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Model Derivation 

 

     Assuming the monomeric surfactant mi (i=1, 2, or 3...) is completely dissociated in aqueous solution containing 

counterion mj (j=1, 2, or 3…) but in the micelle form the surfactant is associated to some extent with counterions, 

therefore, the surfactant micellization is described by the following process 1-2 

 

𝑛∑ 𝛼imi
𝑧i

i + 𝑛∑ 𝛿jmj
𝑧j

j ↔ M
nαiδj

𝑛(∑ 𝛼i𝑧ii +∑ 𝛿j𝑧jj )
                                                                                                             (1)  

 

     where αi is the composition of surfactant i in the micelle, Mnαiδj, which has an micelle size n, micelle composition 

αi, and a counterion binding coefficient δj 
3. For micelles of pure surfactant, αi = 1; for mixed micelles, 0 < αi < 1. zi 

and zj are the valences of ionic surfactant i in dissociated form and counterion j. For nonionic surfactant i, zi = 0 and 

δj = 0.   

 

     By the consideration of activity coefficient 1, 4, the chemical potential of micelle Mnαiδj, monomeric surfactant i, 

and counterion j in solution can be written, respectively, as  

 

𝜇nαiδj = 𝜇nαiδj
o + 𝑘𝑇ln(𝑎nαiδj) = 𝜇nαiδj

o + 𝑘𝑇ln(𝛾nαiδj𝑋nαiδj)                                                                                  (2)  

 

𝜇mi = 𝜇mi
o + 𝑘𝑇ln(𝑎mi) = 𝜇mi

o + 𝑘𝑇ln(𝛾mi𝑋mi)                                                                                                        (3) 

 

𝜇mj = 𝜇𝑚𝑗
𝑜 + 𝑘𝑇ln(𝑎mj) = 𝜇mj

o + 𝑘𝑇ln(𝛾mj𝑋mj)                                                                                                        (4) 

 

where μnαiδj
o, μmi

o and μmj
o are the standard chemical potentials of micelle, monomeric surfactant, and counterion in 

solution, respectively. The standard state of water is defined as pure liquid while the standard state of all other 

species is defined for an infinitely dilute solution. anαiδj, ami, and amj are the corresponding activities. γnαiδj, γmi, and 

γmj are the corresponding activity coefficients. Micelle is treated as one separate phase from aqueous solution and 

thus γnαiδj = 1. Xnαiδj, Xmi, and Xmj are mole fractions of micelle, monomeric surfactant, and counterion in bulk 

solution. 

 

     Assume the activity coefficient of ionic surfactant i, γmi, in bulk solution is given by the quadratic mean of the 

product of functional headgroup activity coefficient γhmi and hydrocarbon tail activity coefficient γtmi. γhmi can be 

calculated from Pitzer’s method 5. γtmi is estimated from the Setchenov equation 6 shown as below 

 

𝛾mi = √𝛾hmi𝛾tmi                                                                                                                                                           (5) 

 

𝛾tmi = 10𝐼 ∑ 𝛼s𝑘ss                                                                                                                                                            (6) 

 

where I is ionic strength of solution. ks and αs are Setchenov coefficient and mole fraction of salt s in total added 

salts, respectively. ks is salt-dependent and therefore salts with one ion in common should have different ks. It is 

expected that the effect of counterion and coion on aggregation properties might be reflected through ks. αs = 1 for 

pure salt added to solution; 0 < αs < 1 if more than one type of salt is added. Note that the activity coefficient of 

nonionic surfactant is assumed as γtmi.   

 



     At equilibrium 

 

𝜇nαiδj = 𝑛∑ 𝛼i𝜇mii + 𝑛∑ 𝛿j𝜇mjj                                                                                                                                   (7) 

 

𝜇nαiδj
o + 𝑘𝑇ln(𝑋nαiδj) = 𝑛∑ 𝛼i(𝜇mi

o + 𝑘𝑇ln(𝛾mi𝑋mi))i + 𝑛∑ 𝛿mj(𝜇mj
o + 𝑘𝑇ln(𝛾mj𝑋mj))j                                         (8) 

 

     Standard micellization free energy per surfactant molecule is given by  

 

∆𝜇mic
o =

1

𝑛
𝜇nαiδj
o − ∑ 𝛼i𝜇mi

o
i −∑ 𝛿j𝜇mj

o
j                                                                                                                        (9) 

