Supplementary Material

Kinetics Tables

Supplementary Material Table 1 Compilation of known gas-phase kinetics of mercury

Gas Phase Reaction	Reaction Type ^a	Gas Type, Press	Temp	Rate $(cm^3 molec^{-1} s^{-1})^{b}$	Reference
			(K)	$[R] = J K^{-1} mol^{-1}[T] = Kelvin$	
$Hg(6^{3}P_{1}) + N_{2} \rightarrow Hg(6^{3}P_{0}) + N_{2}$	Absolute	N ₂ , 1 atm	298	$3.9-7.1 \times 10^{-12}$	Hall <i>et al</i> . ¹
$\mathrm{Hg}(6^{3}\mathrm{P}_{0}) + \mathrm{N}_{2} \rightarrow \mathrm{Hg}(6^{1}\mathrm{S}_{0})$	Absolute			6.1×10^{-15}	
$\mathrm{Hg^0} + \mathrm{I_2} \longrightarrow \mathrm{HgI_2}$	Absolute	N ₂ , 1 atm	296 ± 1	$<(1.27\pm0.58)\times10^{-19}$	Raofie et al. ²
	M06-2X/aug-cc-pVTZ-PP	High pressure		$3.94\times 10^{\text{-14}}T^{1.06}\;e^{\text{-159080/RT}}$	Auzmendi-Murua et al. ³
		limit			
$\mathrm{Hg^{0}} + \mathrm{I} \rightarrow \mathrm{HgI}$	RRKM/B3LYP	N ₂ , 1 atm	180-400	$4.0\times 10^{\text{-13}} \ (\text{T}/\text{298})^{\text{-2.38}}$	Goodsite et al. ⁴
$\mathrm{Hg^{0}} + \mathrm{Br_{2}} \rightarrow \mathrm{HgBr_{2}}$	Absolute	Air, N ₂ , 1 atm	298 ± 1	$<(9\pm2) imes10^{-17}$	Ariya <i>et al.</i> ⁵
	Absolute	Air, 1 atm	~298	No reaction detected	Sumner <i>et al.</i> ⁶
	Absolute	Air, 1 atm	296	$(6.0 \pm 0.5) imes 10^{-17}$	Liu et al. ⁷
	CCSD(T)/AVTZ	1 atm	298-2000	1.62 ⁻⁹ e ^{-110800/RT}	Wilcox and Okano ⁸
	M06-2X/aug-cc-pVTZ-PP	High pressure		$4.70\times 10^{\text{-14}}T^{1.06}\;e^{\text{-169190/RT}}$	Auzmendi-Murua et al. ³
		limit			
$\mathrm{Hg^{0}} + \mathrm{BrO} \rightarrow \mathrm{HgBrO}$	Relative	N ₂ , 1 atm	298	$10^{-15} < k < 10^{-13}$	Raofie and Ariya ⁹
$\mathrm{Hg^{0}} + \mathrm{Br} \rightarrow \mathrm{HgBr}$	Ab initio	N/A, 1 atm		$1.01\times 10^{-12}\ e^{1738/RT}$	Khalizov <i>et al.</i> ¹⁰
	RRKM/B3LYP	N ₂ , 1 atm	200-300	$3.7 \times 10^{-13} (T/298)^{-2.76}$	Goodsite <i>et al.</i> ⁴ ;
					Goodsite et al. ¹¹
	Absolute	N ₂ , 0.26-0.79 atm	243-293	$(1.46 \pm 0.36) \times 10^{-32} \text{ [cm}^6 \text{ molec}^{-2} \text{ s}^{-1}\text{]}$	Donohoue et al. ¹²

				(1/298)(1.0021.49)	
	CCSD(T)	Ar, 1 atm	260	1.2×10^{-12}	Shepler <i>et al.</i> ¹³
	Relative	Air, N ₂ , 1 atm	298 ± 1	$(3.2 \pm 0.9) \times 10^{-12}$	Ariya <i>et al.</i> ⁵
	Absolute	CF ₃ Br, 0.26 atm	397	$\sim 3 \times 10^{-16} \text{ molec}^{-1} \text{ s}^{-1}$	Greig, G. et al. ¹⁴
	CCSD(T)/AVTZ	1 atm	298-2000	$6.64 \times 10^{14} \left(T/298 \right)^{0.859}$	Wilcox and Okano ⁸
$HgBr + Br \rightarrow HgBr_2$	Absolute	CF ₃ Br, 0.26 atm	397	$\sim 7 \times 10^{-14}$	Greig, G. et al. ¹⁴
	RRKM/B3LYP	N ₂ , 1 atm	180-400	$2.5\times 10^{\text{-10}} \ (\text{T}/\text{298})^{\text{-0.57}}$	Goodsite et al. ⁴
	CCSD(T)/AVTZ	1 atm	298-2000	$3.32\times 10^{12} \ (\text{T}/\text{-}298)^{\text{-}9.18}$	Wilcox and Okano ⁸
	CCSD(T)/aVTZ	1 atm	298	$6.33\times 10^{\text{-}11}$	Dibble et al. ¹⁵ ;
					Wang <i>et al.</i> ¹⁶
$HgBr \rightarrow Hg + Br$	CCSD(T)/aVTZ		200 - 320	$(1.6\pm0.4)\times10^{\text{-9}}(T\!/\!298)^{\text{-}(1.86\pm1.49)}e^{(\text{-}64860\pm}$	Dibble et al. ¹⁵
				1670)/RT	
$HgBr + Br_2 \rightarrow HgBr_2 + Br$	CCSD(T)/AVTZ	1 atm	298-2000	$6.68\times 10^{-13}\ e^{-3600/RT}$	Wilcox and Okano ⁸
$\mathrm{HgBr} + \mathrm{HBr} \rightarrow \mathrm{HgBr}_2 + \mathrm{H}$	B3LYP/ECP60MDF	1 atm	298-2000	$1.56\times 10^{-11}\ e^{-78160/RT}$	Wilcox and Okano ⁸
$HgBr + HgBr \rightarrow (HgBr_2 + Hg) \text{ or }$	Absolute	CF_3Br , 0.26 atm	397	$(2.1 \pm 1.3) \times 10^{-14} \text{ molec}^{-1} \text{ s}^{-1}$	Greig, G. et al. 14
Hg_2Br_2					
$HgBr + HO_2 \rightarrow BrHgHO_2$	CCSD(T)/aVTZ	1 atm	298	8.2×10^{-11}	Dibble <i>et al.</i> ¹⁵ ;
					Wang <i>et al.</i> ¹⁶
$HgBr + NO_2 \rightarrow BrHgNO_2$	CCSD(T)/aVTZ	1 atm	298	2.81×10^{11}	
$HgBr + NO_2 \rightarrow BrHgONO$	CCSD(T)/aVTZ	1 atm	298	5.82×10^{-11}	
$HgBr + BrO \rightarrow BrHgOH$	CCSD(T)/aVTZ	1 atm	298	1.09×10^{-10}	
$\mathrm{Hg}^{0} + \mathrm{BrCl} \rightarrow \mathrm{Hg}^{2+}$	Absolute	Air, 1 atm	373	$(2.3 \pm 0.2) \times 10^{-17}$	Qu et al. ¹⁷
$\mathrm{Hg}^{0} + \mathrm{ICl} \rightarrow \mathrm{Hg}^{2+}$	Absolute	Air, 1 atm	373	$(5.7\pm0.3) imes10^{-17}$	

(T/298)^(-1.86±1.49)

$\mathrm{Hg}^{0} + \mathrm{Cl}_{2} \rightarrow \mathrm{Hg}\mathrm{Cl}_{2}$	Absolute	Air, N ₂ , 1 atm	298 ± 1	$(2.6 \pm 0.2) \times 10^{-18}$	Ariya <i>et al</i> ⁵
	Absolute	Humid air	298	$< 0.4 (13\% \text{ RH}) - 2.5(80\% \text{ RH}) \times 10^{-15}$	Menke and Wallis ¹⁸ ; Schroeder et
					al. ¹⁹
	Absolute	Air	293-973	$5.6 imes 10^{-15}$	Sliger <i>et al.</i> ²⁰
	Absolute	N ₂ , 1 atm	297 ± 1	$(1.82\pm 0.05)\times 10^{-19}$	Yan et al. ²¹
	Absolute	Air, 1 atm	~298	$(2.5\pm 0.9)\times 10^{\text{-18}}$	Sumner <i>et al.</i> ⁶
	Absolute		470-870	0.386 (units?) e ^{-607/RT}	Agarwal <i>et al.</i> ²²
	M06-2X/aug-cc-pVTZ-PP	High pressure		$2.76\times 10^{\text{-14}}T^{1.20}~\text{e}^{\text{-190430/RT}}$	Auzmendi-Murua et al. ³
		limit			
$Hg + Cl_2 \rightarrow HgCl + Cl$	B3LYP/RCEP60 VDZ	1 atm	298 -	$1.02\times 10^{\text{-10}}\text{e}^{\text{-181000/RT}}$	Wilcox ²³
			2000		
	QCISD/ CEP-121G	N/A	298 -	$7.51\times 10^{\text{-11}}\ e^{\text{-150590/RT}}$	Krishnakumar and Helble ²⁴
			2000		
$Hg + HOCl \rightarrow HgCl + OH$	QCISD/ CEP-121G	N/A	298 -	$4.47\times 10^{\text{-10}} \ e^{\text{-133020/RT}}$	Krishnakumar and Helble ²⁴
			2000		
	QCISD/RCEP28 DVZ	1 atm	298 -	$1.89\times 10^{\text{-10}} e^{\text{-62270/RT}}$	Liu et al. ²⁵
			1500		
	B3LYP/RCEP60 VDZ	1 atm	298 -	$5.08\times 10^{11} \ e^{153000/RT}$	Wilcox ²³
			2000		
$\mathrm{Hg}^{0} + \mathrm{HCl} \rightarrow \rightarrow \mathrm{HgCl}_{2} (g)$	Absolute	N ₂ , 1 atm	673-1173	$3.65\times 10^{-14}~e^{-45400/RT}$	Widmer <i>et al.</i> ²⁶
$Hg + HCl \rightarrow HgCl + H$	QCISD(T)/SDD	N/A	298 -	$4.58\times 10^{-9}\ e^{\text{-}333790/RT}$	Krishnakumar and Helble ²⁴
			2000		
	QCISD/RCEP28 DVZ	1 atm	298 -	$2.81\times 10^{\text{-10}} \ e^{\text{-372640/RT}}$	Liu et al. ²⁵

			1500		
	B3LYP/RCEP60 VDZ	1 atm	298 -	$3.21\times 10^{-11}~e^{-390000/\text{RT}}$	Wilcox ²³
			2000		
$\mathrm{HgCl} + \mathrm{HCl} \rightarrow \mathrm{HgCl}_2 + \mathrm{H}$	QCISD/1997	1 atm	298 -	$3.2\times 10^{\text{-15}}e^{\text{-104640/RT}}$	Wilcox <i>et al.</i> ²⁷
			2000		
	B3LYP/MHF60	N/A	298 -	$4.13\times 10^{\text{-11}}~\text{e}^{\text{-104460/RT}}$	Krishnakumar and Helble ²⁴
			2000		
$HgCl + M \rightarrow Hg + Cl + M$	QCISD/1997	1 atm	298 -	$9.0\times 10^{\text{-11}}~\text{e}^{\text{-89800/RT}}$	Wilcox <i>et al.</i> ²⁷
			2000		
	MP2/CEP-121G	N/A	298 -	$1.92 \times 10^{13} \text{ e}^{-8912/\text{RT}} \text{ cm}^6 \text{ mol}^{-2} \text{ s}^{-1}$	Krishnakumar and Helble ²⁴
			2000		
$HgCl + Cl + M \rightarrow HgCl_2 + M$	MP4/SDD	N/A	298 -	$1.66 \times 10^{12} \ e^{5030/\text{RT}} \ \text{cm}^6 \ \text{mol}^{-2} \ \text{s}^{-1}$	
			2000		
$\mathrm{Hg}^{0} + \mathrm{Cl} \rightarrow \mathrm{HgCl}$	Ab initio	N/A, 1 atm		$1.38\times 10^{-12}~e^{1729/\text{RT}}$	Khalizov et al. ¹⁰
	Absolute	N_2	243-293	$(2.2\pm0.5)\times10^{\text{-}32}e^{[(680\pm400)(1/T\text{-}1/298)]}\text{cm}^6$	Donohoue <i>et al.</i> ²⁸
				molec ⁻² s ⁻¹	
	Absolute, fitted equation	Ar, 0.93 atm	383-443	$1.5 imes 10^{-11}$	Horne <i>et al.</i> ²⁹
	Relative	Air, N ₂ , 1 atm	298 ± 1	$(1.0 \pm 0.2) \times 10^{-11}$	Ariya <i>et al.</i> ⁵
	Absolute, extrapolated	?	> 873	$2.5 imes 10^{-11}$	Senior <i>et al.</i> ³⁰
$HgCl + HgCl \rightarrow Hg_2Cl_2$	Absolute	Ar, 0.93 atm	383-443	$(3 \pm 2) \times 10^{-10}$	Horne <i>et al.</i> ²⁹
$Hg^0 + F_2 \rightarrow Prod$	Absolute	Air, 1 atm	<298	$(1.8 \pm 0.4) \times 10^{-15}$	Sumner et al. ⁶
$\mathrm{Hg}^{0} + \mathrm{F} \rightarrow \mathrm{HgF}$	ab initio	N/A, 1 atm		$9.2\times 10^{\text{-13}}e^{1720/\text{RT}}$	Khalizov et al. ¹⁰
$Me_2Hg + OH \rightarrow MeHgOH + Me$	Relative	Air, 0.92 atm	303	$(1.9 \pm 0.2) \times 10^{-11}$	Niki <i>et al.</i> ³¹

