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Abstract—As climate warms and the transition from a peren-
nial to a seasonal Arctic sea-ice cover is imminent, understanding
melt ponding is central to understanding changes in the new
Arctic. NASA’s Ice, Cloud and land Elevation Satellite (ICESat-
2) has the capacity to provide measurements and monitoring of
the onset of melt in the Arctic and on melt progression. Yet
ponds are currently not reported on the ICESat-2 standard sea-
ice products because of the low resolution of the products, in
which only a single surface is determined.

The objective of this paper is to introduce a mathematical
algorithm that facilitates automated detection of melt ponds in
ICESat-2 ATLAS data, retrieval of two surface heights, pond
surface and bottom, and measurements of depth and width of
melt ponds. With the Advanced Topographic Laser Altimeter
System (ATLAS), ICESat-2 carries the first space-borne multi-
beam micro-pulse photon-counting laser altimeter system, oper-
ating at 532 nm frequency. ATLAS data are recorded as clouds
of discrete photon points. The Density-Dimension Algorithm for
bifurcating sea-ice reflectors (DDA-bifurcate-seaice) is an auto-
adaptive algorithm that solves the problem of pond detection
near the 0.7m nominal alongtrack resolution of ATLAS data,
utilizing the radial basis function for calculation of a density field
and a threshold function that automatically adapts to changes in
background, apparent surface reflectance and some instrument
effects. The DDA-bifurcate-seaice is applied to large ICESat-2
data sets from the 2019 and 2020 melt seasons in the multi-year
Arctic sea-ice region. Results are evaluated by comparison to
those from a manually forced algorithm.

Index Terms—satellite altimetry, cryospheric sciences, compu-
tational algorithm, melt pond, arctic sea ice, ICESat-2.

I. INTRODUCTION

A
S the Arctic sea ice has been reported to reach historic

lows repeatedly [Stroeve et al., 2007], [Stroeve et al.,

2012], [Serreze et al., 2007], [Serreze et al., 2008], [Stroeve

and Notz, 2018], [Petty et al., 2018] and transition from
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a perennial to a seasonal Arctic sea-ice cover is imminent

[Kwok, 2018], [Stroeve and Notz, 2018], melt ponding is a

key process. [Perovich et al., 2003] alert to the complexity

of melt ponds and their evolution on the thinning sea ice.

Predictions based on models diverge [Stroeve et al., 2007],

[Scott and Feltham, 2010], [Kay et al., 2011], [Jahn et al.,

2011], [Hunke et al., 2013], [Notz and Community, 2020].

Since any predictions are only as good as the data they are

based on, satellite observations are essential in understanding

changes in the Arctic cryosphere and constraining models.

NASA’s Ice, Cloud and land Elevation Satellite (ICESat-2),

launched September 15, 2018, has the capacity to provide

measurements and monitoring of the onset of melt in the

Arctic and on melt progression [Farrell et al., 2020], [Buckley

et al., 2020b], [Tilling et al., 2020]. Yet, ponds are generally

missed in the standard data product ATL07, because of the low

resolution of the product [Kwok et al., 2021a], [Kwok et al.,

2021c]. ATL07 reports only a single surface height, and in

some cases, this height is determined as somewhere between

the height of the surface and that of the melt-pond bottom

[Farrell et al., 2020]. Missing ponds or confusing ponds with

sea-ice leads can result in miscalculation of freeboard, which

is reported in ICESat-2 data product ATL10 [Kwok et al.,

2021b], see [Farrell et al., 2020].

What appears to be a discrepancy between the observation

capabilities of the sensor and the current status of official data

products can be explained by a combination of the spatial

scale of change signals in Arctic sea ice and mathematical

algorithms applied in data analysis. The sea-ice ICESat-2

ATLAS data products ATL07 and ATL10 [Kwok et al., 2021c],

[Kwok et al., 2021b] have facilitated significant findings on

sea-ice freeboard and seasonal changes for the entire Arctic

and Antarctic sea-ice regions [Kwok et al., 2019b], [Kwok

et al., 2019c], [Kwok et al., 2019a]. With the Advanced To-

pographic Laser Altimeter System (ATLAS), ICESat-2 carries

the first space-borne multi-beam micro-pulse photon-counting

laser altimeter system. ATLAS registers returns from every

photon in the 532 nm (green light) spectral band of the sensor,

including photons from ambient light (background photons) in

addition to signal photons, which together form a photon point

cloud, reported on the product ATL03 [Neumann et al., 2019],

[Neumann et al., 2021a], [Neumann et al., 2021b]. The math-

ematical algorithms applied to derive the ICESat-2 ATLAS

Sea-Ice Products [Kwok et al., 2021a] yield information per
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along-track segment area, whose length depends on fixed 150

photon counts and thus is variable, typically between 17 m by

27 m and 17 m by 200 m, while the ATLAS sensor results

in a nominal along-track spacing of 0.7 m (under clear-sky

atmospheric conditions). This spatial resolution is sufficient

for documentation and analysis of changes in the entire Arctic

or Antarctic regions, but not for detection of melt ponds.

Analyses of ATL03 data collected over Arctic sea ice show

that melt ponds, snow depth, ridged and rubbled ice are

resolved in the photon cloud, which suggests that geophysical

processes can be studied that lead to the formation of these

high-resolution signatures in the ice [Farrell et al., 2020],

[Buckley et al., 2020b], [Tilling et al., 2020]. To automatically

detect and report melt ponds in ICESat-2 ATLAS data and

measure their depth, a new algorithm needs to be developed

that builds on the ATL03 photon cloud. In this paper, we

introduce such an algorithm.

More formally, a high-resolution algorithm that facilitates

retrieval of two surfaces wherever such exist is required to

report melt pond existence and depth from ICESat-2 data. In

order to allow operational application for ICESat-2 photon data

across large and small regions alike (including the entire Arctic

and Antarctic sea-ice regions), such a melt-pond algorithm

needs to meet the following criteria:

1) The algorithm needs to be fully automated (i.e. it should

not require a-priori information on the existence or

location of a pond)

2) detect ponds wherever they exist

3) avoid false positives

4) automatically adapt to different background character-

istics of daytime and nighttime data and to changes in

apparent surface reflectance (ASR)

5) find ponds among sea-ice of different roughness types

(smooth, ridged, and complex)

6) correctly determine the start and end points of a pond

along the ICESat-2 ground track

7) measure the pond depth

8) represent the complexity of the sea-ice at high resolu-

tion.

In this paper, we introduce an algorithm for melt-pond de-

tection from ICESat-2 data that satisfies the above criteria,

building on our concept of the Density-Dimension Algorithm

(DDA) for ICESat-2 data analysis [Herzfeld et al., 2017],

[Herzfeld et al., 2021c], [Herzfeld et al., 2021a], [Herzfeld

et al., 2021b], which facilitates ice-surface height determina-

tion at the 0.7 m nominal resolution of the sensor. The new

sea-ice algorithm is termed Density-Dimension Algorithm for

bifurcating sea-ice reflectors (DDA-bifurcate-seaice or DDA-

bif-seaice for short).

The complexity of the task of automated melt-pond detec-

tion and depth measurement is illustrated in [Perovich et al.,

2003] (fig. 3 and fig. 11), who collected mass-balance mea-

surements during the Surface Heat Budget of the Arctic Ocean

(SHEBA) experiment conducted October 1997-October 1998.

A simple algorithm for depth measurement of ponds has been

described and applied in [Farrell et al., 2020], [Buckley et al.,

2020a], [Buckley et al., 2019] (UMD-melt-pond-algorithm

(MPA)). Their algorithm requires knowledge where a pond

exists, it is not automated and thus cannot be employed for

operational processing of ICESat-2 products.

This paper will include a mathematical description of the

DDA-bif-seaice and application to ICESat-2 data from the

Lincoln Sea. The DDA-bif-seaice will be applied to analyze

ICESat-2 ATLAS data from melt-pond regions in the Lincoln

Sea and other parts of the multi-year ice regions of the Arctic

Ocean.

As a means of evaluation, results from the DDA-bif-seaice

will be compared to results from a simple algorithm for anal-

ysis of melt ponds in ICESat-2 ATLAS that requires a-priori

manual identification of ponds, developed at the University

of Maryland (UMD Melt-Pond Algorithm (MPA)). The UMD

MPA, described in [Buckley, 2022], [Buckley et al., prep], is

not automated and thus cannot be employed for operational

processing of ICESat-2 products.

The DDA-bif-seaice is applied in a large-scale analysis

of ICESat-2 ATLAS data sets to study melt onset and the

evolution of melt ponds on multi-year sea-ice in the Arctic,

reported in a companion paper [Buckley et al., prep] that also

uses the UMD MPA.

II. ICESAT-2 IN A NUTSHELL

A. Main Characteristics of Instrumentation, Observation and

Resultant Data

ICESat-2 ATLAS is a micro-pulse photon-counting laser

altimeter system, which collects data in three pairs of two

beams, a strong beam and a weak beam, where the energy of

the weak beam is a quarter of that of the strong beam [Markus

et al., 2017], [Neumann et al., 2019]. Across-track separation

of the beams on the Earth’s surface is 3.3 km between the

centers of adjacent pairs and 90 m for the beams within each

pair; ICESat-2 beam pattern and track geometry are illustrated

in [Herzfeld et al., 2021c] (Fig. 3). The sensor operates in

the 532 nm wavelength (green light) with a pulse-repetition

rate (PRF) of 10 kHz. The PRF results in a nominal 0.7 m

spacing of the laser pulses on the Earth’s surface, under clear-

sky atmospheric conditions. ATLAS has a footprint diameter

of less than 17.4 m at 85% encircled energy. The Field of

View (FOV) of the receiver telescope is 83.8 µrad, equivalent

to 45 m FOV on the surface of the Earth. Observatory perfor-

mance has been assessed in [Magruder et al., 2021], where the

actual footprint is characterized as closer to 10 m in diameter.