 

     Substitution of Eq. (9) into Eq. (8) leads to 

 

∆𝜇mic
o = 𝑘𝑇∑ 𝛼iln(𝛾mi𝑋mi)i + 𝑘𝑇∑ 𝛿jln(𝛾mj𝑋mj)j −

𝑘𝑇

𝑛
ln𝑋nαiδj                                                                            (10) 

 

     Rearrangement of Eq. (10) leads to  

 

𝑋nαiδj = ∏ (𝛾mi𝑋mi)
𝑛𝛼i

i ∏ (𝛾mj𝑋mj)
𝑛𝛿j

j exp (−
𝑛

𝑘𝑇
∆𝜇mic

o )                                                                                        (11) 

 

     Further rearrangement leads to 

 

𝑋nαiδj = ∏ (𝑋mi)
𝑛𝛼i

i ∏ (𝑋mj)
𝑛𝛿j

j exp (−
𝑛

𝑘𝑇
(∆𝜇mic

o + 𝑘𝑇ln(∏ (𝛾mi)
−𝛼i

i ∏ (𝛾mj)
−𝛿j

j )))                                          (12) 

 

     Here Xmi is the mole fraction of monomeric surfactant i in bulk solution and is equal to   

    

𝑋mi = 𝑥mi∑ 𝑋mii                                                                                                                                                         (13) 

 

where xmi is interpreted as the mole fraction of surfactant i in the total mixed surfactants. Xm is the total mole fraction 

of monomeric surfactants in bulk solution. Only monomeric surfactants are taken into account in Eq. (13) 

considering that the mole fraction of micelles is negligible compared to that of monomers.  

  

     Eq. (12) is simplified to  

 

𝑋nαiδj = ∏ (𝑋mi)
𝑛𝛼i

i ∏ (𝑋mj)
𝑛𝛿j

j exp (−
𝑛

𝑘𝑇
∆𝜇m

o )                                                                                                     (14)  

 

where Δμm
o is the modified standard micellization free energy by the consideration of surfactant and ion activities 

and estimated by summing the contributing terms as described below 

 

∆𝜇m
o = ∆𝜇trt

o + ∆𝜇int
o + ∆𝜇pack

o + ∆𝜇st
o + ∆𝜇ent

o + ∆𝜇elec
o + ∆𝜇act

o                                                                              (15) 

 

Where Δμtrt
o, Δμint

o, Δμpack
o, Δμst

o, Δμent
o, and Δμelec

o are the standard free energy contributions from hydrocarbon 

transfer from water into micelle, formation of micellar core-water interface, hydrocarbon tail packing in the micelle, 

surfactant headgroup steric interaction, headgroup-counterion mixing, and electrostatic interaction, respectively 7-12. 

Δμact
o comes from the activity contribution.    

 

Hydrocarbon tail transfer contribution Δμtrt
o 

 

     Δμtrt
o consists of two parts: (a) the hydrocarbon tail transfer from aqueous solution containing salts to pure water 

Δμtr,s/w
o; (b) the subsequent transfer from pure water to the micellar core Δμtr,w/mic

o. Details for these events and free 

energies can be found in literature 7, 13. The Setchenov coefficient ks for the calculation of Δμtr,s/w
o is per CH2 group 

based, which is different from the hydrocarbon tail volume-based ks 
14. Considering the CH2 group adjacent to 

headgroup possess weaker hydrophobicity than the CH2 groups away from headgroup and that the CH3 group at the 



end of the tail may have stronger hydrophobicity, ks multiplied by tail length should give a reasonable estimation of 

the salt effect on the entire hydrocarbon tail transfer.  

   

Micellar core-water interface formation contribution Δμint
o 

 

     The interfacial free energy contribution is calculated by the equation 7, 9-10 

 
∆𝜇int

o

𝑘𝑇
= ∑ 𝛼i𝜎int,i(𝑎 − 𝑎oi)i                                                                                                                                          (16) 

 

where a is the area per surfactant molecule i at micellar core-water interface; aoi is the area per surfactant molecule i 

at the interface shielded by the headgroup. aoi = min (L2, ahi). L is the characteristic methylene segment length of the 

tail (L=0.46 nm), and ahi is the effective cross-sectional area of the hydrated headgroup of surfactant i.  