	Estimation			2.72×10^{-13}	Lin and Pehkonen ³²
$Me_2Hg + O_3 \rightarrow ?$	Model estimation			< 10 ⁻²¹	Lin and Pehkonen ³² ; Niki <i>et al.</i> ³¹
$Me_2Hg + Cl \rightarrow CH_3HgCl$	Relative	N ₂ , 0.93 atm	300	$(2.75\pm0.30)\times10^{-10}$	Niki <i>et al.</i> ³¹
$Me_2Hg + NO_3 \rightarrow Hg^0, HgO(s)$	Absolute	He, 2.7 - 5.0 hPa	258-358	$3.2\times10^{\text{-11}}~\text{e}^{(14600~\pm~3300)/\text{RT}}$	Sommar <i>et al.</i> ³³
$Me_2Hg + O(^{3}P) \rightarrow HgO$	Absolute	He, 1 Torr	~294	$(2.5\pm0.20) imes10^{-11}$	Thomsen and Egsgaard ³⁴
$Me_2Hg + F \rightarrow ?$	Relative	H ₂ , 4 atm	287	$<(4.7\pm0.5) imes10^{-10}$	Mckeown <i>et al.</i> ³⁵
$\mathrm{Hg^{0}} + \mathrm{OH} \rightarrow \mathrm{HgOH}$	Relative	N ₂ , 1 atm	283-353	$3.55\times 10^{\text{-14}}~e^{(2440~\pm~130)/\text{RT}}$	Pal and Ariya ³⁶
	Absolute	Air, 1 atm	298	$< 1.2 \times 10^{-13}$	Bauer <i>et al.</i> ³⁷
	RRKM/B3LYP	N ₂ , 1 atm	180-400	$3.2 \times 10^{-13} \times (T/298)^{-3.06}$	Goodsite et al. ⁴
	Relative	Air, 1 atm	298	$(8.7\pm2.8)\times10^{-14}$	Sommar et al. ³⁸
$Hg^{0}(g) + h\nu + \frac{1}{2}O_{2} \rightarrow HgO_{(g/s)}$	Absolute	Air, 1 atm	293	1×10^{-23}	Hall <i>et al.</i> ³⁹
			973	4×10^{-23}	
$\mathrm{Hg}^{0} + \mathrm{O}_{3} \rightarrow \mathrm{HgO}(s) + \mathrm{O}_{2}$	Absolute, extrapolated	N ₂ , 1 atm	283-323	$8.43 \times 10^{\text{-}17} \ e^{\text{-}(11700 \ \pm \ 270)/\text{RT}}$	Pal and Ariya ³⁶
	Absolute, S/V extrapolated	N_2/O_2 , 1 atm	293	$(3 \pm 2) \times 10^{-20}$	Hall ⁴⁰
	Absolute	Air, 1 atm	~298	$(6.4 \pm 2.3) \times 10^{-19}$	Sumner <i>et al.</i> ⁶
	Absolute, re-plotted data	1 atm	293	$4.9 imes 10^{-18}$	Schroeder et al. ¹⁹ ; P'yankov ⁴¹
			303	8.4×10^{-18}	
			293	4.2×10^{-19} (?)	Slemr ⁴² ; P'yankov ⁴¹
	Absolute	Air, 1 atm, 71%	293	$1.7 imes10^{-18}$	Schroeder <i>et al.</i> ¹⁹ ;
		RH			Iverfeldt and Lindqvist 43
	QCISD(T)/MP2; TST	1 atm	~298	$1.2\times 10^{-9}~e^{-176500/RT}$	Xu et al. ⁴⁴
	theory				

	Absolute	~ 1 atm	298 ± 2	$(6.2 \pm 1.1) \times 10^{-19}$	Snider <i>et al.</i> ⁴⁵
$\mathrm{Hg} + \mathrm{O}_3 {\longrightarrow} \mathrm{HgO} + \mathrm{O}_2$	QCISD/RCEP28 DVZ	1 atm	298 -	$2.39\times 10^{\text{-10}}~e^{\text{-135170/RT}}$	Liu et al. ²⁵
			1500		
$\mathrm{Hg} + \mathrm{NO} \rightarrow \mathrm{HgO} + \mathrm{N}$	QCISD/RCEP28 DVZ	1 atm	298 -	$2.19\times 10^{\text{-11}}\ e^{\text{-}675140/\text{RT}}$	
			1500		
$Hg^0 + NO_2 \rightarrow ?$	Absolute	N ₂ , 1 atm	293	$(2.8 \pm 0.5) \times 10^{-35} \text{ cm}^6 \text{ molec}^{-2} \text{ s}^{-1}, 2^{nd} \text{ order}$	Hall et al. 40
				in [NO ₂]	
	Absolute	Air, 1 atm	295 ± 1	$(3.5 \pm 0.5) \times 10^{-35} \text{ cm}^6 \text{ molec}^{-2} \text{ s}^{-1}, 2^{nd} \text{ order}$	Snider and Ariya 46
				in [NO ₂]	
$\mathrm{Hg}^{0} + \mathrm{NO}_{3} \rightarrow \mathrm{HgO} + \mathrm{NO}_{2}$	S/V extrapolation	N ₂ , 5.4 - 9.5 hPa	294 ± 2	$< 4 \times 10^{-15}$	Sommar <i>et al.</i> ³³
	Relative	Air, 1 atm	~298	$< 7 \times 10^{-15}, < 1.3 \times 10^{-14}, 3 \times 10^{-14}$	Sumner <i>et al.</i> ⁶
$Hg^0 + H_2O_2 \rightarrow ?$	Absolute	N ₂	293	< 8.5 × 10 ⁻¹⁹	Tokos et al. 47

^a ab initio, semi-empirical, relative, absolute, extrapolated

^b unless otherwise stated

Aqueous Phase Reaction	Type of study	Environment <i>pH</i>	Temp (<i>K</i>)	Rate $(M^{I}s^{I})^{a}$	Reference
$Hg^{0}(aq) + O_{3} + H_{2}O \rightarrow Hg^{2+} + OH^{-} + O_{2}$	Lab, relative	Water, pH=4.5-9.5	~293 (T-ind)	$(4.7 \pm 2.2) \times 10^7$	Munthe, 1992 ⁴⁸
$Hg(OH)_2 (aq) + hv \rightarrow Hg^0 + H_2O$	Lab, absolute	pH = 7	293 ± 0.5	$1.2 \times 10^{\text{-4}} \text{s}^{\text{-1}}$	Xiao <i>et al.</i> , 1995 ⁴⁹
$\mathrm{Hg}^{2+}(\mathrm{aq})/\mathrm{humic} \mathrm{acid} + \mathrm{h}\nu \rightarrow \mathrm{Hg}(\mathrm{g})$	Lab, absolute	Water/air	Ambient	$2\times 10^{2}\text{s}^{1}$	
$HgCl_2 + e^- \rightarrow Cl^- + HgCl$	Avg'd Lit. Cit.	pH = 5	Ambient	4.0×10^{10}	Buxton <i>et al.</i> , 1988 ⁵⁰
$HgBr_2 + e^- \rightarrow Br^- + HgBr$	Avg'd Lit. Cit.		Ambient	3.7×10^{10}	
$HgI_2 + e^- \rightarrow I^- + HgI$	Avg'd Lit. Cit.		Ambient	3.0×10^{10}	
$Hg(CN)_2 + e^- \rightarrow CN^- + HgCN$	Avg'd Lit. Cit.		Ambient	$1.4 imes 10^{10}$	
$Hg(SCN)_2 + e^- \rightarrow SCN^- + HgSCN$	Lit. Cit.		Ambient	$4.5 imes 10^{10}$	
$Hg(EDTA)^{2-} + e^{-} \rightarrow Products$	Avg'd Lit. Cit.	pH = ~ 11.5	Ambient	$2.1, 5.1 \times 10^9$	
$\mathrm{Hg}^{2+} + e^{-} \rightarrow \mathrm{Hg}^{(I)}$	Avg'd Lit. Cit.		Ambient	$7.1 imes 10^9$	Zhang, 2006 ⁵¹ ; Buxton et al.,
$H + Hg_2^{2+} \longrightarrow H^+ + Hg_2^{+}$	Lit. Cit.	pH = 1.0	Ambient	$4.7 imes 10^9$	1988 ⁵⁰
$H + Hg^{2+} \longrightarrow H^+ + Hg^+$	Avg'd Lit. Cit.	pH = 1.5	Ambient	$2.0 imes 10^9$	
$\mathrm{H} + \mathrm{Hg}(\mathrm{OH})_2 \mathop{\longrightarrow} \mathrm{H_2O} + \mathrm{HgOH}$	Avg'd Lit. Cit.	pH = 7	Ambient	$2.4 imes 10^9$	
$H + HgCl_2 \rightarrow HCl (aq) + HgCl$	Lit. Cit.	pH = 1	Ambient	1.0×10^{10}	
$\mathrm{H} + \mathrm{HgI}_2 \rightarrow \mathrm{HgI}_2(\mathrm{H})$	Lit. Cit.		Ambient	$1.5 imes 10^{10}$	
$OH + HgCl \rightarrow OH^- + HgCl^+$	Lit. Cit.	pH = 5	Ambient	$\sim 1 \times 10^{10}$	
$OH + HgBr_2 \rightarrow Br + HgBrOH$	Lit. Cit.	pH = 5	Ambient	$> 9 \times 10^{8}$	
$OH + HgCN \rightarrow products$	Lit. Cit.		Ambient	$3.1 imes 10^9$	
$\mathrm{Hg}^{0}(\mathrm{aq}) + \mathrm{OH} \rightarrow \mathrm{Hg}^{+} + \mathrm{OH}^{-}$	Relative	Water, $pH = 7.9$	295 ± 1	$(2.4\pm0.3)\times10^9$	Gardfeldt et al., 2001 ⁵²
	Lab, absolute	Water, pH = 5.6 - 5.9	298 ± 2	$2.0 imes 10^9$	Lin and Pehkonen, 1997 ⁵³

