposed RCS synthesis has shown to be also effective for an
object with complex shape.

V. CONCLUSION

In this article, we proposed an image-based RCS synthesis
algorithm for the prediction of backscattering from a cluster
of multiple static targets. We first reconstructed an original
radar image of a real target, and the image was repeatedly
replicated and transformed to create multiple radar images;
then, the copied and modified images were coherently summed
to synthesize a single image which virtually contains all the
scattering contributions from the transformed images, and the



13

(a) (b)

Fig. 36. Real and synthesized images (aircraft models). (a) Real image. (b)
Synthesized image.
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Fig. 37. Real and synthesized RCS (aircraft models).

2-D spatial Fourier transform of this synthesized image gave
the RCS of the multiple targets. The numerical simulations and
experimental validation showed the effectiveness of the pro-
posed approach, provided that the mutual interactions between
the targets such as the shadowing and multiple scattering effect
were insignificant.

A 3-D generalization of the algorithm is straightforward but
it requires a computationally intensive reconstruction of a 3-
D image with a complete spherical antenna-scanning surface
which is practically difficult to perform. An extension of the
proposed approach to handle the shadowing effect is a possible
future research. Moreover, polarimetric information can be
utilized in the RCS synthesis.
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