 

𝑎 =
𝑆∑ 𝛼i𝑣tii

𝑙c
                                                                                                                                                                 (17) 

 

𝑎hi = ∑
𝐶j

∑ 𝐶jj
𝑎ijj                                                                                                                                                            (18) 

 

     S is shape factor: S=3 for sphere; S=2 for cylinder; S=1 for disk. vti is the hydrocarbon tail volume of surfactant i.  

lc is micellar core minor radius. Cj is molar fraction of counterion j in total counterions. aij is the effective cross-

sectional area of the headgroup of surfactant i associated with counterion j for surfactants 12. The cross-sectional area 

of Octylglucoside (OG) and polyoxythylene (CnEn) are comparable to the reported values 15.  

 

     In Eq. (16) σint,i is the interfacial tension between water and surfactant i in micelle phase and is given by 16-17 

 

𝜎int,i = 0.7562(𝜎sur,i +∑ 𝛼ss 𝜎s) − 0.4906(𝜎sur,i∑ 𝛼ss 𝜎s)
0.5                                                                                 (19) 

 

𝜎sur,i = 29.7003[1 − exp(−0.1532𝑛i)] − 0.0896(𝑇 − 298.15)                                                                             (20) 

 

𝜎s = 𝜎w + (
𝑑𝜎o

𝑑𝐶s
)𝐶s                                                                                                                                                     (21)   

 

𝜎w = 235.8(1 −
𝑇

647.15
)1.256 [1 − 0.625(1 −

𝑇

647.15
)]                                                                                                (22) 

 

Where σsur,i is the surface tension of normal alkane tails from surfactant i18. σs is the surface tension of aqueous 

solution with added salt 19. σw is the surface tension of pure water 20. ni is the hydrocarbon chain length of surfactant 

i. T is the absolute temperature. Cs is the salt concentration in unit M. (dσo/dCs) is the correlation between surface 

tension and salt concentration  21. Setchenov coefficients of different salts can be found elsewhere 13.   

 

Hydrocarbon tail packing contribution Δμpack
o 

 

     The packing free energy arises from the constraint of one end of surfactant tail at the micelle core-water interface, 

while the entire tail assumes a uniform conformation in the micelle core. Calculation of packing free energy of pure 

surfactant directly followed the method proposed by R. Nagarajan 22. For mixed surfactants, an averaged-number of 

segments in the tail was used based on mixed composition.  

 

Headgroup steric interaction Δμst
o 

 

     The steric free energy considers the interaction between headgroups and counterions at the micellar core-water 

interface based on the assumption that the surfactants and counterions are components of an ideal monolayer at the 

interface 23. Details of calculation can be found elsewhere 7, 23. The radius of hydrated counterions is summarized 

elsewhere in 15, 23. These values are very close to reported results 15. 

 

Headgroup-counterion mixing entropy Δμent
o  



 

     The free energy contribution accounts for the entropy gain associated with the mixing of surfactant components 

and counterions and is modeled by ideal mixing in which all the components are randomly distributed on the micelle 

surface 23.  

 

Electrostatic contribution Δμelec
o 

 

     The electrostatic free energy contribution arises from the building of an electrical double layer around micelles 

and is evaluated for spherical and cylindrical micelle respectively by  

 
∆𝜇elec

o

𝑘𝑇
=

2𝜋𝑞2𝑑st

𝑎𝜖(1+
𝑑st
𝑙c
)
+

𝑎chκ

4𝜋𝜆B
∫ 𝜑(𝑥o)
𝑡

0
𝑑𝑡                                                                                                                       (23) 

 
∆𝜇elec

o

𝑘𝑇
=

2𝜋𝑞2𝑙c

𝑎𝜖
ln(1 +

𝑑st

𝑙c
) +

𝑎chκ

4𝜋𝜆B
∫ 𝜑(𝑥o)
𝑡

0
𝑑𝑡                                                                                                        (24)  

 

     The first term on the right side of Eq. (23) and Eq. (24) represent the contribution from Stern layer; the 2nd term 

represents electrostatic interaction between micelle and ions. dst is the thickness of the Stern layer and is estimated 

from the structure of hydrated headgroup and hydrated counterion. The value of dst used in the present model is 

either estimated from surfactant structure or adopted from MF model 7. ach is the area per surfactant molecule at the 

micelle surface of charge. κ is the inversed Debye length. λB is the Bjerrum length. t is a function of micelle surface 

charge density σ. φ(xo) is the surface electrical potential at the micelle surface of charge. These parameters are 

described below. 