Supplementary Material Table 2 Aqueous phase kinetics of mercury

	Field	Mid latitudes, June (noon)	Ambient	$1.0 imes 10^9$	Hines and Brezonik, 2004 ⁵⁴
$\mathrm{Hg}^{+}(\mathrm{aq}) + \mathrm{OH} \rightarrow \mathrm{Hg}^{2+} + \mathrm{OH}^{-}$	Lit. Cit.		Ambient	$1 imes 10^{10}$	Zhang, 2006 ⁵¹
$HgOH + OH \rightarrow Hg(OH)_2$	Lit. Cit.		Ambient	$1 imes 10^{10}$	
$HgOH + H_2O + O_2 \rightarrow Hg(OH)_2 + H^+ +$	Lit. Cit.		Ambient	$1 imes 10^9$	
0 ₂ ⁻					
$HO_2 + Hg^{2+} \longrightarrow Hg^+ + O_2 + H^+$	Lab	pH = 3.9	298 ± 2	$1.7 imes 10^4$	Pehkonen and Lin, 1998 ⁵⁵
	Lab	pH = 3.9	298 ± 2	1.1×10^4 (chloride present)	
$\mathrm{Hg}(\mathrm{HSO}_3)^{-}(\mathrm{aq}) \rightarrow \mathrm{Hg}^0(\mathrm{aq}) + \mathrm{S}^{(\mathrm{VI})}$	Lit. Cit.			$4\times 10^{\text{-6}}\text{s}^{\text{-1}}$	Lin and Pehkonen, 1997 ⁵³ ;
					Munthe <i>et al.</i> , 1991 ⁵⁶
$\mathrm{HgSO}_{3}(\mathrm{aq}) \rightarrow \mathrm{Hg}^{0}(\mathrm{aq}) + \mathrm{S}^{(\mathrm{VI})}$	Lab	pH = 3.0 and $pH = 4.8$,	299 ± 2	0.6 s^{-1}	Munthe <i>et al.</i> , 1991 ⁵⁶
		excess SO ₃ ²⁻			
	Lab, absolute	$pH = 3.0$, excess Hg^{2+}	279 - 308	$T\times 2.083\times 10^{10}~exp[(8.2~\pm$	Van Loon <i>et al.</i> , 2000 ⁵⁷
				$0.7)\text{-}(1.26\pm0.02)\times10^4)/T]$	
				s ⁻¹	
	Lab, absolute	$pH = 1.0$, excess Hg^{2+}	279 - 308	$T\times2.083\times10^{10}~exp[(9.7~\pm$	
				$0.6)\text{-}(1.29\pm0.01)\times10^4)/T]$	
				s ⁻¹	
$\mathrm{Hg}(\mathrm{SO}_3)_2^{2\text{-}}(\mathrm{aq}) \rightarrow \mathrm{Hg}^0(\mathrm{aq}) + \mathrm{S}^{(\mathrm{VI})}$	Lit. Cit.	pH = 3.0 and pH = 4.8,		$< 10^{-4} \text{s}^{-1}$	Lin and Pehkonen, 1997 ⁵³ ;
		excess SO ₃ ²⁻			Munthe <i>et al.</i> , 1991 ⁵⁶
$Hg(OH)_2(aq) \rightarrow Hg^0(aq) + prod.$	Lit Cit.	Midday, at 60°N latitude		$3\times 10^{\text{7}}\text{s}^{\text{1}}$	Lin and Pehkonen, 1999 ³²
$MeHg + OH \rightarrow products$	Lab	pH = 6.2-8.2	293	1.2×10^9	Zepp et al., 1987 ⁵⁸
$\mathrm{Hg}^{2+}(\mathrm{aq}) \rightarrow \mathrm{MeHg}(\mathrm{aq})$	Field	Estuarine sediment	Ambient	$1.4-144\times 10^8 \; \text{s}^{\text{1}}$	Jonssen et al., 2012 ⁵⁹
	Lab	pH \approx 7.5, methylating	304	Init. methylation rate:	Graham <i>et al.</i> , 2012 ⁶⁰

		bacteria		0.60 - 21.8 pM min ⁻¹	
$\mathrm{Hg}^{2+}(\mathrm{aq}) + \mathrm{DOM} \rightarrow \mathrm{MeHg}(\mathrm{aq})$	Lab	pH = 6.8, bacteria	311	${\rm Hg}^{2+}$ was most bioavailable <	Chiasson-Gould et al., 2014 ⁶¹
				24 h after addition to DOM	
$\mathrm{Hg}^{2+} + \mathrm{h}\nu \rightarrow \mathrm{Hg}^{0}(\mathrm{aq})$	Field	Lake water, daylight	Ambient	2.4 - 9 times Hg ⁰ (aq)	Amyot et al., 1994 ⁶²
		radiation		production than dark: 1.6%/h	
	Field	Lake water	Ambient	UV-A: $7.76 \times 10^{-5} \text{s}^{-1}$	O'Driscoll et al., 2006 ⁶³
				UV-B: $8.91 \times 10^{-5} \text{s}^{-1}$	
		River water		UV-A: $1.78 \times 10^{-4} \text{s}^{-1}$	
				UV-B: $1.81 \times 10^{-4} \text{s}^{-1}$	
	Field	Coastal water, midday	Ambient	$4.4 - 11 \times 10^{-4} s^{-1}$	Whalin and Mason, 2006 ⁶⁴
	Field	Fresh water, midday	Ambient	$2.9 - 11 \times 10^{-4} s^{-1}$	
$\mathrm{Hg}(\mathrm{NO}_3)_2(\mathrm{aq}) + \mathrm{h}\nu \rightarrow \mathrm{Hg}^0(\mathrm{aq})$	Lab	Milli-Q water, $pH = 4$	303	$1\times 10^{\text{-5}}\text{s}^{\text{-1}}$	Zhang et al., 2012 ⁶⁵
$\mathrm{Hg}^{2+} + \mathrm{Fe(III)} + \mathrm{h}\nu \rightarrow \mathrm{Hg}^{0}(\mathrm{g})$	Field	Freshwater, UV exposed		$0.3 - 0.6 \times 10^{-4} \text{ s}^{-1}$	Zhang and Lindberg, 2001 ⁶⁶
$\mathrm{Hg}^{2+} + \mathrm{MerA}$ bacteria $\rightarrow \mathrm{Hg}^{0}(\mathrm{aq})$	pH = 7.0	MerA, intact cells, $pH = 7.0$	Ambient	8.2 - 20.6 nmol Hg ²⁺ min ⁻¹	Philippidis et al., 1991 ⁶⁷
				mg protein ⁻¹	
$\mathrm{Hg}^{0}\left(\mathrm{aq}\right) + \mathrm{h}\nu \mathrm{\rightarrow} \mathrm{Hg}^{2+}$	Field	Coastal water, midday	Ambient	$2.6 - 5.3 \times 10^{-4} \text{s}^{-1}$	Whalin and Mason, 2006 ⁶⁴
	Field	Fresh water, midday	Ambient	$8 - 15 \times 10^{-4} \text{s}^{-1}$	
	Field	Brackish water, Vis light	288	$0.25 imes 10^{-4} \mathrm{s}^{-1}$	Lalonde <i>et al.</i> , 2004 ⁶⁸
	Field	Brackish water, UV light	288	$1.7 - 1.9 \times 10^{-4} s^{-1}$	
	Field	Saline water, UV	Ambient	$(1.9 \pm 0.3) \times 10^{-4} s^{-1}$	Lalonde <i>et al.</i> , 2001 ⁶⁹
$\mathrm{Hg}^{0}\left(\mathrm{aq}\right) \rightarrow \mathrm{Hg}^{2+}\left(\mathrm{aq}\right)$	Field	Saline water, dark	Ambient	$0.17 imes 10^{-4} s^{-1}$	
	Lab	HPLC water, dark	Ambient	$6 \times 10^{-7} s^{-1}$	Hines and Brezonik, 2004 ⁵⁴
	Field	Lake water, dark	Ambient	$6 \times 10^{-6} s^{-1}$	

	Field	Brackish water, dark	288	not statistically significant	Lalonde et al., 2004 ⁶⁸
$\mathrm{Hg}^{0}(\mathrm{aq}) + \mathrm{h}\nu \rightarrow \mathrm{Hg}^{2+}(\mathrm{HgO?})$	Field	Lake water, Hg lamp	Ambient	$1.1 - 2.1 \times 10^{-4} \text{s}^{-1}$	Hines and Brezonik, 2004 ⁵⁴
$\mathrm{Hg}^{0}(\mathrm{aq}) + \mathrm{Cl}^{-} + \mathrm{h}\nu \rightarrow \mathrm{Hg}^{2+}(\mathrm{aq})$	Lab	Seawater, River water + 0.5	Ambient	$0.28 - 1.1 \times 10^{-4} s^{-1}$	Amyot et al., 199770
		M Cl ⁻			
	Field	Lake water	Ambient	$1.53 \times 10^{-3} s^{-1}$	Hines and Brezonik, 2004 ⁵⁴
	Field	Fresh water	Ambient	$1.6 \times 10^{\text{4}} \text{s}^{\text{1}}$	Lalonde <i>et al.</i> , 2001 ⁷¹
$Hg^{0}(aq) + Cl^{-} + h\nu (UV) + benzoquinone$	Field	Natural water spiked	298	$1.7 \times 10^{\text{4}}\text{s}^{\text{1}}$	
\rightarrow Hg ²⁺					
$\mathrm{Hg}^{0}(\mathrm{aq}) + \mathrm{bacteria} \ \mathrm{exudates} + \mathrm{Cl}^{-} \rightarrow \mathrm{Hg}^{2+}$	Lab	Spiked water	277 ± 2	Dark reaction; 40% decrease	Poulain <i>et al.</i> , 2007 ⁷²
				in Hg^0 (aq) after 3.5 h	
$\mathrm{Hg}^{0}\left(\mathrm{aq}\right) + \mathrm{semiquinones} + \mathrm{Cl}^{-} \rightarrow \mathrm{Hg}^{2+}$	Lab	Artificial water, 0.5 M HCl	Ambient	$10 - 20 \times 10^{-4} s^{-1}$	Whalin and Mason, 2006 ⁶⁴ ;
					Lalonde <i>et al.</i> , 2001 ⁷¹
$\mathrm{Hg}^{0}(\mathrm{aq}) + \mathrm{fulvic} \ \mathrm{acid} \rightarrow \mathrm{Hg}^{2+}$	Lab	Artificial water	Ambient	$0.28 \times 10^{\text{-4}} \text{s}^{\text{-1}}$	
$\mathrm{Hg}^{0}\left(\mathrm{aq}\right) + \mathrm{DOM} \rightarrow \mathrm{Hg}^{2+}\left(\mathrm{aq}\right)$	Lab	pH = 7, dark, anoxic	~295	$1.6 - 15.3 \times 10^{-4} \text{s}^{-1}$	Zheng <i>et al.</i> , 2011 ⁷³
$\mathrm{Hg}^{0}\left(\mathrm{aq}\right) + \mathrm{UV} + \mathrm{DOC} \rightarrow \mathrm{Hg}^{2+}$	Field	Lake water	Ambient	$0.7 \times 10^{\text{-4}} \text{s}^{\text{-1}}$	Lalonde <i>et al.</i> , 2001 ⁷¹
$\mathrm{Hg}^{0}(\mathrm{aq}) + \mathrm{Fe}^{3+} \rightarrow \mathrm{Hg}^{2+}$	Field	Freshwater, dark (prev. UV		$0.6 - 0.8 \times 10^{-4} \text{s}^{-1}$	Zhang and Lindberg, 2001 ⁷⁴
		expos.)			
$\mathrm{Hg}^{0}(\mathrm{aq}) + \mathrm{NO}_{3}^{-} + \mathrm{octanol} + \mathrm{h}\nu \rightarrow \mathrm{Hg}^{2+}$	Lab	Milli-Q water	Ambient	$1.4 \times 10^{-4} s^{-1}$	Hines and Brezonik, 2004 ⁵⁴
$\mathrm{Hg}^{0}(\mathrm{aq}) + \mathrm{Br}_{2} \rightarrow \mathrm{prod}.$	Lab	pH = 2	295 ± 1	0.20 ± 0.03	Wang and Pehkonen, 2004 ⁷⁵
$Hg^0(aq) + HOBr \rightarrow prod.$	Lab	pH = 6.8		0.28 ± 0.02	
$\mathrm{Hg}^{0}(\mathrm{aq}) + \mathrm{OBr}^{-} \rightarrow \mathrm{prod}.$	Lab	pH = 11.7		0.27 ± 0.04	
$\mathrm{Hg}^{0}(\mathrm{aq}) + \mathrm{HOCl} + \mathrm{H}^{+} \rightarrow \mathrm{Hg}^{2+} + \mathrm{Cl}^{-} +$	Lab	pH = 6.5 - 8.5	297 ± 1	$(2.09\pm 0.06)\times 10^{6}$	Lin and Pehkonen, 1998 ⁷⁶
H ₂ O					

