Supporting Information

A Magnetic-Assisted Self-Healable Yarn-Based Supercapacitor

Yang Huang,^{†,1} Yan Huang,^{†,1} Minshen Zhu,[†] Wenjun Meng,[†] Zengxia Pei,[†] Chang Liu[‡], Hong Hu[‡]* and Chunyi Zhi^{†,§,*}

† Department of Physics and Materials Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong

‡ Institute of Textiles and Clothing, The Hong Kong Polytechnic University, 11 Hong Chong Road, Hong Kong, China.

§ Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518000, China

* Address correspondence to: cy.zhi@cityu.edu.hk

¹ Yang H. and Yan H. contributed equally to this work.

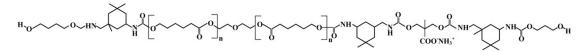
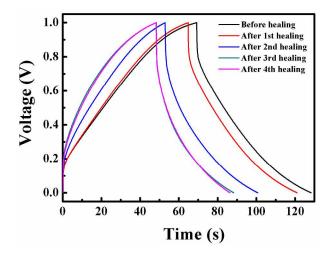
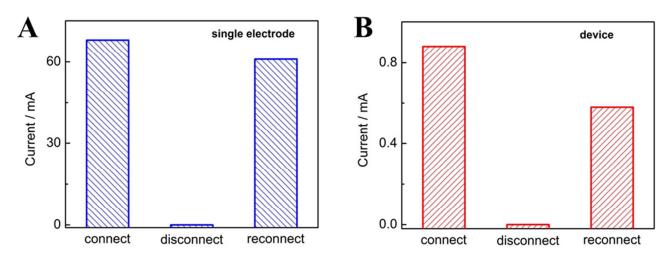




Figure S1. Chemical structure of Polyurethane.

Figure S2. Galvonostatic charge-discharge measurements of the self-healing supercapacitor before healing and after multiple self-healings at a current density of 1.2 mA cm^{-2} .

Figure S3. Current passing through LED lights during connection, disconnection and reconnection of (A) the single electrode, and (B) the supercapacitor device.