 

𝑎ch ≈
𝑆(𝑣t+𝑣h)

𝑟ch
                                                                                                                                                              (25)  

 

𝑟ch = 𝑑ch + 𝑙c                                                                                                                                                              (26) 

 

𝑣t = ∑ 𝛼i𝑣tii                                                                                                                                                                 (27) 

 

𝑣h = ∑ 𝛼i𝑣hii                                                                                                                                                                (28) 

 

𝑣hi ≈
4𝜋(

𝑎ij

𝜋
)
3/2

3
                                                                                                                                                             (29) 

 

𝜅 = (
2𝑒2𝐼

𝜖𝜖o𝑘𝑇
)
1/2

                                                                                                                                                             (30) 

 

𝜖 = 𝜖w +∑ 𝛿s𝛼s𝐶ss                                                                                                                                                      (31) 

 

𝜖w = −1.0677 + 306.4670exp(−4.52 × 10−3𝑇)                                                                                                    (32) 

 

𝜆B =
𝑒2

4𝜋𝜖𝜖o𝑘𝑇
                                                                                                                                                                (33) 

 

𝑡 =
4𝜋𝜎𝜆B

𝑒𝜅
                                                                                                                                                                      (34)  

 

𝜎 =
𝑒(∑ 𝛼i𝑧ii +∑ 𝑧j𝛿jj )

𝑎ch
                                                                                                                                                      (35) 

 

where vt is the average volume of hydrocarbon tails. vh is the average volume of hydrated headgroups associated 

with counterions. rch is the radius of the micelle surface of charge. The electrostatic contribution barely changes with 

and without vh in Eq. (25). vhi is the volume of headgroup of surfactant i. dch is the distance from the surface of 

micellar core to the center of charged headgroup. Therefore dch is zero for nonionic surfactant. For mixture dch is the 

average value based on mixed composition. The schematic representation of interfacial region with dch and dst can be 



found elsewhere 7, 15. e is the elementary positive charge. I is ionic strength. ϵ, ϵw, and ϵo are the dielectric constant of 

solvent, water, and vacuum, respectively 24-25. δs is the dielectric decrement of added salt 26. δs is salt-dependent and 

therefore salts with one ion in common should have different δs. It is expected that the effect of coion on aggregation 

properties might be reflected through δs. It is actually expected that all salt-dependent factors may exhibit the coion 

effects on aggregation properties.        

 

     To calculate the integration in Eq. (23) and Eq. (24), the linearized PB equation is solved with respect to surface 

potential φ(xo). Because the linearized PB equation can only be numerically solved for one-dimensional problem, the 

analytical solution of surface potential from PB equation of two- and three-dimensional problems are more 

interested in. Following the method reported by Andreev and Victorov 8, three-dimensional problems are reduced to 

an effective one-dimensional problem by the introduction of an angle-averaged Laplacian operator. An effective 

generalized one-dimensional form of PB equation for spherical, cylindrical, and planar geometries is given by 

 
𝑑2𝜑

𝑑𝑥2
+ (

𝑆−1

𝑥
)
𝑑𝜑

𝑑𝑥
= 𝑢                                                                                                                                                      (36) 

 

with the boundary conditions of  

 
𝑑𝜑

𝑑𝑥
|𝑥=∞ = 0                                                                                                                                                                  (37)  

 

and 

 
𝑑𝜑

𝑑𝑥
|𝑥=𝑥o = −𝑡                                                                                                                                                              (38) 

 

     The solution of Eq. (33) is given by  

 

𝜑(𝑥) =
𝑒𝜎

𝜖o𝜅𝑘𝑇
(
𝑥o

𝑥
)𝜐

𝐾υ(𝑥)

𝐾υ+1(𝑥o)
                                                                                                                                        (39) 

 

where Kν(x) is modified Bessel function of the second kind and ν=(S-2)/2. Given the values of ν and x, Kν(x) can be 

estimated 27.   