As the FOV moves along the satellite ground track and returns

from every single photon (in the 532 nm wavelength domain

of the sensor) are recorded, surface structures at much higher

resolution than footprint diameter can be resolved (see sections

(2.2) and [Herzfeld et al., 2021c]). The instrumentation and

derivation of the recorded photon point cloud are described in

[Neumann et al., 2019], and any technical component of the

instrument and data set necessary for understanding the work

in this paper is found in [Herzfeld et al., 2021c]. Information

in this section is modified after [Herzfeld et al., 2022], where

a validation of the ICESat-2 data collection over complex land

ice surfaces is performed.

The ATLAS system records returns from every single

photon in the 532 nm range of the sensor as a photon
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point cloud. In addition to the photons that result from the

active lidar signal (signal photons), the photon point cloud

also includes background photons that stem from ambient

light in the 532 range of the spectrum and artefacts due to

instrument effects such as dead-time effect and afterpulses.

The identification of signal photons in the point cloud or

classification of signal versus background photons constitutes

an ill-posed mathematical problem.

B. Standard ICESat-2 ATLAS Sea-Ice Products: ATL07 and

ATL10

The current standard data products for sea ice are ICESat-2

ATLAS products ATL07 Sea Ice Height [Kwok et al., 2021c]

and ICESat-2 ATLAS ATL10 Sea Ice Freeboard [Kwok et al.,

2021b]. The derivation of the standard sea-ice data products

ATL07 and ATL10 is described in the Algorithm Theoretical

Base Document (ATBD) for ATL07 and ATL10 [Kwok et al.,

2021a]. The ATL07 algorithm is not based on a fixed spatial

resolution, but rather on a fixed number of recorded photons,

which results in sea-ice height determinations of variable size,

typically on the order of 25 km. A Wiener Filter is employed as

the core means of photon-data analysis. The ATL07 algorithm

is aimed at resolving a single surface height. Thus, it does not

resolve melt ponds. The determination of sea ice freeboard can

also be affected by errors in the surface height determination

[Farrell et al., 2020].

III. OVERVIEW OF THE APPROACH DDA-BIF-SEAICE AND

EXAMPLES OF MELT-POND DETECTION

The central objective of this paper is to introduce the DDA-

bifurcate-seaice and apply it to detection and depth determi-

nation of melt pond in Arctic sea ice. A first view of results

of the DDA-bif-seaice is given in Fig. 1, which illustrates that

ponds can be detected across a range of different environments

indicated by different surface morphologies, as well as for

the central and outer beams of the ATLAS instrument. The

fact that ponds are found in situations of highly variable

apparent surface reflectance, indicated by the colors of the

signal photons in Fig. 1, points at the auto-adaptive capability

of the algorithm.

Fig. 1a shows a large (over 200m diameter) melt pond

that is located among ridged sea ice and has a complex

bottom topography, Fig. 1b illustrates detection of shallow

and relatively deep (3m) ponds among smooth and ridged ice.

The right pond (at 335800) is located among fault blocks, in a

location that is typical for formation of melt ponds and thus of

interest for process studies. From the view point of a detection

algorithm, the sequence of ponds in Fig. 1b illustrates a set

of bifurcation points (points where one sea-ice surface splits

into two surfaces of melt-pond top and melt-pond bottom)

and rejoining points (where the two surfaces comes again

together at the end of a melt pond). The set of bifurcation

and rejoining points will be identified in the DDA-bif-seaice

algorithm to facilitate identification of entire individual points,

tracking of ponds across analysis steps and calculation of

statistical values such as depth (range) and pond width (in

the along-track direction). Ponds are identified in situations of

weak surface reflectance (e.g. Fig. 1e, 1g, 1h), strong surface

reflectance (Fig. 1b, 1c, 1f) with density values of 250, and

mixed surface reflectance (Fig. 1a). The ICESat-2 observatory

yields observations through a complex geometry, illustrated in

[Herzfeld et al., 2021c] (Fig. 3) and (Table 1), the strong beam

in a pair of beams can be either the right beam or the left beam

(e.g. gt2r or gt2l), depending on whether ATLAS flies forward

or backward (orientation changes every few months). Ponds

can be identified in the outer beams, for example, in gt3l in

Fig 1a, 1d, 1e, 1f and in gt1l in Fig. 1b, 1c, as well as in the

center beam, gt2l, in Fig. 1g, 1h. All examples in Fig. 1 stem

from strong beams, but ponds are also detected in data from

the weak beam.

The examples may also serve to provide a first understand-

ing of the tasks that the DDA-bif-seaice performs and as such

motivate the mathematical description of the algorithm, given

in section 4.

Following the mathematical description, the DDA-bif-seaice

will be applied to data from the multi-year Arctic sea-ice

region, for two different years, 2019 and 2020, during melt

season (Section 5). Corrections for speed of light in sea water

to calculate depth from range and challenges for the algorithm

are discussed in section 5 as well. Results from the DDA-

bif-seaice will be compared to results reported on ICESat-

2 standard product ATL07 to demonstrate the increase in

information content.

IV. ALGORITHM: THE DDA-BIFURCATE-SEAICE

A. The Family of Density-Dimension Algorithms

The Density-Dimension Algorithm for bifurcating reflectors

(DDA-bif) is part of the density-dimension algorithm family.

The density-dimension algorithms have been developed for the

analysis of micro-pulse photon-counting lidar altimeter data,

especially data collected with the ICESat-2 ATLAS instrument

and its airborne predecessors such as the SIGMA, MABEL

and SIMPL instruments, and include algorithms for ice surface

data (the DDA-ice) [Herzfeld et al., 2017], [Herzfeld et al.,

2021c], [Herzfeld et al., 2022], for vegetation data (the DDA-

sigma-veg) [Herzfeld et al., 2014] and for atmospheric layers

(the DDA-atmos) [Herzfeld et al., 2021a], [Herzfeld et al.,

2021b]. Common to all density-dimension algorithms is the

ability to retrieve surfaces and other reflectors in situations of

complex spatial data distributions and mathematically difficult

signal-to-noise relationships. Examples include crevassed and

otherwise morphologically complex ice surfaces, vegetation

canopy and ground under canopy, and tenuous atmospheric

layers such as optically thin clouds, blowing snow and aerosol

layers. The DDA-atmos is the algorithm applied for iden-

tification of atmospheric layers and surface in the ICESat-

2 atmospheric data product, ATL09 (see also, [Palm et al.,

2021]).

B. DDA-ice Mathematical Philosophy

The DDA-bif-seaice builds on the density-dimension algo-

rithm for ice surfaces (DDA-ice or DDA-ice-1). The DDA-

ice is the original algorithm for ice surfaces and the name
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DDA-ice-1 indicates that it follows a single surface (more

technically, the DDA-ice-1 performs a single density run).

The main idea of the DDA-ice is that signal photons are

expected to have a neighborhood with a larger photon density

than background photons. To quantify density, photons are

aggregated using a Gaussian rbf . A rbf is a real-valued

function whose value decreases with distance from the center

c:
Φ(x, c) = Φ(‖x− c‖) (1)

for all x in a definition area D with respect to any norm ‖ · ‖.

The density field of the photon cloud is calculated by letting

each single photon take the role of a center, evaluating the rbf

for all neighboring photons and forming the sum of weights

from this process [Herzfeld et al., 2017]. Density is considered

a dimension of the data set and signal-background separation

is performed by an auto-adaptive threshold function in the

geolocation-density domain. The auto-adaptive capability of

the algorithm implies that a threshold function is used which

automatically adapts to the variable background characteristics

of day-time and night-time observations in the photon point

cloud (a lot more photons from ambient light are recorded

during day-time), Apparent Surface Reflectance (ASR) and

other, including instrumental, sources of background photons.

The results of the DDA-ice-1 are not disturbed by instrument-

related background photons, such as those resultant from after-

pulses (because these are less dense than the surface signal).

Surface height among and between signal photons is deter-

mined using a ground-follower, a function that automatically

adapts to surface roughness. The option for areas of high

surface roughness, originally designed for surface-height de-

termination over crevassed glaciers, facilitates surface-height

determination of ridged and rubbled sea-ice, while the option

for low surface roughness works well for simple, smooth

surfaces of marine and terrestrial ice environments [Herzfeld

et al., 2017], [Herzfeld et al., 2021c]. The DDA-ice-1 resolves

surface heights at the resolution of the sensor, i.e. of the point-

cloud data (nominally 0.7m along-track) and height segments

of 5 m or 2.5 m, depending on surface roughness [Herzfeld

et al., 2021c].

C. Input Data, Algorithm Development and Version

As input for analysis, the DDA-bifurcate-seaice uses the

geolocated photon point cloud, which includes signal and

background photons, as reported in the ICESat-2 ATLAS

ATL03 data product [Neumann et al., 2021a], [Neumann et al.,

2019], [Neumann et al., 2021b]. The DDA algorithms do

not use the photon classification that is provided on ATL03

[Herzfeld et al., 2021c]. The ATL03 data sets are publicly

available via the NASA Earthdata site and updated at regular

time intervals of about 6 months.

Analyses in this paper utilize the ICESat-2 ATLAS data

products ATL03 (ATLAS/ICESat-2 L2A Global Geolocated

Photon Data), Version 5 [Neumann et al., 2021a], described

in the Algorithm Theoretical Base Document for ATL03

[Neumann et al., 2021b].