$\mathrm{Hg}^{0}(\mathrm{aq}) + \mathrm{OCl}^{-} + \mathrm{H}_{2}\mathrm{O} \rightarrow \mathrm{Hg}^{2+} + \mathrm{Cl}^{-} +$	Lab	pH = 6.5 - 8.5	297 ± 1	$(1.99\pm 0.05)\times 10^{6}$	
20H ⁻					
$\mathrm{Hg}^{0}(\mathrm{aq}) + \mathrm{H}_{2}\mathrm{O}_{2} \rightarrow \mathrm{HgO}\left(s\right) + \mathrm{Hg}^{2+} +$	Lab	pH = 1.3, pH = 3.3		< 150	Munthe and McElroy, 1992 ⁷⁷
H ₂ O					
$Hg^{0}(aq)$ + 2-mercaptopropionic acid \rightarrow	Lab	pH = 7, dark anoxic	Ambient	$(3.6 \pm 0.3) \times 10^{-5} \text{s}^{-1}$	Zheng et al., 201378
$\mathrm{Hg}^{2+}(\mathrm{aq})$		conditions			
$\mathrm{Hg}^{0}(\mathrm{aq}) + \mathrm{cysteine} \rightarrow \mathrm{Hg}^{2+}(\mathrm{aq})$	Lab	pH = 7, dark anoxic	Ambient	$(1.7\pm0.3)\times10^{\text{-5}}\text{s}^{\text{-1}}$	
		conditions			
$\mathrm{Hg}^{0}(\mathrm{aq}) + \mathrm{glutathione} \rightarrow \mathrm{Hg}^{2+}(\mathrm{aq})$	Lab	pH = 7, dark anoxic	Ambient	$(2.2\pm0.3)\times10^{\text{-5}}\text{s}^{\text{-1}}$	
		conditions			
$\mathrm{HgS_2^{2^-}}(\mathrm{aq}) + \mathrm{hv} \rightarrow \mathrm{HgS}(\mathrm{s}) + \mathrm{S^{2^-}}(\mathrm{aq}) \rightarrow$	Lab		Ambient	Not significant	Xiao et al., 199479; Zhang,
$\mathrm{Hg}^{0}(\mathrm{g})$					2006 ⁵¹
$\text{Hg}^{2+}(\text{aq}) + \text{cysteine}(\text{aq}) + h\nu \rightarrow \text{Hg}^{0}(\text{g})$	Lab	pH = 3.6	294 ± 1	$1.3 \times 10^{-5} \text{s}^{-1}$	Zheng and Hintelmann,
					2010 ⁸⁰
$\mathrm{Hg}^{2+}(\mathrm{aq}) + \mathrm{serine}(\mathrm{aq}) + \mathrm{h}v \rightarrow \mathrm{Hg}^{0}(\mathrm{g})$	Lab	pH = 3.8	294 ± 1	$1.78 \times 10^{-4} s^{-1}$	
$\mathrm{Hg}^{2+}(\mathrm{aq}) + 2\mathrm{RS}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{Hg}(\mathrm{SR})_{2}(\mathrm{aq}) +$	Lab, absolute	pH = 7	296 ± 2	$(2.0 \pm 0.2) \times 10^{-7} \text{s}^{-1} (1 -$	Si and Ariya, 2011 ⁸¹
$h\nu \rightarrow Hg^{0}(g) + RS-SR$ (aq)				propanethiol)	
				$(1.4 \pm 0.1) \times 10^{-7} \text{s}^{-1} (1 -$	
				butanethiol)	
				$(8.3 \pm 0.5) \times 10^{-8} \text{s}^{-1} (1 -$	
				pentanethiol)	

$\mathrm{Hg}^{2+}{}_{(\mathrm{aq})} + \mathrm{DCA}{}_{(\mathrm{aq})} + h\nu \rightarrow \mathrm{Hg}^{0}(\mathrm{g})$	Lab, absolute	$pH = 3$, absence of Cl^{-} and	296 ± 2	$(2.0 \pm 0.3) \times 10^{-17}$	Si and Ariya, 2008 ⁸²
		O ₂		(oxalic acid)	
				$(8 \pm 1) \times 10^{-18}$	
				(malonic acid)	
				$(4.7\pm 0.8)\times 10^{-18}$	
				(succinic acid)	
$\mathrm{Hg}^{2+}_{(aq)} + \mathrm{DOM} {\longrightarrow} \mathrm{Hg}^{0}_{(aq)}$	Lab	pH = 7, dark, anoxic	~295	6.13 - $15.1 \times 10^{-4} s^{-1}$	Zheng <i>et al.</i> , 2011 ⁷³
$\operatorname{FeOH}^+_{(aq)} + \operatorname{Hg}(\operatorname{OH})_2(aq) \rightarrow \operatorname{Fe}(\operatorname{OH})_2^+ +$	Lab, model	Water, pH = 6.3 - 8.1	293 - 296	1.20×10^2	Amirbahman <i>et al.</i> , 2013 ⁸³
$OH^{-} + Hg^{+} \rightarrow Hg^{0}(g)$					

^a unless otherwise stated

Surfaces	Type of expt.	Interface	Temp (K)	Rates/rate constants/results;	Reference
$\mathrm{Hg}^{0}(\mathrm{g}) \rightarrow \mathrm{Hg}(\mathrm{ads})$	Absolute	N ₂ , 1 atm, N ₂ /Teflon wall	293	$4.5 \times 10^{-6} \mathrm{s}^{-1}$	Hall 1995 ⁴⁰
		$(s/v=0.58 \text{ cm}^{-1})$	323	$1.7 \times 10^{-5} \text{s}^{-1}$	
			348	$3.0 \times 10^{-5} \text{s}^{-1}$	
	Absolute	Air, 1 atm, air/carbon	293	$90 - 120 \times 10^{-4} s^{-1}$	Hall et al., 1995 ³⁹
			373 - 523	$1.3 - 5.0 \times 10^{-4} \text{s}^{-1}$	
			573	$\sim 0 \text{s}^{-1}$	
	Absolute	Air, 1 atm, air/fly ash	293	$8.1 \times 10^{-3} \text{s}^{-1}$	
			373 - 523	$1.12 - 2.72 \times 10^{-3} \text{s}^{-1}$	
			573	$6.8 - 7.7 \times 10^{-4} \text{s}^{-1}$	
	Lab	Air/unburned carbon from fly	293, 313	More mercury adsorption at 20 °C than 40 °C	Li <i>et al.</i> , 2002 ⁸⁴
		ash			
	Model/Field data	Air/Forest canopy (summer)	Ambient	0.12 cm s^{-1}	Lindberg et al.,
					1992 ⁸⁵
		Air/Forest canopy (winter)		0.006 cm s ⁻¹	
	Field study	Air/ground dry deposition	Ambient	0.1 cm s $^{\text{-1}}$ (particulate; Hg(p)) 0.5 cm s $^{\text{-1}}$ (Hg $^{2\text{+}}$	Schroeder et al.,
		(Arctic)		(g))	1998 ⁸⁶
	Field study	Air/snow/barren ground	Ambient	$12.5 \pm 2.5 \text{ pmol m}^{-2} \text{ h}^{-1}$	
		(Arctic)			
	Lab	N_2 /Gold	411	25 nm thick Au sheet absorbs for 33 min vs. 5	Turchi, 2000 ⁸⁷
				min for 2.5 nm sheet. Hg diffuses into Au film.	

Supplementary Material Table 3 Inter-phase (heterogeneous/surface) kinetics and emission rates of mercury

	Lab	Simulated flue gas/ sulfur	423	Order of enhancing adsorption:	Hsi and Chen,
		impregnated activated carbon		$NO > HCl > O_2 > SO_2;$	2012 ⁸⁸
		Simulated flue gas/ sulfur423Orderimpregnated activated carbonNO > $SO_2 +$ $N_2 + O_2$ /activated carbon +473 $Ads. of20% H_2SO_4363-424O_2 enN_2 + O_2/activated carbon363-424O_2 enactivaSimulated flue gas/ KI-413, 453> 99%impregnated bamboocharcoalO_2 = 0lampWater/TiO_2 surface29890% ofpH, keO_2 = 0O_2 = 0lampTiO_2 surface/N_2 flow423RemoAir/TiO_2 surface, differential297 - 408k=Aebed reactork[Hg]Humid air/TiO_2 surface298Surfarhumid air/SiO_2-TiO_2 surface316L-H rhumidWater/TiO_2 surface, pH = 629597% r$	$SO_2 + O_2$ inhibited ads.		
	Lab	$N_2 + O_2$ /activated carbon +	473	Ads. capacity exceeded 500 mg (g Hg) ⁻¹	Morris <i>et al.</i> , 2012 ⁸⁹
		20% H ₂ SO ₄			
	Lab	$N_2 + O_2$ /activated carbon	363-424	O ₂ enhanced the adsorption capacity of	Karatza <i>et al.</i> ,
				activated carbon	2013 ⁹⁰
	Lab	Simulated flue gas/ KI-	413, 453	> 99% capture, NO and SO ₂ inhibit capture	Tan et al., 2012 ⁹¹
		impregnated bamboo			
		charcoal			
$\mathrm{Hg^{0}/\mathrm{HgF_{2}/\mathrm{HgNO_{3}}}}(\mathrm{aq}) + \mathrm{hv} \rightarrow \mathrm{Hg}$	Lab, Hg lamp	Water/TiO ₂ surface	298	90% conversion after 40 min irradiation. Lower	Habibi <i>et al.</i> ,
(1)				pH, less reduction	2003 ⁹² ; Zhang,
					2006 ⁵¹
$\mathrm{Hg}(\mathrm{l}) + \Delta \to \mathrm{Hg}^{0}(\mathrm{g})$		TiO ₂ surface/N ₂ flow	423	Removes Hg ^(I) in 1 hour	
$\mathrm{Hg}^{0}(\mathrm{g}) + \mathrm{H}_{2}\mathrm{O}(\mathrm{g}) + \mathrm{O}_{2}(\mathrm{g}) + h\nu \rightarrow$	Lab	Air/TiO ₂ surface, differential	297 - 408	$k=Ae^{-(Es-\lambda)/RT}d[Hg]/dt =$	Lee et al., 200493
HgO (s)		bed reactor		$k[Hg]^{(1.4\pm0.1)}[J_{UV}]^{(0.35\pm0.05)}$	
	Lab	Humid air/TiO ₂ surface	298	Surface mechanism developed, removal rate	Rodriguez et al.,
				incr. with humidity, Hg removal < 80%, > 30%	2004 ⁹⁴
	Lab	Humid air/SiO ₂ -TiO ₂ surface	316	L-H mech., removal rate decreases with	Li and Wu, 2007 ⁹⁵
				humidity, up to 95% removal when dry.	
$HgCl_2(aq) + dodecyl sulfate (DS) +$	Lab	Water/TiO ₂ surface, $pH = 6$	295	97% reduction in 6 min	Hegyi and Horvath,
$h\nu \rightarrow Hg^+$					2004 ⁹⁶ ; Zhang,
					2006 ⁵¹