  

     Substitution of φ(x) at x=xo into the Eq. (23) and Eq. (24) leads to 

  
∆𝜇elec

o

𝑘𝑇
=

𝑎chκ

8𝜋𝜆B

𝐾υ(𝑥o)

𝐾υ+1(𝑥o)
𝑡2                                                                                                                                               (40) 

 

with  

 

𝑥o = 𝑟ch𝜅                                                                                                                                                                     (41) 

 

Activity coefficient contribution Δμact
o 

 

     The activity coefficient contribution comes from the incorporation of activity coefficient term into exponential 

part in Eq. (11) and is given by 

 
∆𝜇act

o

𝑘𝑇
= ln (∏ (𝛾mi)

−𝛼𝑖
i ∏ (𝛾mj)

−𝛿j
j )                                                                                                                            (42)   

 

Free Energy Minimization and Parameter Determination 

 

     The standard micellization free energy Δμm
o(S, αi, lc, δj)  depends on micelle shape S, micelle composition αi, 

micellar core minor radius lc, and counterion binding coefficient δj, at given solution conditions (model inputs) 

which include the composition of surfactant i in total mixed surfactants in bulk solution, xmi, temperature T, salt or 

mixed salts concentration Cs. In the present research the minimization of Δμm
o(S, αi, lc, δj) is only performed for 

spherical micelles (S=3), and infinite cylindrical micelles (S=2) respectively, with respect to independent variables S, 



αi, lc, and δj under the constraints of 0<αi<1(for pure surfactant αi = 1), 0<lc<lo (lo is the longest extended chain 

length among all the surfactants i), and 0< δj <1. The minimization is calculated using MATLAB program, which is 

a process of multiple-variable (S, αi, lc, and δj) non-linear optimization.  

 

     The required model inputs are solution conditions, surfactant structural properties, salt-associated empirical 

parameters, and ion radius. The outputs include a set of optimized variables S, αi, lc, and δj, the minimized 

micellization free energy Δμm
o, cmc, micelle size, and sphere-to-rod transition.  

 

     If the standard micellization free energy of spherical micelle is minimum, optimized shape should be sphere 

(S=3). The cmc is assumed to be equal to monomer concentration Xm, sph (here this is the mole fraction) and is 

calculated by 

 

𝑋cmc,sph = exp (
1

𝑘𝑇
∆𝜇m,sph

o )                                                                                                                                       (43) 

 

     The micelle size distribution is assumed to be monodisperse and is given by 

  

𝑋nαiδj,sph =
𝑋−𝑋cmc,sph

𝑛sph
                                                                                                                                                 (44) 

 

     The micelle size given by 28  

 

𝑛sph =
4

3
𝜋(𝑙c,sph)

3

𝑣t,sph
                                                                                                                                                          (45) 

 

     If the standard micellization free energy of cylindrical micelle is minimum, the optimized shape should be a 

cylinder (S=2). The mass balance equations (46)-(48) as well as Eq. (14) need to be solved simultaneously with 

respect to 𝑋m, 𝑋mi, and 𝑋mj: 

 

𝑋 = 𝑋m +∑ 𝑛𝑋nαiδj 
∞
𝑛=𝑛sph

                                                                                                                                         (46) 

 

𝑋i = 𝑋mi + ∑ 𝑛𝛼i𝑋nαiδj 
∞
𝑛=𝑛sph

                                                                                                                                    (47)  

 

𝑋j = 𝑋mj + ∑ 𝑛𝛿j𝑋nαiδj 
∞
𝑛=𝑛sph

                                                                                                                                    (48) 

 

     The ladder model 29-30 is used to solve the micelle size distribution in terms of a finite cylindrical micelle. 

 

     With the determined 𝑋m, 𝑋mi, and 𝑋mj micelle size distribution can be completely evaluated using Eq. (14). 

Weight-based micelle size are calculated as follows 31  

 

𝑛n =
𝑀1

𝑀0
                                                                                                                                                                        (49) 

  

𝑛w =
𝑀2

𝑀1
                                                                                                                                                                       (50) 

 

𝑛z =
𝑀3

𝑀2
                                                                                                                                                                        (51) 

 

where nn, nw, and nz are the number-based, weight-based, and z-based micelle size, respectively. Mk (k = 1, 2, or 3) 

is defined as 

 

𝑀k = ∑ 𝑛𝑘𝑋nαiδj 
∞
𝑛=𝑛sph

                                                                                                                                              (52) 
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