The algorithm DDA-bif-seaice was developed on local

desktops (iMacs) of the Geomathematics, Remote Sensing and

Cryospheric Sciences Laboratory at the University of Colorado

Boulder, the computational code is implemented using python

3. The algorithm described in this paper is that of DDA-

ice geomath version v18.0 (latest version as of June 2022;

committed December 2021).

For processing of large amounts of ICESat-2 ATLAS col-

lected over the multiyear Arctic sea-ice region, the DDA-

ice-bifurcate was transferred to the NASA cloud (ADAPT).

Results are reported in the companion paper on evolution of

melt ponding [Buckley et al., prep]. An advanced version of

the DDA-bif-seaice algorithm may be included in a future

version of the standard ICESat-2 products.

D. Challenges Specific to Melt-Pond Detection over Seaice

The occurrence of melt ponds is by no means specific to

sea ice, as melt ponding occurs over glaciers, ice sheets and

snow fields as well [Fricker et al., 2020]. There are, however,

challenges specific to melt-pond detection over sea ice, which

warrant the development of a specific sea-ice algorithm. We

have developed an algorithm for bifurcating reflectors, aimed

at detection of large melt ponds on Amery Ice Shelf and for

detection of melt ponds and channels on the Greenland Ice

sheet [Herzfeld et al., prep]. The ponds on land ice and ice

shelves are much larger (kilometers to tens of kilometers)

and deeper than those on sea ice, thus the identification of

bifurcation and rejoining locations of the two surfaces, pond

surface and pond bottom, is naturally much more robust to

the selection of algorithm-specific parameters that determine

the resolution, and false positives are avoided relatively easily.

The situation for sea ice is much more complex. Ponds can

form in smooth sea-ice regions as well as in ridged ice areas,

where ponds typically occur on the side of a faulted sea-ice

block. The ridge height is often larger than the pond depth,

creating an additional challenge for an automated detection

algorithm.

An additional challenge is due to the fact that sea-ice is,

simplified, stratified into frozen seawater overlain by a snow

layer and the two layers interact differently with the incom-

ing lidar signal. The penetration, scattering and reflection

properties of lidar signals in complex media are far from

understood (see, for example, [Smith et al., 2018]) As melting

progresses, snow and ice transforms into slush, forming sea-

ice ponds in the making, which can already be seen in

the lidar signal (for example, in Fig. 1d). Other examples

illustrating the complexity of sea ice include ponds with a

solidly frozen surface, where a pond formed and the surface

refroze, subnivean ponds, ponds with solid bottoms (Fig. 1a)

and ponds with ill-defined bottoms (Fig. 1c). For imagery of

sea-ice as well as other remote-sensing observations, we refer

to [Maslanik et al., 2006], [Sturm et al., 2006], [Herzfeld et al.,

2006].

We have previously described a second-order algorithm, the

DDA-ice-2, for the case that the stronger reflecting surface is

always on top [Herzfeld and Trantow, prep]. For the melt-

pond detection problem, this assumption cannot be made. The

stronger reflecting surface can be the top of a melt pond or

its bottom, or both surfaces can be of similar strength, or the
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strength of the reflector may even switch from top to bottom

depending on location. These complexities of the problem

motivate the development of a DDA-bifurcate for analysis of

lidar data over sea ice.

A key challenge in designing a melt-pond-detection algo-

rithm for photon-cloud data (such as ATL03 data) lies in

identification of bifurcation locations of the reflecting surfaces

and in identifications of locations where the two surfaces rejoin

(rejoining locations). The bifurcation algorithm needs to be

robust w.r.t. the distribution of the point-cloud data: (a) To

identify small and shallow ponds, with the goal of vertical

resolution of 0.1 m and (b) to avoid false positives (locations

that show point clusters at two or more different heights, where

a pond does not exist).

A problem that is especially severe in the analysis of sea-

ice data is posed by the occurrence of signal saturation, which

in combination with the detector dead-time effect leads to

delayed registration of photon, resulting in apparent secondary

layers below the actual surface at (pseudo-) depths that overlap

with typical depths of melt ponds on sea ice. There are several

such pseudo-depths, at 0.43 m and farther below. This problem

is addressed in subsection (5.3).

E. Algorithm Steps of the DDA-ice-1

The DDA-bif-seaice builds on the DDA-ice-1 (there called

the DDA-ice), the algorithm for primary surface detection, as

described in [Herzfeld et al., 2017]. Here, we describe the

algorithm to the extent necessary to understand the concept of

the DDA-bif-seaice. the algorithm steps are illustrated in Fig. 2

for an example of ATLAS data over seaice. The algorithm is

driven by a set of algorithm-specific parameters, described in

[Herzfeld et al., 2017]. Parameters specific to the DDA-bif-

seaice and the analysis described in this paper are given in

Table 1.

The DDA-ice-1 has the following steps:

1) Large-scale separation of signal and noise slabs

2) Calculation of the density field using the radial basis

function, rbf

3) Operation of an auto-adaptive threshold function to

separate noise and signal photons, using density as an

additional dimension.

4) Application of a piece-wise linear ground follower with

1-10m resolution over smooth surfaces and 0.5-5m over

crevasses, sastrugi and other rough surfaces. The ground

follower automatically adapts to surface roughness.

Step 1. Separation of signal and noise slabs. The large-

scale separation of signal and noise slabs utilizes a simple

histogram-based criterion that evaluates photon counts. The

signal slab centers in height around the height bin of strongest

return (highest photon count) and the noise slab is determined

as the slab of same height interval located immediately above

the signal slab. For sea ice, the slab thickness is 30 m.

Step 2 Calculation of the density field. The density field is

calculated for every single photon, using that photon as the

center point, c of a kernel. A Gaussian rbf , formally defined

in eqn. 1, is evaluated as follows, letting r = x−c and s ∈ R:

Φ(r) =
1√
2πs2

e
−( r

√

2s
)2

(2)

For each point in the definition set D (each photon in the

cloud, for both signal and noise slabs), a density value fd(c)
is calculated as:

fd(c) =
∑

x∈Dc

Wc(x) (3)

for all x within the search region Dc, where the weights Wc(·)
are derived from the rbf (see eqn. 11 in [Herzfeld et al., 2017]).

The kernel can be visualized as a Gaussian bell curve rotated

around the x-axis.

Algorithm-specific parameters. The kernel of the rbf

is controlled by the algorithm-specific parameters standard

deviation σ, anisotropy a and cutoff κ, where κ is the number

of standard deviations used to define the extent of the search

region. For a 6= 1, points with the same rbf value Φ(‖x− c‖a)
are located on an ellipsoid with axes (a,a,1) around the center

point c, rather than on a circle. In the original density-

dimension algorithm, anisotropy is selected such that the

resultant ellipsoid has a longer axis parallel to the horizontal,

motivated by the idea that the probability of finding more

ground signal points is larger in the approximately horizontal

direction than in the vertical direction; for a validation of this

concept and examples from the ICESat-2 airborne simulator,

SIMPL, data see [Herzfeld et al., 2017]. The fact that typical

sea ice has a large horizontal extension motivates the use of

a large anisotropy fact of a = 20.

With anisotropy, the density value, fd,a(c), is calculated as

fd,a(c) =
∑

x∈Dc,a

Wc,a(x) (4)

This calculation is carried out for each photon as a center

point and yields the density field.

Step 3. Threshold function. An auto-adaptive threshold

function, described in [Herzfeld et al., 2017], is employed

to separate signal and noise photons. The threshold function

is controlled by a quantile and threshold-offest as algorithm-

specific parameters (see, Table 1).

In this algorithm version (DDA-ice-py3, v18.0) we use a

two-step threshold function. In the first step, the maximum of

density values of photons in the noise slab is calculated, and

photons with a density value larger than this maximum plus

a threshold-offset value are passed into a set. In the second

step, the q-quantile of this set is passed into a second set. The

second set forms the set of ice-surface signal photons.

Mathematically, this reads as follows (summarized from

[Herzfeld et al., 2017]):

Threshold-determination is carried out in along-track bins

of size tbin, with tbin = 5m for the melt-pond analysis in

this paper. For each bin, indexed by s, the maximal value of

density for all points in the noise slab Dnoise,s for this bin is

found according to

fmax,noise,s = max{fd,a(c) | c ∈ Dnoise,s} (5)
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using eqn. 4 for the density value fd,a(c). Next a first

threshold-value ts,1 is calculated as

ts,1 = fmax,noise,s + toffset (6)

by adding a global threshold offset toffset ∈ R to the maximal

density value found in the noise slab.

We define the set Ts as the set of all photon returns (center

points) c in the corresponding bin in the signal slab Dsignal,s

with density value larger than the first threshold ts,1:

Ts = {fd,a(c) | c ∈ Dsignal,s ∧ fd,a(c) > ts,1} (7)

A second threshold ts,2 is defined as the q-quantile of the

set Ts, i.e. ts,2 = v for the value v for which the density value

satisfies

fd,a(c) < v (8)

for a fraction 0 ≤ q ≤ 1 of the points c in the set Ts.

Then a photon in bin s of the signal slab is identified as an

ice-surface return if the density value of the photon is larger

than the q-quantile of the set Ts, i.e if

fd,a(c) > ts,2 (9)

defining the set of ice-surface returns in along-track bin s as

Ss = {c | c ∈ Ts ∧ fd,a(c) > ts,2} (10)

The auto-adaptive thresholding process is illustrated in

Fig. 2. The analysis uses toffset = 1 and q = 0.15

The set of all ice-surface returns is the joint set of Ss for

all along-track-bins

S = {c | c ∈ Ss, s ∈ J } (11)

for the index set J of all threshold-bin indices.