$HgCl_2(aq) + hv +$	Lab	Water/TiO ₂ surface, $pH = 6$	295	99% reduction in 25 min	
cetyltrimethylammonium (CTA ⁺)					
$\to \mathrm{Hg}^{+}$					
$HgCl_2(aq) + h\nu + arginine \rightarrow Hg^+$	Lab	Water/TiO ₂ surface	Ambient	arginine binds Hg^{2+} to TiO_2 , facilitates charge	Skubal and
				transfer. 99.9% removal in 128 min	Meshkov, 2002 ⁹⁷
$\mathrm{HgCl}_{2}(\mathrm{aq}) + hv (\mathrm{UV}) \rightarrow \mathrm{Hg}^{0}(\mathrm{aq})$	Lab	Water/TiO ₂ semiconductor	293 ± 5	E=0.41 V, poss. Catalytic TiO ₂ action, initial	Prairie et al., 199398
+ 2Cl ⁻				rate oxidation=0.051[Hg] ^{1/2}	
$Hg^{0}(g) + H_{2}O_{2}(ads) + h\nu \rightarrow Hg^{2+}$	Field study	Air/snow pack	267	5-fold increase in $Hg^0(g)$ deposition with H_2O_2 -	Lahoutifard et al.,
				spiked snow	2006 ⁹⁹
$\mathrm{Hg}(\mathrm{I/II})_{\mathrm{g}} \rightarrow \mathrm{Hg}(\mathrm{I/II})(\mathrm{ads})$	Field study	Air/snow; dry dep.	Ambient	1 cm s ⁻¹	Lindberg et al.,
					2002^{100}
$\mathrm{Hg}^{2+}(\mathrm{ads}) \rightarrow \mathrm{Hg}^{2+}(\mathrm{snowpack})$	Field study	Snow air/Snow vertical	238-260	5.8 - 7.0 pg m ⁻² h ⁻¹	Ferrari et al.,
		diffusion			2004^{101}
Hg (ads, II) + $h\nu \rightarrow Hg^0(g)$	Field study	Snow/air	Ambient	20% reduction loss in 3 h	Ariya <i>et al.</i> , 2004 ¹⁰²
	Field study	Snow/air	< 260	>40% reduction loss in 24 h	Lalonde et al.,
					2003 ¹⁰³
	Field study	Snow/air	< 273	$6.7\times 10^{\text{-5}}~\text{s}^{\text{-1}},1.9~\text{pmol}~\text{m}^{\text{-2}}~\text{h}^{\text{-1}}.$ Reduction	Fain et al., 2007 ¹⁰⁴
				enhanced by H ₂ O (l)	
	Field study	Air/melted snow	277	$2.2 - 29 \times 10^{-5} \text{ s}^{-1}$	Mann et al., 2014 ¹⁰⁵
	Lit. Cit. Field study	Temperate, boreal soil	Ambient	55 pmol $m^{-2} h^{-1}$	Grigal, 2002 ¹⁰⁶ ;
		volatilization			Zhang and Lindberg
	Lit. Cit. Field study	Contaminated soil	Ambient	~6500 pmol $m^{-2} h^{-1}$	1999 ¹⁰⁷
		volatilization			

	Lab	Air/Coal fly ash, solar	Ambient	12.2 - 18.8 % h^{-1} (similar rates for re	aerosolized	Tong et al., 2014 ¹⁰⁸
		radiation (400 W m ⁻²)		soluble components of ash)		
	Lab	Air/synthetic aerosols, solar	Ambient	$9.2 \pm 1.5 \% h^{-1}$ (carbon black)	64.8	
		radiation (400 W m ⁻²)		\pm 5.7 % h ⁻¹ (adipic acid)	17.5 ±	
				2.4 % h ⁻¹ (levoglucosan)		
	Lab	Air/synthetic aerosols, solar	Ambient	$19.8 \pm 2.2 \% h^{-1}$ (NaCl)	2.6 ±	Tong et al., 2013 ¹⁰⁹
		radiation (400 W m ⁻²)		$1.5 \% h^{-1}$ (NaCl and FeCl ₃)	$12.2 \pm$	
				2.6 % h^{-1} (NaCl and FeCl ₂)		
$\mathrm{Hg}^{0}(\mathrm{g}) + \mathrm{h}\nu \rightarrow \mathrm{Hg} (\mathrm{ads}, \mathrm{II})$	Lab study, Xe-lamp	Air/snow	261 - 269	$5.0 - 6.9 \times 10^{-5} \mathrm{s}^{-1}$		Dommergue et al.,
						2007 ¹¹⁰
	Field study	Air/melted snow	277	$2.5 - 4.7 \times 10^{-5} \text{ s}^{-1}$		Mann <i>et al.</i> , 2014 ¹¹¹
$Hg(g) \rightarrow Hg(ads, II)$	Lit. Cit. Field study	Throughfall + litterfall	Ambient	$22 \text{ pmol m}^{-2} \text{ h}^{-1}$		Grigal, 2002 ¹⁰⁶ ;
		Precipitation	Ambient	$5.8 \text{ pmol m}^{-2} \text{ h}^{-1}$		Zhang and Lindberg
						1999 ¹⁰⁷
$\mathrm{Hg}^{0}/\mathrm{Hg}(\mathrm{CH}_{3})_{2} \rightarrow$	Avg. Lit. Cit. Field	Soil/air	Ambient	$< 1 \text{ nmol m}^{-2} \text{ h}^{-1}$		Schlüter, 2000 ¹¹²
$Hg^0(g)/Hg(CH_3)_2(g)$	studies					
$Hg(ads, 0, II) \rightarrow Hg (ads, 0, II)$	Lit. Cit. Field study	Soil sequestration	Ambient	2.9 pmol m ⁻² h ⁻¹		Grigal, 2002 ¹⁰⁶ ;
						Zhang and Lindberg
						1999 ¹⁰⁷
$\mathrm{Hg}^{0}\left(\mathrm{soil}\right) \rightarrow \mathrm{Hg}^{0}\left(\mathrm{g}\right)$	Model/Field data	Forest soil/air	Ambient	$250 \text{ pmol m}^{-2} \text{ h}^{-1}$		Lindberg et al.,
						1992 ⁸⁵
Hg^{2+} [Cl ⁻ /NO ₃ ⁻] + surface sediment	Field	Lake water/sediment, pH = 6	~298	$(1.6 - 10) \times 10^{-7} \text{ s}^{-1}$		Peretyazhko et al.,
$\rightarrow \mathrm{Hg}^{0}(\mathrm{aq})$						2006 ¹¹³

$\mathrm{Hg}^{0}(\mathrm{aq}) \rightarrow \mathrm{Hg}^{0}(\mathrm{g})$	Model fit, empirical	Water/air	293	$5.7 \text{ pmol m}^{-2} \text{ h}^{-1} \text{ loss}$	Hines and Brezonik,
	data				2004 ⁵⁴
	Field	Water/air (East Atlantic: 0-	Ambient	9.5 pmol m ⁻² h ⁻¹ loss (Nov.)	Kuss et al., 2011 ¹¹⁴
		50 °N)		$0.5 \text{ pmol m}^{-2} \text{ h}^{-1} \text{ loss (May)}$	
	Field	Water/air (East Atlantic: 60-	Ambient	$2.1 \pm 1.8 \ pmol \ m^{-2} \ h^{-1} \ loss \ (July)$	Andersson et al.,
		63 °N)			2011 ¹¹⁵
	Field	Water/air (West Atlantic: 0-	Ambient	10 - 34 pmol $m^{-2} h^{-1}$ loss (June-Oct)	Soerensen et al.,
		45 °N)			2013 ¹¹⁶
$\mathrm{Hg}^{0}(\mathrm{aq}) + \mathrm{h}\nu \rightarrow \mathrm{Hg}^{0}(\mathrm{g})$	Lab study	River water + 0.5 M Cl ⁻ /air	Ambient	$0.2 \times 10^{-4} \text{s}^{-1}$	Amyot et al., 1997 ⁷⁰
		Seawater/air		$0.3 \times 10^{-4} s^{-1}$	
$\mathrm{Hg}^{0}(\mathrm{ads}) + \mathrm{Br} \rightarrow \mathrm{HgBr}$	Field study	In snow (20 - 60 cm deep)	261-265	$8 \times 10^{-13} \text{cm}^3 \text{molec}^{-1} \text{s}^{-1}$	Fain et al., 2006 ¹¹⁷
$Hg^{0}(g) + Cl_{2}(g) \rightarrow (HgCl)_{n} (aq/s)$	Lab	Air/surface, p = 0.95 atm	525	50 second reaction	Medhekar et al.,
					1979 ¹¹⁸
	Lab	Air/water	~298	No homogeneous reaction. Heterogeneous	Skare and
				interactions occur.	Johansson, 1992 ¹¹⁹
	Lab	Air/water + sulfite, pH = 4.7,	298	$(6.1\pm0.8)\times10^9M^{1}\text{s}^{1}$	Roy and Rochelle,
		pH = 5.7			2004 ¹²⁰
$\operatorname{Hg}^{0}(g) + \operatorname{Cl}_{2}(g) \rightarrow \operatorname{HgCl}_{2}(g)$	Lab	Air/Au surface	448 - 498	40 - 60% oxidation, k ~10 ⁻⁸ cm ³ molec ⁻¹ s ⁻¹	Zhao <i>et al.</i> , 2006 ¹²¹
				(473 K), Langmuir-Hinshelwood mechanism	
				proposed	
$\mathrm{Hg}^{0}(\mathrm{g}) + \mathrm{Cl}_{2}(\mathrm{aq}) \rightarrow \mathrm{Hg}^{2+} + 2\mathrm{Cl}^{-}$	Absolute	Water + NaOCl, pH = 9.0 -	298	$1.7\times 10^{15}M^{-1}s^{-1}$	Zhao and Rochelle,
		11.1			1999 ¹²²
	Absolute	Water + NaOCl, $pH = 9.3$ -	328	$1.4\times 10^{17}M^{1}\text{s}^{1}$	

		10.1			
$Hg^{0}(g) + ICl(g) \rightarrow Hg^{2+}(g)$	Absolute	Air/Fly ash (20 g m ⁻³)	393	~94% oxidation, $HgCl_2$ is the major product	Qu et al., 2010 ¹²³
$\mathrm{Hg}^{0}(\mathrm{g}) + \mathrm{BrCl}(\mathrm{g}) \rightarrow \mathrm{Hg}^{2+}(\mathrm{g})$	Absolute	Air/Fly ash (20 g m ⁻³)	373	Up to 90% oxidation, $HgCl_2$ is the major	Qu et al., 2009 ¹⁷
				product	
$\operatorname{Hg}^{0}(g) + \operatorname{Br}_{2}(g) \rightarrow \operatorname{Hg}^{2+}(g)$	Absolute	Simulated flue gas/fly ash	298 ± 1	~ 0.2 s^{-1} , enhanced over homogeneous case	Liu et al., 20077
$\mathrm{Hg}^{0}_{(\mathrm{g, ads})} + \mathrm{O}_{2(\mathrm{g, ads})} \rightarrow \mathrm{prod}.$	Langmuir-	Air/Fly ash surface	423 - 573	$1.5 - 6.5 \times 10^{-12} (\text{cm}^3 \text{molec}^{-1})^{0.5} \text{s}^{-1}$	Hall et al., 1995 ³⁹
	Hinshelwood mech.	Air/Carbon surface	423 - 523	$0.1 - 4.4 \times 10^{-12} (\text{cm}^3 \text{ molec}^{-1})^{0.5} \text{s}^{-1}$	
$\mathrm{Hg}^{0}\left(\mathrm{g}\right)+\mathrm{SO}_{2}+\mathrm{O}_{2}\rightarrow~\mathrm{HgSO}_{4}\left(\mathrm{s}\right)$	Lab	Air/Pt	348-673	3.5 mg Hg hr ⁻¹ (348 - 600 K)	Schofield, 2004 ¹²⁴
$Hg^0\left(g\right) \to Hg^{2+}$	Avg. Lit. Cite.	Air/Pd	~420	>90% oxidation	Presto and Granite,
	Lit. Cite. Field test	Air/SCR catalyst		~70% oxidation, declines over time to $< 30\%$	2006 ¹²⁵
	Lab	Simulated flue gas/ MnO _x -	473	>90% oxidation; NH ₃ inhibited oxidation,	Li et al., 2012 ¹²⁶
		CeO ₂ /TiO ₂ catalyst		however oxid. activity recovered after $\ensuremath{\text{NH}}_3$	
				removed	
	Lab	Simulated flue gas/	473	$(107 \pm 24) \text{ s}^{-1}$	Li et al., 2013 ¹²⁷
		CeO ₂ /TiO ₂			
$\mathrm{Hg}^{0}\left(\mathrm{g}\right) \rightarrow \mathrm{prod}.$	Field Test	Air/TMT-15 catalyst ^a		Inconclusive; intended to prevent re-emission	Blythe, 2006 ¹²⁸
				of Hg	
$\mathrm{Hg}^{0}\left(\mathrm{g} ight)+\mathrm{SO}_{2}+\mathrm{NO}_{2}+\mathrm{HCl}$	Lab	Air/Fly ash	453	~30% Hg (g) oxidation	Norton et al.,
${\rm Hg}^{2+}(g)$					2003 ¹²⁹
$\mathrm{Hg}^{0}(\mathrm{g}) + \mathrm{h}v \rightarrow \mathrm{prod}.$	Lab study, Xe-lamp	Air/quartz surface	293	$1.2 \times 10^{-5} \text{s}^{-1}$	Sheu and Mason,
$\mathrm{Hg}^{0}(\mathrm{g}) + \mathrm{h}\nu + \mathrm{H}_{2}\mathrm{O}(\mathrm{l}) \rightarrow \mathrm{prod}.$	Lab study, Xe-lamp	Air/quartz surface	293	$4.0 imes 10^{-5} s^{-1}$	2004 ¹³⁰
$Hg^0(g) + h\nu + NaCl \rightarrow prod.$	Lab study, Xe-lamp	Air/quartz surface	293	$1.6 \times 10^{-3} \mathrm{s}^{-1}$	

