
1	Supporting Information
2	
3	A Facile Surfactant-Assisted Reflux Method for the
4	Synthesis of Single-Crystalline Sb ₂ Te ₃ Nanostructures
5	with Enhanced Thermoelectric Performance
6	
7	Heng Quan Yang, ^{†,‡} Lei Miao, ^{*,†,§} Cheng Yan Liu, [†] Chao Li, ^{\parallel} Sawao Honda, ^{\perp} Yuji
8	Iwamoto, $^{\perp}$ Rong Huang, $^{\parallel}$ and Sakae Tanemura [†]
9	
10	[†] Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion,
11	Chinese Academy of Sciences, Guangzhou 510640, P. R. China
12	[‡] University of Chinese Academy of Sciences, Beijing 100049, P. R. China
13	[§] School of Material Science and Engineering, Guilin University of Electronic
14	Technology, Guilin 51004, P. R. China
15	^{II} Key Laboratory of Polarized Materials and Devices, Ministry of Education, East
16	China Normal University, Shanghai 200062, P. R. China
17	$^{\perp}$ Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute
18	of Technology, Gokiso-cho, Showa-ku, Nagoya, 466-8555, Japan
19	*Author to whom correspondence should be addressed.
20	E-mail: miaolei@ms.giec.ac.cn.
21	
22	
23 24	

13

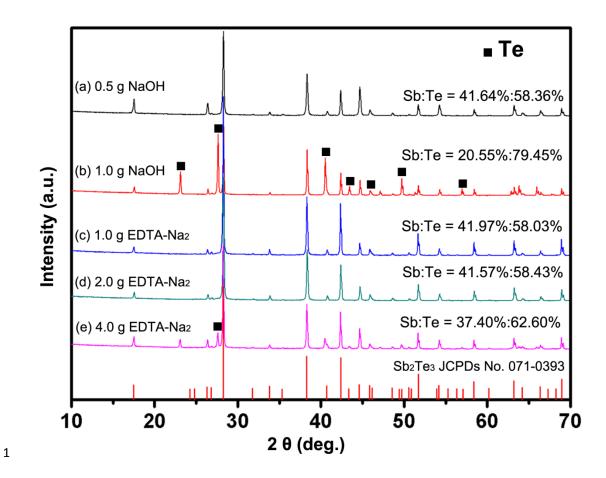
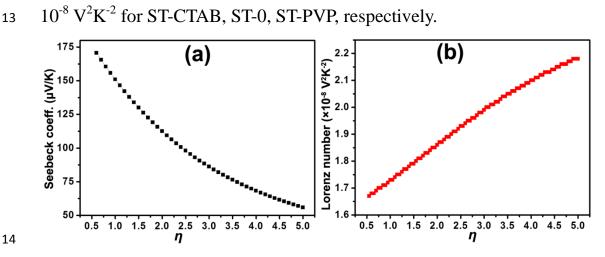


Fig. S2 XRD patterns of obtained Sb₂Te₃ nanoparticles in the presence of
different inorganics and the list of atomic percent ratio of Sb:Te according
to the corresponding EDS results. (a) 0.5 g NaOH; (b) 1.0 g NaOH; (c)
1.0 g EDTA-Na₂; (d) 2.0 g EDTA-Na₂; (e) 4.0 g EDTA-Na₂.

Calculation of the Lorentz number. 1

The Lorentz number is given as: 2

$$3 \quad \mathbf{L} = \left(\frac{k_B}{e}\right)^2 \left(\frac{\left(r + \frac{7}{2}\right)F_{r + \frac{5}{2}}(\eta)}{\left(r + \frac{3}{2}\right)F_{r + \frac{1}{2}}(\eta)} - \left[\frac{\left(r + \frac{5}{2}\right)F_{r + \frac{3}{2}}(\eta)}{\left(r + \frac{3}{2}\right)F_{r + \frac{1}{2}}(\eta)}\right]^2\right), \tag{1}$$


where $F_n(\eta)$ is the *n*-th order Fermi integral, 4

5
$$F_n(\eta) = \int_0^\infty \frac{x^n}{1+e^{x-\eta}} dx,$$
 (2)

 $k_{\rm B}$ is the Boltzmann constant, e is the electron charge, r is the scattering 6 parameter, and η is the reduced Fermi energy, respectively. Let 7 r = -1/2 by assuming that the acoustic phonon scattering is the 8 dominant carrier scattering mechanism, then η could be derived from the 9 measured Seebeck coefficient (S) by using the following relationship: 10

11
$$S = \pm \frac{k_B}{e} \left(\frac{\left(r + \frac{5}{2}\right) F_{r + \frac{3}{2}}(\eta)}{\left(r + \frac{3}{2}\right) F_{r + \frac{1}{2}}(\eta)} - \eta \right),$$
 (3)

The The values of L at 50 °C are obtained 1.90×10^{-8} , 1.89×10^{-8} , 1.83×10^{-8} 12

14

Fig. S3 The calculated relationships between the Seebeck coefficient, 15

Lorentz number and reduced Fermi energy. (a) S ~ η ; (b) L ~ η . 16