After application of the threshold function, surface height

is given by the height values of individual photons that are

classified as signal photons. The output of the threshold

function has the same resolution as the original registered

photons (without background photons), reported on ATL03,

and therefore the spatial resolution of the output of the DDA-

ice at this step is the same as the nominal 0.7, resolution of

ATLAS. This is possible because the DDA-ice utilizes a data

aggregation, not a data averaging operation.

Step 4. Roughness-controlled piece-wise linear ground

follower. For users interested in surface height at a given loca-

tion or users who prefer a continuous line of surface heights

over heights at individual photon locations, a piecewise lin-

ear ground follower is applied. The terminology “roughness-

controlled piece-wise linear ground follower” is a simplified

description of a mathematical interpolator that builds on a

segmentation of an interval into short sections where the

surface is rough, and into larger sections where the surface

is smooth. The height determination rules is summarized as

follows: If standard deviation of the photons determined as

signal photons (in step 3) in a given along-track segment of

length R (here: R = 10m) exceeds a value S (the standard

deviation for the ground follower), then the smaller stepsize,

calculated as R
f

is used for the piecewise linear interpolator.

The height determination employs a density-weighted interpo-

lator (equation (30) in [Herzfeld et al., 2017]).

Determination of algorithm-specific parameters. Sensi-

tivity studies. The values of the algorithm-specific parameters

are determined in a sensitivity study. A sensitivity study is a

step-wise optimization process, during which parameters are

varied one at a time, holding the rest of the parameter set

constant around a control parameter set (typically the last

parameter set used in a successful data analysis). Once a

new optimal solution is found, this is set as the control set,

and a next iteration, varying each parameter, is carried out.

Iterations are continued until a satisfactory parameter set has

been determined, aided by experience in photon-counting lidar

data analysis or validation data.

Data handling information. Version v18.0 of the DDA-ice-

py3 allows processing of large files (entire ICESat-2 ATLAS

granules). This is facilitated by so-called “chunking”, an

operation that loads segments of the data sets (here: 3000 m

along-track). Chunking requires involved handling of data and

intermediate algorithm results when passed to subroutines, to

avoid effects at “chunk” boundaries. the mathematical details

of the chunking algorithm developed specifically for the DDA-

bif-seaice algorithm go beyond the objectives of this paper.

Photon data are read in as as:

(dt, lon, lat, elev)

Photon data are appended with distance along-track as:

(delta time, lon, lat, elev, distance)

F. Algorithm Steps of the DDA-bifurcate-seaice (DDA-bif-

seaice)

The idea of a bifurcating algorithm is to identify locations

where two geophysically valid surfaces exist, here, the top

and bottom of a melt pond on sea ice. Two surfaces can

clearly be identified in ICESat-2 data in some situations, but

less clearly in others. Implementation of this simple concept

as an automated algorithm has several complications, due to

the complexity of (a) the melt ponding process and (b) the

lidar observations (interactions of the lidar signal with complex

cryospheric materials, including snow, ice, slush, water). As

discussed in section (4.4), the cryospheric materials undergo

a metamorphosis during the melt process, and the different

material resulting from the stages of this metamorphosis result

in different returns of the lidar signal, manifested in the spatial

distribution of photons in the point cloud. The ATL03 data can

show many stages of “ponds in the making”. The question is

then, at which stage should an algorithm identify two surfaces

and call out a pond? Determination of the location of a

bifurcation and rejoining point is a third problem.

Critical to these problems as part of an algorithm is the

determination of spatial resolution. The current analysis uses

a horizontal resolution of 25 m and a vertical bin size of

0.1 m in the bifurcation criterion, which strike a balance

between the conflicting goals of finding enough signal photons

to identify bifurcations, while avoiding false positives. Pond

bottom depths (and ice-surface heights) are resolved at 5 m and

10 m along-track resolution for rough and smooth surfaces,
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respectively, with smallest detectable ponds of 15 m and 30 m

widths. The values have been determined in sensitivity studies.

In the following section, we describe how the bifurcation

algorithm for sea-ice data is interleaved into the DDA-ice-

1. Algorithm steps already detailed for the DDA-ice-1 in

section (4.5) are simply summarized. New algorithms steps

specific to the DDA-bif-seaice are introduced here.

Algorithm steps of the DDA-bif-seaice are illustrated in

Fig. 2. There, four examples are given to provide insights

in the operation of the algorithm steps for different sea-ice

environments, reflection situations, morphological complexi-

ties and for an outer beam (strong beam 3) compared to the

near-nadir central beam (strong beam 2).

(Step 1) Large-scale separation of signal and noise slabs

The input to this step is the set of raw ICESat-2 ATLAS

photons, also called the photon point cloud, seen in Fig. 2 (x-

1, where x=a,b,c,d). The signal of the Earth surface, here the

surface of sea ice, sea water or pond water, coincides with the

height range of strongest reflectors. Separation of noise and

signal slabs at large spatial scale is relatively robust and can

be carried out using histograms. The result is shown in Fig. 2

(x-2).

(Step 2) Calculation of the density field using the radial

basis function, rbf , for the signal slab and the noise slab

(same as DDA-ice-1)

The density field is shown in Fig. 2 (x-3).

(Step 3) Operation of an auto-adaptive threshold func-

tion to separate noise and signal photons, using density as

an additional dimension

At this point, the same threshold algorithm is run as in

the DDA-ice-1, but with a lower quantile, currently q = 0.15
(see the Table of algorithm-specific parameters, Table 1), that

passes more photons as candidates for examination in the

following steps. Running the auto-adaptive threshold function

creates a set of signal photons, denoted by S (eqn. 11). Note

that S is a subset of the set of photons in the signal slab

(for DDA-ice-1 and DDA-ice-bifurcate-seaice). With the lower

quantile, the set S is not the set of ice-surface photons any

more, but rather a set of photons which are candidates for

melt-pond surface or bottom photons. Running the original

threshold algorithm with a really low threshold serves to

eliminate outlier photons. We call the resultant set the pre-

signal set. The main thresholding will be applied at a later step

in the melt-pond algorithm of the DDA-ice-bifurcate-seaice

(see (Step 4)).

The operation of the auto-adaptive threshold function for the

pre-signal set is illustrated in Fig. 2 (x-4), with the resultant

pre-signal set shown in Fig. 2 (x-5).

(Step 4) Melt-pond detection: Bifurcation algorithm with

additional auto-adaptive thresholding

The actual melt-pond detection comprises several steps. The

result of these steps are shown in Fig. 2 (x-6). Building on

the logic of the thresholding algorithm (Step 3), a new bifur-

cation algorithm with additional auto-adaptive thresholding is

designed. The new algorithm for melt-pond detection is im-

plemented in a function called compute threshold melt pond,

abbreviated as ctmp, applied to signal photons only, i.e. to

photons in the set S that results from step 3. Note that ctmp

is not applied to all photons in the signal slab, only to signal

photons resultant from step 3. The function ctmp currently

uses the same quantile, q, as the thresholding in step 3 (i.e.

q = 0.15.)

The function returns the photon signal sets associated with

the top surface and the bottom surface (if applicable); these

are subsets of the pre-signal set from Step 3. In case only one

surface is found, the result is identical to that of the DDA-ice-1

(with appropriate parameters).

(Step 4.1a) ctmp-1a: Calculate a vertical histogram of

the signal photons

The bifurcation code begins by determining if two surfaces

exist. A vertical histogram is calculated for the photons in the

set S (at vertical resolution mp binv), for every segment of a

horizontal resolution mp binh. Here, we use mp binv = 0.1
and mp binh = 25 (units in meters). All following steps are

carried out for each horizontal step of resolution mp binh.

(Step 4.1b) ctmp-1b: Apply a binomial filter to the

histogram

Then the histogram, H , is filtered (or smoothed) using the

Butterworth filter. In this simple form, it is a binomial filter.

The new histogram counts Hnew at vertical location x (or

elevation), are given the value:

Hnew(x) =H(x− 2) · 0.0625 +H(x− 1) · 0.25
+H(x) · 0.375 +H(x+ 1) · 0.25
+H(x+ 2) · 0.0625

(12)

For edge cases, one simply drops the term that are out of

bounds. For example, for bin 0 we use:

Hnew(0) = H(0) · 0.375+H(1) · 0.25+H(2) · 0.0625 (13)

(Step 4.2) ctmp-2: Find peaks in the filtered vertical

histogram of signal photons

Peaks in the filtered vertical histogram will indicate reflec-

tors, and if there is more than one reflector, a melt-pond

may exist in the examined location. The determination of

peak locations is currently implemented as a call to the scipy

library function find peaks, which is called with the maximum

number of peaks set to 2. There are two cases possible: (1)

If at least two peaks are found, then set peak1 = top and

peak2 = bottom and apply the algorithm for the bifurcation

case; and (2) If only one peak is found, then only one surface

is identified. The scipy function also determines a saddle point

(a minimum between the two peaks). The two cases of peak

determination are illustrated in typical filtered histograms in

Fig. 3; such histograms can be output by the DDA-bif-seaice

as an option.

(1) If at least two peaks are found, then the algorithm finds

the two largest peaks, where pk1 is the bin associated with

the top surface and pk2 is the bin associated with the bottom

surface. Next we find a specific histogram range, or a signal

“slab”, for each peak (or associated surface). We first find

the minimum histogram bin between the two peaks pk min,

referred to as the saddle point. The number of the bins, or

distance, between the saddle point and the peak for the top

surface is called d. The slab associated with the higher surface
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(top surface) is bounded below by saddle bin and above by

pk1 + d. Thus the upper slab is centered at the peak pk1
with a size determined by the separation of the peak bin

from the saddle-point bin between the two peaks. If the upper

boundary is above the histogram limit, then the top of the slab

boundary is set to the uppermost histogram bin. The second

slab, associated with the lower surface, ranges from the saddle

bin pk min to the first bin below the second peak pk2 that

drops to 0 signal photon counts. In this case of two identified

surfaces (case 1), the function returns the two photon signal

sets associated with the top and bottom surface, using Stop to

denote the set of top (surface) photons and Sbot to denote the

set of bottom photons.