$Hg^{0}(g) + hv + NaCl + H_{2}O(l) \rightarrow$	Lab study, Xe-lamp	Air/quartz surface	293	$1.7 \times 10^{-3} s^{-1}$	
prod.					
$HgCl_2(g) + H_2 \rightarrow Hg_2Cl_2(s) +$	Lab, laser	N ₂ /Stainless steel surface	473	Unknown mech for reaction	Wang et al., 1983 ¹³¹
2HCl					
$\mathrm{Hg}^{0}(\mathrm{g}) + \mathrm{HCl} \rightarrow \mathrm{Hg} (\mathrm{ads})$	Lab	N ₂ /Stainless steel surface or	423	HCl enhances Hg ⁰ removal, retention on PTFE:	Turchi, 2000 ⁸⁷
		PTFE teflon		$(0 \rightarrow 44 \text{ ng}), \text{SS:} (66 \rightarrow 128 \text{ ng})$	
$HgCl_2(g) \rightarrow HgCl_2(ads)$	Simulated flue gas	N ₂ and trace gas/Gold	422	Acid gases (HCl or NO_2) + SO ₂ reduce ads.	
				capacity. HgCl2 adsorbs; no rxn. Similar to	
				carbon surface ads.	
	Lab	Air/Cysteine over silica	298 - 408	Cature eff. CE: 12 mg Hg $g^{-1} < CE < 33$ mg Hg	Abu-Daabes and
				g ⁻¹	Pinto, 2005 ¹³²
	Lab	N_2 / sulfur impregnated	423	Ads. increased with sulfur cotent. Max CE =	Ie et al., 2012 ¹³³
		activated carbon		5.236 mg (g C) ⁻¹	
$HgCl_2(aq) + N719$ - $TiO_2 \rightarrow Hg^{2+}$	Lab	Water/N719-TiO ₂ , pH= 6.6	~298	Hg^{2+} binding constant = 3×10^5 M ⁻¹ ; 65%	Li <i>et al.</i> , 2007 ¹³⁴
(ads)				scavenging eff.	
$\mathrm{Hg}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Hg}(\mathrm{ads})$	Lab	Water/ZnO nanoparticles,	303	Ads. capacity: 714 mg Hg g ⁻¹	Sheela et al.,
		pH=5.5			2012 ¹³⁵
$Hg(NO_3)_2(aq) \rightarrow Hg (ads)$	Lab	Water/Fly ash	303 ± 1	Freundlich parameters: $k = 1.230$, $1/n = 0.361$	Sen and De, 1987 ¹³⁶
				@ $pH = 4.2, > 90\%$ adsorption	
	Lab	Water/Modified sulfur-	Ambient	Up to 99% adsorption	Wade <i>et al.</i> , 2012 ¹³⁷
		immeranted activated contant			

impregnated activated carbon

	Lab	Water/Activated carbon, pH		Freundlich parameters:	Mohan et al.,
		= 2.0	300	k = 0.1427, 1/n = 0.71	2000 ¹³⁸
			318	k = 0.0663, 1/n = 0.75	
			338	k = 0.01073, 1/n = 1.38	
	Lab	Water/polyaniline/ hexagonal		Ads. Capacity at pH 10: 843 mg Hg g^{-1} ; 88%	Javadian et al.,
		mesoporous silica		recovery using H ₂ SO ₄	2014 ¹³⁹
$Hg(NO_3)_2(aq) + 2e^- \rightarrow Au-Hg(s)$	Simulated flue gas	Au-coated microparticle	298	0.35 V causes AuHg amalgam formation	Barrosse-Antle et
					al., 2007 ¹⁴⁰
$Hg^{0}\left(g\right) +H_{2}S\left(g\right) +O(ads)\rightarrow$	Lab, simulated flue	Flue gas/Fe ₂ O ₃ (N)	353	$H_2S\ (g)$ initiates Hg removal rxn up to 65% Hg	Wu et al., 2006 ¹⁴¹
$HgS(ads) + H_2O$	comb.			loss in stream - no effect from $\rm H_2 or CO. \rm H_2O$	
				reduces Hg adsorbance	
	Lab, simulated flue	Fe ₂ O ₃ , Fe ₂ O ₃ -Ca(OH) ₂ , FeS ₂ ,	353	Fe ₂ O ₃ : 50% removal, Fe ₂ O ₃ /TiO ₂ : 80%, Fe ₂ O ₃ -	Wu et al., 2008 ¹⁴²
	comb.	Fe_2O_3 (1% wt)/ TiO_2 surfaces		Ca(OH) ₂ : 70%, FeS ₂ : 60%; HCl (g) suppressed	
				Fe ₂ O ₃ activity only	
$\mathrm{Hg}^{0}\left(\mathrm{g}\right)+\mathrm{h}\nu\rightarrow\mathrm{HgO}\left(\mathrm{s}\right)$	Lab, simulated flue	SiO ₂ -TiO ₂ surface	408	99% removal in dry conditions. Humidity and	Li <i>et al.</i> , 2008 ¹⁴³
	comb.			NO inhibited oxid., HCl and SO ₂ promoted	
				oxid.	
$Hg^0\left(g\right) + \Delta \to HgO_{(ad)}$	Lab, simulated flue	Extensive list of metal oxide	410	$Cr_2O_3\!/Al_2O_3,MnO_2\!/Al_2O_3,andMoS_2$ show	Granite et al.,
	comb.	surface mixtures, Mars-		high Hg adsorption capacities.	2000^{144}
		Maessen mech.			
$Hg^0 \ (g) + \Delta \rightarrow Hg \ _{(II, \ ads)}$	Lab, glass tube	Various metal surface	411	Rank: Ir > Ir/HCl > Darco > Thief/HCl (in	Presto <i>et al.</i> , 2006 ¹²⁵
	diffusion	catalysts. Het. rate constants		terms of oxidation efficiency	
		measured.			

$HgBr_{2}(s) + Ag_{2}WO_{4}(s) \rightarrow HgWO_{4}$		Solid-state reaction	393 - 443	$K = 1.10 \times 10^{-4} \text{ cm h}^{-1} @ 120 \ ^{\circ}\text{C} \ (\text{thickness})^2 =$	Jain and Beg,
(s) + 2AgBr(s)				Kt	1995 ¹⁴⁵
$HgCl_{2}(s) + Ag_{2}WO_{4}(s) \rightarrow HgWO_{4}$	Lab		418 - 461	$K = 2.29 \times 10^{-4} \text{ cm h}^{-1}$ @ 145 °C	
(s) + 2AgCl(s)					
$\mathrm{Hg}^{0}\left(\mathrm{g} ight) \rightarrow \mathrm{Hg}\left(\mathrm{ads} ight)$	Lab, model	Activated carbon- Ptolemais	323	Ads. capacity: without S = $175 - 458$ ng Hg/mg	Skodras et al.,
		lignite, impregnated with		C, with S = 359 - 915 ng Hg/mgRT C	2007 ¹⁴⁶
		sulfur (S)			
$Hg^0(g) + O_3 \longrightarrow HgO_{(s)} + O_2$	Lab	Air/Secondary organic	295 ± 1	$(7.5 \pm 0.5) \times 10^{-19} \text{ cm}^3 \text{ molec}^{-1} \text{ s}^{-1}$, rate not	Rutter et al., 2012 ¹⁴⁷
		aerosol (SOA)		affected by SOA	
$\mathrm{Hg}^{2+}(\mathrm{aq}) \to \mathrm{Hg}^{0}(\mathrm{g})$	Lab, model	Water/Magnetite, $pH = 4.77$ -	Ambient	3 - $16 \times 10^{-3} \text{s}^{-1}$; rate increases for increasing	Wiatrowski et al.,
		6.73		magnetite SA and pH, decreases for increasing	2009^{148}
				[Cl ⁻]	
$Hg(OH)_2 (aq) + (s)-OH \rightarrow (s)-$	Lab, model	Water/Goethite or Hematite	296	$150 \text{ M}^{-1} \text{ s}^{-1}$ (Goethite); $188 \text{ M}^{-1} \text{ s}^{-1}$ (Hematite);	Amirbahman et al.,
$OHg^+ + H_2O + OH^-$		or γ -alumina, pH = 6.3 -8.1		$0.190 \text{M}^{-1} \text{s}^{-1} (\gamma \text{-alumina})$	2013 ⁸³
$Hg(OH)_2 (aq) + (s)-OH \rightarrow (s)-$	Lab, model	Water/Goethite or Hematite	296	$3.15 \times 10^{-4} \text{s}^{-1}$ (Goethite); $2.50 \times 10^{-4} \text{s}^{-1}$	
$OHg^+ + H_2O + OH^-$		or γ -alumina, pH = 6.3 - 8.1		(Hematite); $6.10 \times 10^{-5} \text{ s}^{-1}$ (γ -alumina)	
$Hg(OH)_2(aq) + FeOH^+(aq) \rightarrow Hg^0$	Lab	Water/Goethite or Hematite	296	78.2 $M^{-1} s^{-1}$ (Goethite); 52.0 $M^{-1} s^{-1}$ (Hematite);	
(g)		or γ -alumina, pH = 6.3 - 8.1		$1.80 \text{ M}^{-1} \text{ s}^{-1}$ (γ -alumina)	
$Hg(OOCCH_2S)(aq) \rightarrow Hg^0 + HgS$	Lab	Water/HgS nanoparticles, pH	296 ± 2	$(2.3 \pm 0.4) \times 10^{-5} \text{ s}^{-1} \text{ (without K}^+\text{)}$	Si and Ariya,
(s) + prod.		= 4.0		$(6.2 \pm 0.6) \times 10^{-5} \text{ s}^{-1} ([\text{K}^+] = 0.02 \text{ M})$	2015 ¹⁴⁹
Hg-DOM (aq) + HS \rightarrow HgS(s) +	Lab	Water/HgS nanoparticles, pH	298	Increasing DOM concentrations inhibited	Deonarine and Hsu-
$DOM + H^+$		= 7.5		HgS(s) growth rates	Kim, 2009 ¹⁵⁰

$\text{Hg-DOM}(aq) + \text{HS} \rightarrow \text{HgS}(s) +$	Lab	Water/HgS nanoparticles, pH	295 ± 2	3 subgroups of Hg^{2+} : 60% react readily with	Slowey, 2010 ¹⁵¹
$DOM + H^+$		$= 7.0 \pm 0.2$		sulfide, 20% react slowly (inhibited by DOM),	
				and 20% do not react at all	
	Lab	Water/HgS nanoparticles, pH	Ambient	More hydrophobic compounds at lower	Gerbig et al.,
		$= 6.5 \pm 0.1$, low [Hg]:[DOM]		[Hg]:[DOM]. Structure of HgS(s) is nanoscale	2011 ¹⁵²
				or disordered metacinnabar	
HgS (s) + Cl ⁻ + $h\nu \rightarrow Hg^{0}_{(ad)}$	Lab	Water/ α -HgS Pt electrode,		HgS(s) reduction to Hg ⁰ _(ad) requires NaCl,	Anaf <i>et al.</i> , 2013 ¹⁵³
		1 M NaCl		visible radiation	
$HgCl_{2(ad)} \to Hg^0 + Cl_2$	Lab	Activated carbon/Air	448 - 548	$[(3.0\pm0.3)\times10^4]~exp[\text{-}(9.75\pm0.56)\times10^4/\text{RT}]$	Bentley et al.,
					2013 ¹⁵⁴
		FeCl ₃ /Air	448 - 548	$[(1.7\pm0.1)\times10^8]~\text{exp}[\text{-}(1.157\pm0.053)\times$	
				10 ⁵ /RT]	

^a TMT-15 is a 15 % aqueous solution of Trimercapto-s-triazine, a trisodium salt (C₃N₃S₃Na₃)

Additional information ¹⁵⁵:

