Palladium Complexes with Tridentate N-Heterocyclic Carbene Ligands: Selective "Normal" and

"Abnormal" Bindings and their Anticancer Activities

Jing-Yi Lee,[†] Jhen-Yi Lee,[†] Yuan-Yu Chang, [†] Ching-Han Hu,[†] Nancy M. Wang,^{‡,*} and Hon Man Lee^{†,*}

[†]Department of Chemistry, National Changhua University of Education, Changhua 50058, Taiwan, R.O.C.

[‡]Graduate Institute of Biotechnology, National Changhua University of Education, Changhua 50058, Taiwan,

R.O.C.

leehm@cc.ncue.edu.tw; nancy@cc.ncue.edu.tw

Table of Contents				
Crystallographic Data	P. S2			
Computational Studies	P. S2			
A Comparison of ${}^{13}C{}^{1}H$ NMR Spectra of Isomeric 3a and 3a'	P. S3			
NMR Spectra of Palladium Complexes	P. S3–S14			

	3a	3a'	4b			
empirical formula	C ₁₈ H ₁₇ ClN ₄ OPd	C ₁₈ H ₁₇ ClN ₄ OPd	$C_{20}H_{21}ClN_4O_2Pd$			
formula weight	447.21	447.21	491.26			
crystal system	orthorhombic	trigonal	monoclinic			
space group	$P2_{1}2_{1}2_{1}$	<i>R</i> -3	$P2_{1}/c$			
<i>a</i> , Å	7.821(4)	22.2283(8)	8.8861(6)			
<i>b</i> , Å	8.102(4)	22.2283(8)	12.4320(8)			
<i>c</i> , Å	26.932(15)	20.4987(8)	17.2003(11)			
α , deg	90	90	90			
β , deg	90	90	93.214(5)			
γ, deg	90	120	90			
<i>V</i> , Å ³	1706.6(15)	8771.4(6)	93.214(5)			
<i>Т</i> , К	150(2)	150(2)	90			
Ζ	4	18	4			
no. of unique data	3727	4268	4148			
no. of params refined	227	226	255			
$R_1^a [I > 2\sigma I]$	0.0576	0.0300	0.0385			
wR_2^{b} (all data)	0.0768	0.0746	0.0701			
${}^{a}R_{1} = \mathcal{L}(F_{o} - F_{c})/\mathcal{L} F_{o} . {}^{b}wR_{2} = [\mathcal{L}(F_{o} ^{2} - F_{c} ^{2})^{2}/\mathcal{L}(F_{o}^{2})]^{1/2}$						

Table S1. Crystallographic Data

Table S2. Calculated and Observed Bond Distances (Å) in 3a and 3a'								
	3 a			3a'				
	Observed ^a	Calculated		Observed ^{<i>a</i>}	Calculated			
Pd1—C1	1.992(10)	1.989	Pd1—C2	1.959(3)	1.974			
Pd1—Cl1	2.311(2)	2.374	Pd1—Cl1	2.3133(7)	2.362			
Pd1—N3	2.046(8)	2.128	Pd1—N3	2.084(2)	2.119			
Pd1—N4	1.986(7)	2.022	Pd1—N4	1.992(2)	2.032			
C1—N2	1.328(11)	1.353	C2—N2	1.402(3)	1.394			
C2—N2	1.349(11)	1.383	C1—N2	1.337(4)	1.337			
С2—С3	1.341(12)	1.352	C1—N1	1.317(4)	1.338			
C3—N1	1.367(12)	1.385	C3—N1	1.384(3)	1.383			
C1—N1	1.329(12)	1.351	С2—С3	1.367(4)	1.371			

^{*a*}From the structural data of **2a** and **3a**

Figure S1. ¹³C{¹H} NMR spectra of isomeric nNHC complex 3a in CDCl₃ and aNHC complex 3a' in d_6 -DMSO.

Figure S2. ¹H NMR spectrum of 3a in *d*₆-DMSO (300.13 MHz, 25 °C)

Figure S4. ¹H NMR spectrum of 3b in CDCl₃ (300.13 MHz, 25 °C)

Figure S5. ¹³C{¹H} NMR spectrum of 3b in CDCl₃ (75.47 MHz; 25 °C)

Figure S6. ¹H NMR spectrum of 3c in CDCl₃ (300.13 MHz, 25 °C)

Figure S8. ¹H NMR spectrum of 3a' in *d*₆-DMSO (300.13 MHz, 25 °C)

Figure S9. ¹³C{¹H} NMR spectrum of 3a' in *d*₆-DMSO (75.47 MHz; 25 °C)

Figure S10. DEPT-135 NMR spectrum of 3a' in d₆-DMSO

Figure S11. HMBC spectrum of spectrum of 3a' in *d*₆-DMSO

Figure S12. ¹H NMR spectrum of 3b' in CDCl₃ (300.13 MHz, 25 °C)

Figure S13. ¹³C{¹H} NMR spectrum of 3b' in *d*₆-DMSO (75.47 MHz; 25 °C)

Figure S14. ¹H NMR spectrum of 3c' in CDCl₃ (300.13 MHz, 25 °C)

Figure S15. ¹³C{¹H} NMR spectrum of 3c' in CDCl₃ (75.47 MHz; 25 °C)

Figure S16. ¹H NMR spectrum of 4a in CDCl₃ (300.13 MHz, 25 °C)

Figure S17. ¹³C{¹H} NMR spectrum of 4a in *d*₆-DMSO (75.47 MHz; 25 °C)

Figure S18. ¹H NMR spectrum of 4b in CDCl₃ (300.13 MHz, 25 °C)

Figure S19. ¹³C{¹H} NMR spectrum of 4b in *d*₆-DMSO (75.47 MHz; 25 °C)

Figure S20. ¹H NMR spectrum of 4c in CDCl₃ (300.13 MHz, 25 °C)

Figure S21. ¹³C{¹H} NMR spectrum of 4c in *d*₆-DMSO (75.47 MHz; 25 °C)

Figure S22. HMBC NMR spectrum of 4c in *d*₆-DMSO