The regular ground follower is then applied in a modified

version to both signal sets Stop and Sbot to interpolate the

two distinct surfaces (for each along-track bin). Note that in

the code the ground follower is applied to the union of all

the along track bins, i.e. the entire track, all at once. It uses

the same quantile dq = 0.75 for both surfaces. The modified

ground follower is described in (Step-5).

(2) There is also the case where only a single surface is

identified (one peak returned from the find peaks function

with our parameterization). In this case, the threshold function

acts as for DDA-ice-1 to return the thresholded photons to be

interpolated by the ground follower. The code simply returns

this same thresholded set of photons as the photon signal slab

for both the top and bottom surfaces, which implies that the

two surfaces would merge in the ground-follower (Step 5),

formally, the same ground estimate is output for both surfaces

for this particular horizontal or along-track bin. The ground

follower is described in (Step 5) for this case as well.

(Step 4.3) ctmp-3: Create a set of bifurcation and

rejoining points: A counter for discrete ponds

In this step, a set of bifurcation points and a set of rejoining

points are created, which aid in keeping track of start and

end locations of discrete ponds. This set is later examined

in the melt-pond ground follower, which has the capability

to function for pond regions and regions of a single surface.

Numerically, the identification of bifurcation and rejoining

points is carried out as part of (Step 4.2), changing the value of

an indicator whenever a switch in the number of peaks occurs.

As a result of this step, we are able to carry out analyses of

properties per pond, such as maximal and average pond depth

and pond width.

(Step 5) Pond-specific surface follower

In step 5, a melt-pond specific surface follower is applied to

both the top surface signal-photon set, Stop, set and the bottom

surface signal-photon set, Sbot. The surface follower employs

the same roughness-adaptive ground follower function, as de-

scribed for the DDA-ice-1. Numerically, the ground-follower

algorithm moves along-track, calculating surface heights for

each segment for both surface sets. The melt-pond ground

follower uses a melt-pond quantile, dq = 0.75. The role of

the melt-pond quantile in the ground follower function is to

“place” the reflector/ ground height at a certain percentile of

the set of signal photons in the respective set (the set of surface

signal photons or the set of bottom signal photons). In the

current code version, the same melt-pond quantile dq = 0.75,

is applied for both surfaces, but different quantiles could be

used in a future version of the algorithm. There is also an

option to place surface height at max density, which is not

used in the current melt-pond analysis.

The same values of the ground-follower resolution, R =
10[m], and the reduction factor for rough surfaces, r = 2,

are employed for both surfaces, but one can be smooth

(resulting in the 10m resolution) and the other one can be

rough (resulting in the 5 m resolution). Typically, the pond

bottom is rougher than the pond surface, but we do not force

the pond surface to be flat at this point (because the top surface

could also be a ridged surface between ponds).

The result of the surface follower is a set of piecewise lin-

early interpolated surface heights, Stop−interp, and piecewise

linearly interpolated bottom heights, Sbot−interp.

Case 2. In case (2) [no pond], the algorithm works as

follows: If no pond is detected (and between ponds, i.e.

wherever only one surface exists), then the roughness-adaptive

ground follower is applied, as described in Step-4 of the DDA-

ice-1. This capacity creates a surface that follows ridges (rough

sea-ice areas) with a smaller segmentation in the piece-wise

ground follower, as well as smooth sea-ice, where a larger

segmentation is used. (see, Table 1). The result of the surface

follower is a set of piecewise linearly interpolated surface

heights, Stop−interp.

In case (1) [pond], an additional algorithm module for

correction of melt-pond surface heights is applied (Step 6).

(Step 6) Correction of melt-pond surface heights and

calculation of pond statistics

(Step 6.1) Correction of melt-pond surface heights

Case 1. In case (1) [pond], the surface follower

(a) makes the top surface flat and horizontal, and

(b) throws out false negatives.

For case (1), the following steps are carried out. This is

implemented as running a “for” loop over the ponds, the

following steps are carried out for each pond.

(Case 1.1). If the mean elevation of the surface is larger than

the elevation of the pond edges plus a small value ǫ, then it

is determined that de facto no pond exists: Calculate m(s) as

the mean of the surface height for the top of the pond, based

on the heights of the photons in the top surface signal slab,

and calculate the edge average as a(e) = h((edge − left) +
h(edge− right))/2. Then apply the following criterion: If

m(s) > a(e) + ǫ (14)

then set top=bot.

This throws out false positives created by too small height

differences.

Current value is ǫ = 0.2m
(Case 1.2). If the two pond edges are very different in

height, the set top=bot.

Current code uses:

|left edge− right edge| > 1 (15)

This step throws out false positives created by ridge edges.

(Case 1.3). Min-width criterion: A minimum-width criterion

is applied to map ponds. This requires that a least 3 depth
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measurements are taken, i.e. the pond needs to have a minimal

size of three segments of the ground follower.

Based on the ground follower resolution, the minimal pond

size is 30 m for smooth surfaces, if length of piece-wise linear

interpolator size is 10 m (see Table 1). Using R = 2 for

the ratio of smooth to rough segment lengths in the ground

follower, minimal pond size that is mapped is 15 m. That

means, if the bottom is rough then we can find ponds of 15 m

minimal size.

This can be interpreted as follows: If a pond formed on

really rough ice and melting started and the sea-ice morphol-

ogy was approximately preserved during subsiding, leading to

rough pond bottoms, then we can identify 15 m wide ponds.

Notably, the along-track bin size of the ground follower

can be smaller than the horizontal bin size of the bifurcation

algorithm, because step 5 is applied to the signal photons in

the bottom and top signal slabs.

(Step 6.2) Calculation of pond statistics

As the algorithm steps through the set of ponds, statistical

values of interest to sea-ice scientists are calculated. These

include:

1) pond width

2) maximal pond depth

3) average pond depth

Values of maximal and average pond depth are not corrected

for the lower speed of light in water, compared to the speed

of light in air. Atmospheric corrections on the ATL03 product

account for the slightly lower speed of light in air, compared

to he speed of light (in vacuum), see [Neumann et al., 2019].

(Step 6.3) Correction for speed of light in water

As an approximation, the range between the pond surface

and the pond bottom can be multiplied by 1.3. (Water has a

refractive index of 1.3, where the refractive index of vacuum is

1.0). This correction is currently applied outside of the DDA-

bif-seaice in post-processing of pond depths.

Results of the pond statistics are utilized in the companion

paper on evolution of melt ponding on Arctic seaice in the

multi-year seaice region, including the Lincoln Sea (see,

section 5); [Buckley et al., prep].

V. APPLICATION: MELT-POND DETECTION IN ICESAT-2

ATLAS DATA FROM THE MULTI-YEAR ARCTIC SEA-ICE

REGION

The DDA-bif-seaice was applied to ICESat-2 ATLAS data

from the multi-year Arctic sea-ice region (MYASIR; Fig. 4) for

the melting seasons (June - August) of 2019 and 2020. Results

from 2019 are given in Fig. 1 and already discussed in section

(3), focusing on illustration of pond detection capabilities (a)

in different beams, (b) in different sea-ice environments, and

(c) in various situations of background and signal strength.

Now that the algorithm has been introduced, we take a

closer look at examples that illuminate certain typical sea-ice

morphological situations and problems of pond detection.

A. Ponds Among Ridges and in Complex Sea-Ice Topography

A frequently occurring morphological type of sea ice is that

of faulted ice blocks. These form when compressive stress is

applied to a sea-ice province, for example by wind, causing

fracturing of the sea ice into blocks, which are then thrusted

upward and can be partly pushed on top of each other. Melt

ponds tend to form on the side of a faulted block. Detection

of ponds aside fault blocks may provide useful information

for modeling sea-ice physical processes at high resolution.

The example in Fig. 5a shows two ponds, which have

surfaces at different heights and the two ponds are forming

in two of the typical, but different, neighboring environments:

Pond 1 (at 4400) is located among of sea-ice with a low

topographic relief, that is relatively smooth to the left of pond 1

and somewhat ridged on the right of pond 1. A small fault

block could be located immediately right of pond 1. Pond 2

(at 4600) is situated to the side of a fault block, where the

fault block forms a ridge.

The surface follower is not optimized to follow the ridge

topography in this code version (DDA-ice v18.0, Dec. 2021),

resulting in unrealistically smoothed-out topography (Fig. 5a).

Analysis of ridged and ponded areas with an older code

version (DDA-ice v16.0, October 2021), which includes a

different surface follower for single surfaces, renders ridge

topography more realistically (Fig. 5b).

B. Results From Summer 2020 Data

For the 2019 data, analysis was carried out automatically

detecting ponds which were already detected manually as well

as with the UMD Melt-pond algorithm (thus ponds have pond

identifiers), to provide a proof of concept. For the 2020 data, a

large set of tracks (10% of all tracks collected) was processed

for a large area of the Arctic. Results from 2020-July-13 data

(Fig. 6) show ponds at different stages of formation and in

different sea-ice environments, some of which are province

types not previously illustrated in Fig. 1. Notably, total signal

strength in examples Fig. 6a, b, c, d, e is significantly lower

than in the 2019 examples presented, but higher for the

examples in Fig. 7. The analysis for all 2019 and 2020 data

was run using DDA-ice v18.0 with the same algorithm-specific

parameter sets, given in Table 1, which further demonstrates

the auto-adaptive capability of the algorithm. In Fig. 1h, a large

pond neighbors small ponds that are correctly detected, as well

as a region of dead-time effects that appropriately avoided.