- In the reactions listed, (s)- is used to denote surface bound groups.
- For comparative discussion of Hg⁰ (g) oxidation surface mechanisms (Langmuir-Hinshelwood, Eley-Rideal, Mars-Maessen), see Presto and Granite ¹²⁵
- For large-scale fluxes to/from ocean, land, and anthropogenic sources, see Lindberg *et al* ¹⁵⁶
- For detailed photochemical information of mercury reactions in solid, liquid, and gas phases, see Zhang ⁵¹
- Concentrations of [Hg⁰ (aq)] in various northern lakes: Peretyazhko *et al.*¹¹³
- Large compilation of Henry's Law values for atmospherically relevant species: Sander, 1999.¹⁵⁷

- Other possible catalysis surfaces: Au, Ag, Cu, Ir, Pd, C (fly ash, thief carbon) (Presto and Granite ¹²⁵), Fe₂O₃, iron oxide—Ca(OH), FeS₂ (Wu *et al.* ¹⁴²), TiO₂ -SiO₂ (Li *et al.* ¹⁴³), CuCl₂ (Li *et al.* ¹²⁷), RuO₂ (Yan *et al.* ¹⁵⁸), CuO-TiO₂ (Xu *et al.* ¹⁵⁹). Expensive catalysts can often be deposited over a bed of Al₂O₃, TiO₂, or other comparatively cheaper metal oxides.
- Other sorbents for aqueous Hg^{2+} include: thiol-functionalized Zn-doped biomagnetite particles (He *et al.* ¹⁶⁰), attapulgite clay, granular Cu + S, Fe + S (Gibson *et al.* ¹⁶¹), magnetic powdered activated carbon (Faulconer *et al.* ¹⁶²), nanozeolites (Alijani *et al.* ¹⁶³)
- Hg²⁺ (aq) complexes with: CH₃⁻, Cl⁻, H₂O, HCO₃⁻, CO₃⁻, SO₄⁻, OH⁻, fulvic acid, humic acid, oxalate, citrate,...
- Detailed discussion of Hg emissions and deposition to/from soil, see Schlüter¹¹², Grigal¹⁰⁶, and Gabriel and Williamson¹⁶⁴ (includes some details of aquatic Hg distribution).
- Estimated cost of removing mercury from coal fire plant (using SCR catalyst): 29,000 USD lb⁻¹ (Turchi ⁸⁷). Aerosol pH = 2–5;
 Surface water (lake, river, ocean) pH = 6–8.
- For a detailed review of Hg reactions and fluxes in the cryosphere, see Durnford and Dastoor ¹⁶⁵ and Mann *et al.* ¹⁰⁵.
- For recent density functional theory studies (DFT) on reactions and sorption of mercury, see Castro *et al.* ¹⁶⁶, Lim *et al.* ¹⁶⁷, Sun *et al.* ¹⁶⁸, Lim and Wilcox ¹⁶⁹, Suarez Negreira and Wilcox ¹⁷⁰.

Case Study: Mercury content and occurrence in coal

If the mercury content of coal is known together with the specifications of control technology, then reported coal consumption and/or sales data can be used to develop a bottom-up emissions inventory to better constrain the regional and global impact of mercury emissions related to coal-fired power production. Over the past decades the scientific community has made a large effort to measure the mercury content of coal from the major coal-producing regions, world-wide ¹⁷¹. Although measured mercury contents in coal range from 1 ppb to 330 ppm, the majority of coals sampled contain less than 1 ppm Hg. The average Hg contents for regions studied typically range between 70 and 240 ppb Hg (Supplementary Material Figure 1). Regional Hg coal contents are step-averages of available data starting with the highest resolution possible (*i.e.*, seam averages \rightarrow basin averages \rightarrow regional or country average) weighted by the number of measurements in each dataset. Despite considerable inter-basin variability in coal Hg content, it is relatively constant worldwide, with notable exceptions in Eastern Europe and Southern China. Results from Austria and Ukraine tend to be early in the compiled dataset ^{171a,b} and it is possible that they are elevated due to unaccounted-for analytical blanks. High interlaboratory variability in measured Hg in coal suggests that the naturally observed variability in coal Hg may be due to either heterogeneity in coal seams or to the comparison of differing analytical techniques ^{171u}. The estimated worldwide average Hg content of coal, from the compiled data is $(3\pm 1)\times 10^2$ ppb, consistent with previous estimates ¹⁷². Statistical differences were not found between varying coal ranks (i.e. anthracite $[(2.2\pm0.9)\times10^2 \text{ ppb}]$ vs. bituminous $[(1.3\pm0.9)\times10^2 \text{ ppb}]$ vs. lignite $[(1.3\pm0.8)\times10^2$ ppb] vs. sub-bituminous $[(0.7\pm0.4)\times10^2$ ppb]), with the exception of anthracite vs. sub-bituminous coals. Supplementary Material Figure 1 summarizes the average mercury content in coal (in ppb, by mass) binned by country and/or region.

The mercury content of coal typically correlates well with the quantity of pyritic sulfur present ^{171ar,173}, suggesting that Hg is associated with epigenetic pyrites. Leaching experiments on coals also

found that Hg is mainly associated with sulfides and to a lesser extent with organic compounds, and infrequently with silicates and carbonates ^{171y,171au,174}. However, high silicate-associated Hg contents have been found in the presence of igneous intrusions into coal seams ^{171au,174}. Additionally, SEM-EDX analyses of southwestern Chinese coal suggest the association of Hg with low-temperature hydrothermal minerals related to gold mineralization ¹⁷⁵. In most cases, Hg is associated with denser fractions of the bulk coal ^{171f,171y}, allowing for significant Hg reductions via the physical cleaning of coal prior to combustion. Coal cleaning has been shown to reduce the Hg coal content by 12-78% (average of 37%) ^{171z}.

Supplementary Material Figure 1 The average mercury content in coal (in ppb, by mass) binned by country and/or region. Error bars are equal to one standard deviation from the mean. Despite 25

considerable inter- and intra-regional variability, the mercury content in coal worldwide is typically on the order of 10² ppb. (AUS=Australia, AUT=Austria, BRA=Brazil, CAN=Canada, CHN = China, COL=Colombia, DEU=Germany, IDN=Indonesia, IRN=Iran, JPN=Japan, KOR=Korea, POL=Poland, RUS=Russia (Siberia), ZAF=South Africa, GBR=Great Britain and Scotland, UKR=Ukraine, USA=United States of America, VEN=Venezuela)

Mercury Isotopes in Coal

One emerging field of study in coal Hg is the fingerprinting of coal via mercury isotopes ^{171bi,176}. Mercury has isotopes that are influenced by either mass dependent fractionation (MDF) or mass independent fractionation (MIF), and the combination of MDF and MIF can be used to trace Hg from coal through the environment. The isotopes Hg-199 and Hg-201 undergo MIF and are not expected to be influenced by combustion, and may be traced back to their source coal and the associated Hg emitter ^{171bi,176}. Hg-202 abundance (expressed in per-mil as δ^{202} Hg) ranges from -3 to 0.77 ‰, Hg-199 abundance (Δ^{199} Hg) ranges from -2.3 to 0.38 ‰ and Hg-201 (Δ^{201} Hg) abundance from -1.2 to 0.25 ‰ ^{171bi,176}. Data plotted in Δ^{201} Hg- Δ^{199} Hg space have a slope of 1 – 1.1, consistent with the photoreduction of Hg²⁺ prior to coal formation. The δ^{202} Hg- Δ^{199} Hg signatures of different coalproducing regions and different seams within a given region have been shown to be distinct ^{171bi,176}. The mercury isotope signature of pyrites in coal is unfractionated with respect to Hg standards ^{176b} suggesting that Hg may be hydrothermal in origin, and that Hg isotopes may also be used to distinguish between epigenetic and syngeneic Hg in a given coal sample.

Mercury Mass Balance For Coal-Fired Power Plants

The local and regional impact of coal combustion processes depends not only on the mercury content of coal but also on the flow of mercury throughout the flue of the power plant. Numerous studies have established mercury mass balances for individual coal fire power plants (CFPPs) in order to track the fate of mercury released during combustion. The rate and chemical makeup of mercury emissions from CFPPs has been found to depend on a wide range of parameters, such as boiler type, coal rank, flue gas temperature, carbon, sulfur and the chlorine content of coal, and the presence of pollutant controls such as electrostatic precipitators (ESPs) and/or fabric filters (FFs) for particulates, flue gas desulphurization (FGD) units and selective catalytic reduction (SCR) units for NO_x. Despite the wide variety of variables that exist, some general conclusions can be made. For example, the quantity of residual mercury in bottom ash or slag collected in the boiler after combustion is very low, 0.04 - 7% (average of $1\pm 2\%$) ^{171h,171k,1,171q,171v,171az,177}, suggesting that the overwhelming majority of Hg trapped in coal is released to the flue during combustion. At combustion temperatures this Hg will be predominately Hg⁰ but is expected to repartition to Hg²⁺ and Hg(p) as temperatures decrease ^{171ab,178}.

If an SCR is installed, the flue gas will likely pass from the boiler through the SCR; mercury speciation measurements indicate that Hg^0 is converted efficiently to Hg^{2+} within the SCR ^{171az,177e,179}. The flue gas then typically passes through an ESP and/or FF baghouse, wherein the overwhelming majority of Hg(p) is removed ^{171ab,171az,179b,180}, resulting in the average reductions in total mercury of $30(\pm 30)\%$. The proportion of total Hg captured onto fly ash in the ESP/FF has been shown to correlate well with the carbon content and surface area of the fly ash ^{171ao,181}. Pulverized coal boilers produced fly ash with higher surface area than cyclone or stoke ash boilers ^{181d}, promoting higher Hg capture in the ESP/FF. Some oxidation of elemental mercury to Hg^{2+} occurs across the ESP/FF, with rates appearing to depend on the Cl content of the coal being burnt ^{171ab,171aq,180b,182}. Fabric filter bag houses have been shown to capture higher quantities of particulates than ESPs due to a higher surface area, and may also promote greater conversion of Hg^0 to Hg^{2+} ^{177g}. Hg capture by fly ash in the ESP is temperature sensitive, with a greater Hg uptake as the temperature decreases ^{181c}.

When installed, flue gas desulphurization units downstream of particulate pollutant controls efficiently remove Hg^{2+} from the gas stream 171q,171ab,171ab,171ab,171az,ba,178a,179b,180 with average total mercury reductions of $30(\pm 20)$ %. The rate of Hg^{2+} capture depends on the liquid-to-gas ratio in the FGD 183 . Hg^{0} may also be reemitted from captured Hg^{2+} in the FGS, possibly via reaction with sulfite (HSO₃⁻) in the FGD slurry 184 . The stack mercury speciation of gases emitted from a CFPP equipped with both ESP and FGD would be anticipated to consist predominately of Hg^{0} 171ba,171bf,177f,g,178b .

In 1999, the U.S. EPA issued an Information Collection Request (ICR) with regards to mercury emissions from U.S. power plants, including mercury speciation of emissions. The speciation of mercury in the plume of a power plant will control whether CFPP emissions are a source of local pollution (Hg(p) and Hg²⁺) or regional/global pollution (Hg⁰). An analysis of the EPA ICR data confirmed that Hg speciation varies widely depending on the pollution controls installed, with Hg⁰ ranging from 23 to 96% of emissions, Hg²⁺ 2.7 to 76.4% of emissions and Hg(p) from 0.4 to 2% of emissions ¹⁸⁵. For comparison, the global average speciation of emissions is thought to be 50:40:10 Hg⁰: Hg²⁺:Hg(p) from CFPP ¹⁸⁶.