Examples include the following: (a) A pond at an early

stage of formation, located in smooth sea-ice area (Fig. 6a).

Neighboring areas show penetration of ice with water, likely

leading up to pond formation; (b) ponds among ridges at

various formation stages (Fig. 6b); (c) a pond in a partly

ridged, partly smooth area (Fig. 6c); (d) a pond in typical

location near a ridge (Fig. 6d), as already described in section

(5.1), (e) an unusually small pond at an early formation stage

(Fig. 5e) and (f) a small pond that is detected. Notably, no false

positives are detected in a high-density area between 665600

and 665800 (see, section 5.3); and (h) an unusually deep pond

(approximately 4 m uncorrected depth, corresponding to 5.2 m

corrected depth), that is situated between two small ponds

(near 675600) and a region of high surface reflectance (density

350 or larger).
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A physical interpretation of melt-pond evolution based on

the results from analysis of large data sets over the MYASIR

with the DDA-bif-seaice are reported in [Buckley et al., prep].

C. Avoidance of Saturated Signals

In situations of highly reflective sea-ice surfaces, the lidar

signal received by the ATLAS sensor can become saturated.

This means, that more photons are received than can be

counted. As a result, a second range bin of photons will

appear at a fixed range, or distance, determined by the detector

dead-time. The first of these is 0.43 m below the saturated

surface. For the central beam pair, whose beams are near-nadir

pointing at the ice surface, saturation is relatively common

over specular refrozen ponds or specular water surfaces of

melt ponds. This effect creates a challenge in possible mis-

classification of saturation effects as melt ponds, because the

range of 0.43 m lies within the depth range of melt ponds.

The dead-time effect leads to signals that are a fixed distance

below the height of the primary surface and follow the shape

of the primary surface. For pond surfaces, which are flat, the

artifact surface is also flat (see, Fig. 7b). The dead-time effect

can be persistent over long distances of the ICESat-2 ground

tracks (see, Fig. 7a and 7b).

The DDA-ice-1 has the property to avoid secondary signals

in most situations, simply because those are less dense than

the primary surface. For the DDA-bif-seaice, the challenge is

larger, because the goal is now to detect secondary surfaces

that are weaker. In many cases, detection of false positives,

misidentified as ponds, is avoided by the cmtp module of

the algorithm, as illustrated in Fig. 6f (between 665600 and

665800), Fig. 6g (between 626600 and 626800). However,

avoidance of misclassification of dead-time effect-generated

secondary surfaces as false ponds is far from perfect, as seen

in the example in Fig. 7a between 1.2064 and 1.2066, among

otherwise correctly avoided secondary signals, while Fig. 7b

gives and example of a strong saturation effect (density 400).

Data situations such as seen in Fig. 1d may benefit from a

validation campaign (see, section 7), to distinguish between

sections that may be dominated by saturation (dead-time

effect), while the ponds in Fig. 1c and Fig. 1f have complex

bottom topographies and thus are not saturation (dead-time)

artifacts, despite the strong surface reflectance (density values

of 200-250). Notably, the absolute density value is not a

well-defined criterion for saturation, because the density value

depends on the algorithm-specific parameters that control the

kernel as well as on background intensity and because the

threshold function is auto-adaptive.

An experimental algorithm to avoid saturation effects is in

development, but not applied here. Because of the saturation

problem, the analysis in [Buckley et al., prep] utilizes only

results from the outer beams, pairs 1 and 3. Furthermore,

the analysis in [Buckley et al., prep] was restricted to strong

beams, because only a subset of all ICESat-2 tracks crossing

the multiyear Arctic sea-ice region could be processed due

to constraints of computer time on ADAPT and detection

capability is better for strong beams than for weak beams in

general.

The product ATL03 has flags for “saturated” and “near-

saturated” signals, preliminary analysis indicates that these

flags do not correlate well with saturation effects and do not

provide a good solution for the saturation problem.

VI. EVALUATION: COMPARISON TO RESULTS FROM

ATL07 AND FROM THE UMD MELT-POND ALGORITHM

A. Comparison to ICESat-2 ATLAS Sea-Ice Product ATL07

The ICESat-2 ATLAS sea-ice product ATL07 is not de-

signed to detect two surfaces, hence melt ponds are not

reported and in ponded regions the surface height on ATL07

may represent that of the surface or a value between the surface

and the pond bottom [Farrell et al., 2020]. A few examples

showing the information gain between ATL07 and results from

the DDA-bif-seaice are given in Fig. 8. The results suggest

inclusion of melt pond information on a future version of the

ICESat-2 ATLAS products.

In regions without melt ponds, surface heights of ATL07

and from the DDA-bif-seaice are in good agreement, where

surface topography is smooth or moderately rough, however

in ridged areas the DDA ground follower needs to be revisited

to better reflect high topographic relief (see, Fig. 5).

B. Comparison to Melt-Pond Depth Measurements Using the

UMD Algorithm

In addition to visual interpretation of the photon cloud,

results from several hundred manually identified ponds from

the 2019 melt season were employed for evaluation of the

DDA-bif-seaice results during early stages of algorithm de-

velopment (Figure 8). The 2019 data analyses were re-run

with the latest DDA algorithm version (v18.0) for inclusion in

this paper. Ponds were visually identified in ICESat-2 ATLAS

photon cloud data (ATL03 data) and computationally analyzed

using the UMD Melt Pond Algorithm (MPA). To facilitate a

study of evolution of melt ponds across the entire MYASIR,

a representative subset (10%) of all ICESat-2 ATLAS data

collected in this region in summer 2020 (June-August) was

analyzed with the DDA-bif-seaice. The 2020 data analysis

supports a statistical comparison of results from the two

algorithms (Fig. 9).

1) Description of the University of Maryland Melt Pond

Algorithm (MPA): The University of Maryland Melt Pond

Algorithm (MPA) is a computational algorithm for detection

of melt ponds in ICESat-2 ATLAS (ATL03) data that requires

a-priori determination of the location where a pond exists,

then centers the pond analysis on the middle of the pond

and computes the depth of the pond in increments. Control

points at the pond bottom can be added. The MPA is described

in detail in [Buckley et al., prep] and a brief description is

included here. The MPA was developed to track the melt

pond surface and bathymetry in the ATL03 photon cloud.

We examined cloud free areas and manually identified melt

ponds in the photon cloud. In the ATL03 photon cloud, melt

ponds present as a level surface, and a bowl-shaped bathymetry

with minimal photons return between these two surfaces. We

note the start and end of a pond as the point at which the

two surfaces become distinguishable. Across the pond, we
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bin photons into 0.1 m vertical bins and find the surface as

the mode of the binned distribution. Next, the photons are

binned into 10 m along-track bins, and 0.1 m vertical bins.

For each 10 m along-track segment we locate modes below

the surface that have at least 5% of the surface photons. The

subsurface mode closest to the surface is associated with the

reflections from the bottom of the pond and the bathymetry is

defined as the vertical bin elevation of this mode. Bathymetry

is determined in this way for each of the 10 m along-track

segments. To determine melt pond depth, we subtract the

secondary surface that tracks the melt pond bathymetry from

the primary surface that tracks the melt pond surface. However,

the ATL03 algorithm does not account for the change of the

speed of light in water when determining the geolocation of

the photons. To determine the correct melt pond depth, we

multiply the uncorrected depth by the ratio of the speed of

light in water to the speed of light in air (0.749). To increase

the along-track resolution, we interpolate the pond depths at

5 m increments.

2) Comparison of Retrieval Results From the MPA and the

DDA-bif-seaice: To compare results from the two algorithms,

the UMD MPA and the DDA-bif-seaice, statistically, we exam-

ine retrieved average surface heights and surface widths for the

113 ponds that both algorithms tracked. The statistical analysis

utilizes DDA-derived heights resampled at 5 m increments for

consistency with MPA-derived heights (rather than average

height and width values output by the DDA directly). For

each pond, we determine the mean pond depth and plot MPA

and DDA mean pond depth (as seen in Fig. 8e, f). We find

the algorithms in good agreement, with a correlation value

of 0.77, a mean difference of -0.04 m (DDA-MPA; i.e. the

bottom height is generally lower in the DDA-bif-seaice results)

(Fig. 9). The standard deviation of the residuals is 0.22 m. The

difference in depth retrievals between the two algorithms is

attributed to the different physical-mathematical philosophies

regarding the interaction of light with the cryospheric materials

at the bottom of a pond (see, Fig. 8e,f); further work on this

requires field validation (see section 7).

The DDA-bif-seaice can detect ponds of a minimal size of a

nominal size of 15 m (for rough areas or pond bottoms) and of

30 m (for smooth areas or pond bottoms). While these values

are algorithm constraints, the detailed analysis of melt-pond

evolution in [Buckley et al., prep] demonstrates that the DDA-

bif-seaice facilitates detection of a multiple of the number

of ponds compared to the UMD MPA. As seen in Fig. 4,

the DDA-bif-seaice detected approximately 10200 ponds. The

statistics of the pond sizes in the referenced study shows that

the size range of ponds detected with the DDA-bif-seaice is

much larger including large ponds of several hundred meters

width as well as ponds of tens of meters width, whereas the

MPA finds only large ponds (as may be expected from a man-

ually forced detection). For both algorithms, melt-pond size is

found to increase as melting progresses early in the season.

This again is likely explained by the ability of the DDA-

bif-seaice to detect narrow, shallow ponds. The agreement in

trends is sufficient to support physical interpretation of melt-

pond processes in the Arctic [Buckley et al., prep]. Because

of the general agreement of pond location and depth trend for

the ponds detected in both algorithms, the DDA-bif-seaice has

the capabilities expected from a fully automated algorithm for

melt-pond detection in ICESat-2 ATLAS data.

VII. DISCUSSION AND OUTLOOK

The DDA-bifurcate-seaice has been successfully applied to

automated detection of ponds and measurement of their depth

and extension, as demonstrated in this paper and in the applied

companion paper [Buckley et al., prep].

The evaluation of the DDA-bif-seaice in this paper has been

carried out by application of satellite data analysis and com-

parison to results from another, also unvalidated, algorithm.

Depth determination builds on experience gained in analysis

of water in crevasses, observed during an ICESat-2 airborne

validation campaign over the Negribreen Glacier System, and

on heuristics and sensitivity studies [Herzfeld et al., 2022].

Systematic differences in pond depth between results from

the UMD MPA and the DDA-bif-seaice are attributable to

different philosophies applied in the rules for “placing” the

surface and pond bottom heights within the photon cloud

[Buckley et al., prep].

Close scrutiny of the four examples of “megaplots” (Fig. 2,

threshold function panels (x-4)) shows that large numbers

of photons pass in regions of ponds that are characterized

by weakly reflecting pond surfaces with clear pond interiors,

indicating melt/slush at and below the bottom of the ponds

(Figure 2 a,b). In contrast, ponds with strongly reflecting

surfaces (perhaps refrozen water) have vertically narrower sets

of signals at or near the pond bottom, which might indicate

a colder, less slushy environment (Fig. 2c, d). The DDA-bif-

seaice is controlled by an algorithm-specific set of parameters.

The exact optimization of these parameters to identify pond

bottom heights within the lower set of signal photons requires

validation data from a field campaign. On the other hand, the

thought experiments that can be carried out with the mere

photon data alone already suggest a wealth of information

on the cryo-materials (firn/slush/ice/water) is captured in the

ICESat-2 photon data and their density field.

For this paper, the algorithm-specific parameter set for the

DDA-bif-seaice has been determined by preliminary sensitivity

studies, which are a a form of mathematical optimization that

utilizes iterative steps. Effects of parameter changes on detec-

tion and measurement results are analyzed, using variation of

parameters around evolving control parameter sets [Herzfeld

et al., 2017]. This process leaves uncertainties in depth and

width determination of ponds. Actual uncertainties determined

in sensitivity studies are on the order of ±0.2m, which when

integrated over a large part of the Arctic oceans are significant

enough to warrant further study. For comparison, an average

systematic difference in 0.44 m with a standard deviation of

0.22 m was found between results from DDA-bif-seaice and

UMD MPA ponds for 113 larger ponds identified by both

algorithms in this study. Critical is the penetration of the lidar

signal into complex marine cryospheric media, which include,

in addition to ice and water, snow on top of the sea ice, snow

during metarmorphosis, firn, slush, sea water, and brine. As is

well-known [Smith et al., 2018], the penetration depends on
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frequency. The average ice-surface height difference from red

and green lidar data is on the order of 0.15 m (with heights

from green laser data generally lower) and standard deviation

0.23 m [Herzfeld et al., 2017], but specifics depend on the

cryomaterials and there are many unknowns. Airborne field

data, including red and green lidar data and high-resolution

image data, were collected during the ICESat-2 Arctic summer

sea-ice campaign in July 2022. These data, once processed

and analyzed, may provide constraints for optimization of the

algorithm-specific parameter set of the DDA-bif-seaice and

thus may allow a reduction of uncertainty in depth estimation.

VIII. SUMMARY AND CONCLUSIONS

The importance of understanding melt processes in the

Arctic sea ice in the current realm of climatic warming

motivates development of an advanced mathematical algorithm

for detection of ponds in ICESat-2 Advanced Topographic

Laser Altimeter System (ATLAS) data. In this paper, we

introduce the Density-Dimension Algorithm for bifurcating

sea-ice reflectors (DDA-bifurcate-seaice or DDA-bif-seaice for

short), an algorithm that facilitates automated detection of

melt ponds in ICESat-2 ATLAS data, retrieval of two surface

heights, pond surface and bottom, and measurements of depth

and width of melt ponds.

The ATLAS instrument is the first space-borne multi-beam

micro-pulse photon-counting laser altimeter system, it operates

at 532 nm (green light) frequency and registers returns from

every single photon in the green-light domain of the sensor.

Data are reported in the ICESat-2 ATLAS geolocated photon

point cloud product, ATL03. ICESat-2 ATLAS data resolve

returns from top and bottoms of melt ponds in the photon

point cloud, but because of the high background especially

during daylight conditions, separation of noise and signal

and especially detection of two surfaces of typically different

intensities are mathematically ill-posed problems.

The DDA-bifurcate-seaice is an auto-adaptive algorithm that

solves the problem of pond detection at the 0.7m nominal

resolution of ATLAS data. The DDA-bif-seaice builds on

the Density-Dimension Algorithm for ice surfaces (DDA-ice),

utilizing the radial basis function for calculation of a density

field and a threshold function that automatically adapts to

changes in background, apparent surface reflectance (ASR)

and some instrument effects. The centerpiece of the DDA-

bif-seaice is a bifurcation module, designed to satisfy the

following criteria for a melt-pond algorithm for analysis of

point cloud data of lidar data: (1) The algorithm needs to

be fully automated (i.e. it should not require a-priori infor-

mation on the existence or location of a pond), (2) detect

ponds wherever they exist and (3) avoid false positives, (4)

automatically adapt to different background characteristics of

daytime and nighttime data and to changes in ASR, (5) find

ponds among sea-ice of different roughness types (smooth,

ridged, and complex), (6) correctly determine the start and

end points of a pond along the ICESat-2 ground track, (7)

measure the pond depth, and (8) represent the complexity of

the sea-ice at high resolution. The DDA-bif-seaice includes

a ground follower that automatically adapts to roughness of

pond surface and pond bottom (or of a single surface where no

ponds exist). Smallest width of detectable ponds is 15 m for

rough surfaces and 30 m for smooth surfaces, currently used

height resolution is 0.1 m. Ponds can be identified in typical

locations aside ridges formed by fault blocks and in other

complex environments. Its computational efficiency suggests

that a future version of the DDA-bif-seaice may be applied as

an operational algorithm for analysis of ICESat-2 ATLAS data

across large regions, including the entire Arctic and Antarctic

sea-ice regions. The problem of signal saturation is explained

and needs to be addressed in future algorithm development,

as currently saturation effects are partly avoided, but can also

lead to false positives especially in near-nadir central beams.

Melt ponds are not reported on the standard ICESat-2

ATLAS sea-ice products ATL07 (sea-ice surface heights) and

ATL10 (sea-ice freeboard), because of the low, 25 km along-

track resolution of the products and because the ATL07

algorithm is designed to determine a single surface height. To

illustrate the increase in information, results from the DDA-

bif-seaice are compared to results from the ATL07 algorithm.

Because ATL10 results are derived from ATL07, ponded

areas can be mistaken for open water and thus freeboard

miscalculated. Results from an advanced version of the DDA-

bif-seaice analysis may be included in a future version of the

standard ICESat-2 ATLAS data products.

To demonstrate the capabilities of the DDA-bif-seaice as

a fully automated algorithm for melt-pond detection that

automatically adapts to changing background conditions, es-

pecially to the more challenging conditions of daylight, the

DDA-bifurcate-seaice is applied to large ICESat-2 data sets

from the 2019 and 2020 melt seasons in the multi-year Arctic

sea-ice region (MYASIR). The analysis is carried out for about

10% of all ICESat-2 data collected in summer 2020 (outer

strong beam data), which is considered representative of the

entire ICESat-2 ATLAS data set for this time frame and area.

The results from the 2020 analysis yield approximately 10200

ponds and are utilized in a large-scale study on the evolution

of melt ponding [Buckley et al., prep].

As a means of evaluation, results from the DDA-bif-seaice

are compared to and integrated with results from the University

of Maryland (UMD) Melt-Pond Algorithm (MPA), which is

a computational algorithm for pond determination and depth

measurement that requires a-priori, manually determined in-

formation on locations where melt ponds exist. Agreement in

pond location between the two algorithms is generally good.

The DDA-bif-seaice finds a large multitude of the number

ponds compared to the UMD MPA with sizes across all size

ranges, while the MPA aids in finding larger, deeper ponds.

A systematic difference of about 0.44 m in pond depths, with

DDA depths generally larger, attributed to different physical-

mathematical principles in lidar data analysis in the two

algorithms, indicates that a field validation campaign is needed

to resolve such depth uncertainties. Agreement is sufficient for

geophysical interpretation of trends in the pond evolution. The

comparison further documents that the DDA-bif-seaice meets

the criteria expected from a fully automated algorithm.
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(a) 1237 gt3l 82.818.png [mega 3] (b) 1237 gt1l 82.906.png

(c) 1237 gt1l 82.906 2.png (d) 1237 gt3l 82.831.png [mega 4]

(e) 1298 gt3l 82.637.png [mega 1] (f) 1298 gt3l 82.911.png [mega 2]

(g) 1298 gt2l 82.727.png (h) 1298 gt2l 82.745.png

Fig. 1. Examples of ponds detected with the DDA-bif-seaice in summer 2019 ICESat-2 ATLAS data, Multi-year Arctic sea-ice region. Lincoln Sea. All
ponds from strong beam data. (a) Pond among ridges with variable density at top. Surface follower (top) not optimized for ridges. (b) Several ponds detected
- shows bifurcation and rejoining points. (c) Not a false positive - bottom of pond has variable topography. (d) complex regions with several ponds. Note
rightmost pond is barely a pond in the making. (e) perfect pond. (f) perfect pond below strongly reflecting surface (density 250). (g) pond among complex
sea-ice topography. Center beam (gt2l). (h) pond among complex sea-ice topography. Center beam (gt2l). Examples in 1a, b, c, d, e are from ICESat-2
ATLAS granule ATL03 20190618062235 12370304 005 01.h5, reference ground track (RGT) 1237, collected 2019-June-18, ICESat-2 ASAS version 5 data
set. Examples in 1f, g ,h are from ICESat-2 ATLAS granule ATL03 20190622061415 12980304 005 01.h5, RGT 1298, collected 2019-June-22, ICESat-2
ASAS version 5 data set.
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(a) 1298 gt3l 82.637.png [mega 1] (b) 1298 gt2l 82.727.png [mega 2]

Figure 2. Megaplots illustrating the steps of the DDA-bif-seaice.
(a) 1298 gt3l 82.637.png – gt3l outer beam, strong [mega 1]
(b) 1298 gt2l 82.727.png – gt2l, center beam, strong [mega 2]
Granule information in caption of Figure 1.
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(c) 1237 gt3l 82.818.png [mega 3] (d) 1237 gt3l 82.831.png [mega 4]

(c-6) (d-6)

(c-5) (d-5)

(c-4) (d-4)

(c-3) (d-3)

(c-2) (d-2)

(c-1) (d-1)

Figure 2, ctd. Megaplots illustrating the steps of the DDA-bif-seaice.
(c) 1237 gt3l 82.818.png – gt3l outer beam, strong [mega 3]; large pond with variable density
(d) 1237 gt3l 82.831.png – gt3l, outer beam, strong [mega 4]
Granule info in caption of Figure 1.
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(a) histogram 1

(b) histogram 2

Fig. 3. Histograms illustrating bifurcation criterion in the DDA-bif-seaice
submodule ctmp (steps 4.1 and 4.2). (a) Histogram (filtered) typical of a
single surface. (b) Histogram (filtered) typical of a melt pond. Histograms
stem from example 1298 gt3l 82.637.png, shown in Figure 1e and Fig-
ure 2a. – gt3l outer beam, strong. Example from ICESat-2 ATLAS gran-
ule ATL03 20190618062235 12370304 005 01.h5, reference ground track
(RGT) 1237, collected 2019-June-18, ICESat-2 ASAS version 5 data set.
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Fig. 4. Location of melt ponds detected by the DDA-bif-seaice in the study area, the multi-year Arctic sea-ice region (MYASIR), for summer 2020. Each
small red circle indicates a melt pond detected with the DDA-bif-seaice, a total of approximately 10200 ponds are shown. Note that DDA-bif-seaice was run
over about 10% of ICESat-2 tracks, outer strong beams.
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(a) 2019 data, seg0 (b) 2020 data, 1298 gt3l 82.637.png

Fig. 5. Automated detection of melt-ponds on sea ice among ridges and complex surfaces with the DDA-bifurcate-seaice. ICESat-2 data from the Lincoln
Sea. (a) Example from ICESat-2 ATLAS granule ATL03 20200628121109 00480804 005 01.h5, RGT 48, collected 2020-June-28, ICESat-2 ASAS version 5
data set. Strong outer beam gt1l. Example of two ponds with different different surface heights in complex sea-ice environments. pond 1 (at 4400),
pond 2 (at 4600), artifact avoided at 4850. Ground follower not optimized for ridge topography. (b) Application of DDA-bif-seaice (v.16.0) with surface
follower for single surfaces optimized to adapt to rough surfaces, such as ridge topography, between ponds. Examples from ICESat-2 ATLAS granule
ATL03 20190618062235 12370304 003 01.h5, reference ground track (RGT) 1237, collected 2019-June-18, ICESat-2 ASAS version 3 data set. Same
example as Fig. 1e.
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(a) 2020data/0713, seg305 (b) 2020data/0713, seg319

(c) 2020data/0713, seg344 (d) 2020data/0713, seg586

(e) 2020data/0713, seg368 (f) 2020data/0713, seg665

(g) 2020data/0713, seg626 (h) 2020data/0713, seg675-676

Fig. 6. Examples of ponds detected with the DDA-bif-seaice in summer 2020 ICESat-2 ATLAS data, Multi-year Arctic sea-ice region. Examples of ponds
are from ICESat-2 ATLAS granule 20200713151204 02790804 005 01 gt1l strong outer beam, reference ground track (RGT) 279, collected 2020-July-13,
ICESat-2 ASAS version 5 data set. (a) Pond in the making, located in smooth sea-ice area. Neighboring areas show penetration of ice with water, likely
leading up to pond formation. (b) Ponds among ridges area, various formation stages. Surface follower not optimized for ridge topography in the code version.
(c) Pond in partly ridged, partly smooth area. (d) Pond in typical location near a ridge. (e) Small pond detected. (f) Small pond detected. no false positive
detected in high-density area between 665600 and 665800. (g) DDA avoids dead-time effects (seen as high-density regions below the surface and parallel
to the surface. Here, three levels.). Thus DDA avoids false positives. (h) Large pond detected at 676000. Small ponds detected near 675600. Avoidance of
saturation effects in regions of high surface reflectance (density 350 or larger).
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(a) 2020data/0803, seg4 (b) 2020data/0803, seg113

Fig. 7. Avoidance of false positives in DDA-bif-seaice pond detection in highly saturated 2020 ICESat-2 ATLAS sea-ice signals, Multi-year Arctic sea-ice
region. Examples of ponds are from ICESat-2 ATLAS granule 20200803013027 05910804 005 01 gt1l strong outer beam, reference ground track (RGT) 591,
collected 2020-August-3, ICESat-2 ASAS version 5 data set. (a) A false positive pond identification (between 1.2064 and 1.2066). (b) All false positives are
avoided in this segment of dominated by saturated signals.
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(a) 2019: 1298 gt3l 82.637

(b) 2019: 1237 gt3l 82.831

(c) 2019: 1298 gt3l 82.911

(d) 2019: 1237 gt3l 82.818

(a)

(e) 2020 data: RGT 44 pond

(f) 2020 data: RGT 9 pond

(g) 2019 data: 1298 gt3l 82.637

(h) 2019 data: 1237 gt3l 82.831

(i) 2010 data: 1298 gt2l 82.727

(b)

Fig. 8. Comparison of pond detection with the DDA-bif-seaice and UMD MPA to results on ICESat-2 ATLAS sea-ice product ATL07. (8a-8d): Comparison

of pond detection with the DDA-bif-seaice to results on ICESat-2 ATLAS sea-ice product ATL07. Blue- ATL07, red - DDA-bif-seaice surface heights,
green – DDA-bif-seaice pond bottom heights. Examples in 8a and 8c are from ICESat-2 ATLAS granule ATL03 20190618062235 12370304 005 01.h5,
reference ground track (RGT) 1237, collected 2019-June-18, ICESat-2 ASAS version 5 data set. Examples in 8b and 8d are from ICESat-2 ATLAS granule
ATL03 20190622061415 12980304 005 01.h5, RGT 1298, collected 2019-June-22, ICESat-2 ASAS version 5 data set. (a) 2019: 1298 gt3l 82.637 (see
Fig. 1e) (b) 2019: 1237 gt3l 82.831 (see Fig. 1d) (c) 2019: 1298 gt3l 82.911 (see Fig 1f) (d) 2019: 1237 gt3l 82.818 (see Fig. 1a) Comparison of pond

detection with the DDA-bif-seaice and the UMD MPA to results reported on ICESat-2 ATLAS sea-ice product ATL07 (8e-8i). (8e, 8f) 2020 data:
Top panels in (a) and (b): ATL07 (blue) . Bottom panels in (a) and (b): green – DDA-bif-seaice pond bottom, magenta – UMD MPA pond bottom, red
– DDA-bif-seaice surface of ponds and between ponds. (a, b) from Buckley et al. (in prep). (e) An Example where ATL07 follows the pond surface.
Examples in 8e are from ICESat-2 ATLAS granule ATL03 20200628055359 00440804 005 01.h5, RGT 44, strong outer beam gt3l, collected 2020-06-
28, ICESat-2 ASAS version 5 data set. start dt 78559154.55, stop dt 78559154.71 (f) An Example where ATL07 follows the pond bottom. Examples
in 8f are from ICESat-2 ATLAS granule ATL03 20200701061119 00900804 005 01.h5, RGT 90, strong outer beam gt3l, collected 2020-07-01, ICESat-
2 ASAS version 5 data set. start dt 78819350.67, stop dt 78819350.84 (g, h, i): 2019 data. Examples in 8g and 8i are from ICESat-2 ATLAS granule
ATL03 20190622061415 12980304 005 01.h5, RGT 1298, collected 2019-June-22, ICESat-2 ASAS version 5 data set. Examples in 8h are from ICESat-
2 ATLAS granule ATL03 20190618062235 12370304 005 01.h5, RGT 1237, collected 2019-June-18, ICESat-2 ASAS version 5 data set. (g) 2019 data:
1298 gt3l 82.637 (see Fig. 1e) (h) 2019: 1237 gt3l 82.831 (see Fig. 1d) (i) 2019: 1298 gt2l 82.727 (see Fig. 1g)
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Fig. 9. Scatter plot of mean pond depths for ponds tracked by both the
DDA-bif-seaice and the UMD MPA in June and July 2020, 113 ponds total.
Residual mean pond depth for DDA-bif-seaice and UMD MPA, calculated as
DDA-heights minus MPA-heights.
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