In-plume measurements of mercury after emission are rare in the literature. ^{171j} studied the plume of a CFPP by helicopter and found that the Hg speciation shifts from 90:10 Hg(p):Hg(g) (i.e. $Hg^0 + Hg^{2+}$) near the stacks to essentially 100% Hg(g) at a distance (22 km), possibly due solely to dilution with ambient air containing minor quantities of Hg(p). A multi-year ground-level monitoring campaign of Hg speciation from CFPP in the southern US found discrepancies in lesser quantities of Hg^{2+} and greater quantities of Hg^0 in-plume than expected based on estimated emissions from nearby plants ¹⁸⁷. The authors attributed the discrepancy to in-plume reduction of Hg^{2+} although the in-stack vs. in-plume comparison relied on national average Hg emissions ratios that may not have been appropriate for the CFPPs studied. ¹⁸⁸ also observed lower Hg^{2+} in the plume of a CFPP than expected based on recent in-stack Hg speciation measurements, although in-plume Hg⁰ concentrations were

consistent with in-stack emissions. The authors attributed the discrepancy to Hg^{2+} chiefly due to biases in Hg measurement techniques although corrections for said biases were insufficient to completely account for differences in Hg^{2+} . Recent work by ¹⁸⁹ found that root mean square errors and biases in modeled local mercury deposition near coal-fired power plants decreased significantly when the emitted mercury speciation was shifted from the average speciation of 50:40:10 to 90:8:2 Hg^{0} : $Hg^{2+}:Hg(p)$

References

- (1) Hall, B.; Schager, P.; Ljungström, E. Water, Air & Soil Pollution 1995, 81, 121.
- (2) Raofie, F.; Snider, G.; Ariya, P. A. Can. J. Chem. 2008, 86, 811.
- (3) Auzmendi-Murua, I.; Castillo, A.; Bozzelli, J. W. J. Phys. Chem. A 2014, 118, 2959.
- (4) Goodsite, M. E.; Plane, J.; Skov, H. *Environ. Sci. Technol.* **2004**, *38*, 1772.
- (5) Ariya, P. A.; Khalizov, A.; Gidas, A. J. Phys. Chem. A 2002, 106, 7310.
- (6) Sumner, A.; Spicer, C.; Satola, J.; Mangaraj, R.; Cowen, K.; Landis, M.; Stevens, R.; Atkeson, T. In *Dynamics of Mercury Pollution on Regional and Global Scales:*; Pirrone, N., Mahaffey, K., Eds.; Springer US, 2005.
- Liu, S.-H.; Yan, N.-Q.; Liu, Z.-R.; Qu, Z.; Wang, H. P.; Chang, S.-G.; Miller, C. *Environ. Sci. Technol.* 2007, 41, 1405.
- (8) Wilcox, J.; Okano, T. *Energy & Fuels* **2011**, *25*, 1348.
- (9) Raofie, F.; Ariya, P. J. Phys. IV 2003, 107, 1119.
- (10) Khalizov, A. F.; Viswanathan, B.; Larregaray, P.; Ariya, P. A. J. Phys. Chem. A 2003, 107, 6360.
- (11) Goodsite, M. E.; Plane, J.; Skov, H. Environ. Sci. Technol. 2012, 46, 5262.

- (12) Donohoue, D. L.; Bauer, D.; Cossairt, B.; Hynes, A. J. *The Journal of Physical Chemistry A* 2006, *110*, 6623.
- (13) Shepler, B. C.; Balabanov, N. B.; Peterson, K. A. J. Chem. Phys. 2007, 127, 164304.
- (14) Greig, G.; Gunning, H.; Strausz, O. J. Chem. Phys. 1970, 52, 3684.
- (15) Dibble, T.; Zelie, M.; Mao, H. Atmospheric Chemistry and Physics 2012, 12, 10271.
- Wang, F.; Saiz-Lopez, A.; Mahajan, A.; Gómez Martín, J.; Armstrong, D.; Lemes, M.; Hay, T.;
 Prados-Roman, C. *Atmospheric Chemistry and Physics* 2014, 14, 1323.
- (17) Qu, Z.; Yan, N.; Liu, P.; Chi, Y.; Jia, J. Environ. Sci. Technol. 2009, 43, 8610.
- (18) Menke, R.; Wallis, G. Am. Ind. Hyg. Assoc. J. 1980, 41, 120.
- (19) Schroeder, W. H.; Yarwood, G.; Niki, H. Water, Air & Soil Pollution 1991, 56, 653.
- (20) Sliger, R. N.; Kramlich, J. C.; Marinov, N. M. Fuel Process. Technol. 2000, 65, 423.
- (21) Yan, N.-Q.; Liu, S.-H.; Chang, S.-G.; Miller, C. Ind. Eng. Chem. Res. 2005, 44, 5567.
- (22) Agarwal, H.; Romero, C. E.; Stenger, H. G. Fuel Process. Technol. 2007, 88, 723.
- (23) Wilcox, J. J. Phys. Chem. A 2009, 113, 6633.
- (24) Krishnakumar, B.; Helble, J. J. Fuel Process. Technol. 2012, 94, 1.
- (25) Liu, J.; Qu, W.; Yuan, J.; Wang, S.; Qiu, J.; Zheng, C. Energy & Fuels 2009, 24, 117.
- (26) Widmer, N.; Cole, J.; Seeker, W. R.; Gaspar, J. Combustion Science Technology 1998, 134, 315.
- (27) Wilcox, J.; Robles, J.; Marsden, D. C.; Blowers, P. Environ. Sci. Technol. 2003, 37, 4199.
- (28) Donohoue, D. L.; Bauer, D.; Hynes, A. J. *The Journal of Physical Chemistry A* **2005**, *109*, 7732.
- (29) Horne, D.; Gosavi, R.; Strausz, O. J. Chem. Phys. 1968, 48, 4758.
- (30) Senior, C. L.; Sarofim, A. F.; Zeng, T.; Helble, J. J.; Mamani-Paco, R. *Fuel Process. Technol.* **2000**, *63*, 197.
- (31) Niki, H.; Maker, P.; Savage, C.; Breitenbach, L. J. Phys. Chem. 1983, 87, 4978.
- (32) Lin, C.-J.; Pehkonen, S. O. Atmos. Environ. 1999, 33, 2067.

- (33) Sommar, J.; Hallquist, M.; Ljungström, E.; Lindqvist, O. Journal of Atmospheric Chemistry **1997**, 27, 233.
- (34) Thomsen, E. L.; Egsgaard, H. Chem. Phys. Lett. 1986, 125, 378.
- (35) McKeown, F.; Iyer, R. S.; Rowland, F. J. Phys. Chem. 1983, 87, 3972.
- (36) Pal, B.; Ariya, P. A. Environ. Sci. Technol. 2004, 38, 5555.
- (37) Bauer, D.; D'Ottone, L.; Campuzano-Jost, P.; Hynes, A. J. Photochem. Photobiol., A 2003, 157, 247.
- (38) Sommar, J.; Gårdfeldt, K.; Strömberg, D.; Feng, X. Atmos. Environ. 2001, 35, 3049.
- (39) Hall, B.; Schager, P.; Weesmaa, J. Chemosphere 1995, 30, 611.
- (40) Hall, B. In Mercury as a Global Pollutant; Springer, 1995.
- (41) P'yankov, V. Zhur. Obshchev. Khim 1949, 224.
- (42) Slemr, F.; Schuster, G.; Seiler, W. Journal of Atmospheric Chemistry 1985, 3, 407.
- (43) Iverfeldt, Å.; Lindqvist, O. Atmos. Environ. 1986, 20, 1567.
- (44) Xu, M.; Qiao, Y.; Liu, J.; Zheng, C. Powder Technol. 2008, 180, 157.
- (45) Snider, G.; Raofie, F.; Ariya, P. A. PCCP 2008, 10, 5616.
- (46) Snider, G.; Ariya, P. Water, Air & Soil Pollution 2012, 223, 4397.
- (47) Tokos, J. J.; Hall, B. o.; Calhoun, J. A.; Prestbo, E. M. Atmos. Environ. 1998, 32, 823.
- (48) Munthe, J.; McElroy, W. Atmospheric Environment, Part A 1992, 26, 553.
- (49) Xiao, Z.; Strömberg, D.; Lindqvist, O. In Mercury as a Global Pollutant; Springer, 1995.
- (50) Buxton, G. V.; Greenstock, C. L.; Helman, W. P.; Ross, A. B. Journal of Physical Chemical *Reference Data* **1988**, *17*, 513.
- (51) Zhang, H. In Recent Developments in Mercury Science; Springer, 2006.
- (52) Gårdfeldt, K.; Sommar, J.; Strömberg, D.; Feng, X. Atmos. Environ. 2001, 35, 3039.
- (53) Lin, C.-j.; Pehkonen, S. O. Atmos. Environ. 1997, 31, 4125.

- (54) Hines, N. A.; Brezonik, P. L. Mar. Chem. 2004, 90, 137.
- (55) Pehkonen, S. O.; Lin, C.-J. Journal of the Air Waste Management Association 1998, 48, 144.
- (56) Munthe, J.; Xiao, Z.; Lindqvist, O. Water, Air & Soil Pollution 1991, 56, 621.
- (57) Van Loon, L.; Mader, E.; Scott, S. L. The Journal of Physical Chemistry A 2000, 104, 1621.
- (58) Zepp, R. G.; Hoigne, J.; Bader, H. Environ. Sci. Technol. 1987, 21, 443.
- Jonsson, S.; Skyllberg, U.; Nilsson, M. B.; Westlund, P.-O.; Shchukarev, A.; Lundberg, E.;
 Björn, E. *Environ. Sci. Technol.* 2012, 46, 11653.
- (60) Graham, A. M.; Bullock, A. L.; Maizel, A. C.; Elias, D. A.; Gilmour, C. C. Appl. Environ.
 Microbiol. 2012, 78, 7337.
- (61) Chiasson-Gould, S. A.; Blais, J. M.; Poulain, A. J. Environ. Sci. Technol. 2014, 48, 3153.
- (62) Amyot, M.; McQueen, D. J.; Mierle, G.; Lean, D. R. Environ. Sci. Technol. 1994, 28, 2366.
- (63) O'Driscoll, N.; Siciliano, S.; Lean, D.; Amyot, M. Environ. Sci. Technol. 2006, 40, 837.
- (64) Whalin, L. M.; Mason, R. P. Anal. Chim. Acta 2006, 558, 211.
- (65) Zhang, Y.; Sun, R.; Ma, M.; Wang, D. Chemosphere 2012, 87, 171.
- (66) Zhang, H.; Lindberg, S. E. *Environ. Sci. Technol.* **2001**, *35*, 928.
- (67) Philippidis, G.; Malmberg, L.-H.; Hu, W.-S.; Schottel, J. Appl. Environ. Microbiol. 1991, 57, 3558.
- (68) Lalonde, J. D.; Amyot, M.; Orvoine, J.; Morel, F. M.; Auclair, J.-C.; Ariya, P. A. *Environ. Sci. Technol.* 2004, *38*, 508.
- (69) Lalonde, J. D.; Amyot, M.; Kraepiel, A. M. L.; Morel, F. M. M. *Environ. Sci. Technol.* 2001, *35*, 1367.
- (70) Amyot, M.; Gill, G. A.; Morel, F. M. Environ. Sci. Technol. 1997, 31, 3606.
- (71) Lalonde, J. D.; Amyot, M.; Kraepiel, A. M.; Morel, F. M. Environ. Sci. Technol. 2001, 35, 1367.

- (72) Poulain, A. J.; Garcia, E.; Amyot, M.; Campbell, P. G.; Raofie, F.; Ariya, P. A. *Environ. Sci. Technol.* 2007, 41, 1883.
- (73) Zheng, W.; Liang, L.; Gu, B. Environ. Sci. Technol. 2011, 46, 292.
- (74) Gong, J.; Zhou, T.; Song, D.; Zhang, L.; Hu, X. Anal. Chem. 2010, 82, 567.
- (75) Wang, Z.; Pehkonen, S. O. Atmos. Environ. 2004, 38, 3675.
- (76) Lin, C.-J.; Pehkonen, S. O. Atmos. Environ. 1998, 32, 2543.
- (77) Munthe, J. Atmospheric Environment, Part A 1992, 26, 1461.
- (78) Zheng, W.; Lin, H.; Mann, B. F.; Liang, L.; Gu, B. Environ. Sci. Technol. 2013, 47, 12827.
- (79) Xiao, Z.; Munthe, J.; Strömberg, D.; Lindqvist, O. In *Mercury Pollution: Integration and Synthesis*; Watras, C., Huckabee, J., Eds., 1994.
- (80) Zheng, W.; Hintelmann, H. J. Phys. Chem. A 2010, 114, 4246.
- (81) Si, L.; Ariya, P. A. Chemosphere **2011**, 84, 1079.
- (82) Si, L.; Ariya, P. A. Environ. Sci. Technol. 2008, 42, 5150.
- (83) Amirbahman, A.; Kent, D. B.; Curtis, G. P.; Marvin-DiPasquale, M. C. *Environ. Sci. Technol.* **2013**, 47, 7204.
- (84) Li, Z.; Sun, X.; Luo, J.; Hwang, J. J. Miner. Mater. Charact. Eng. 2002, 1, 79.
- (85) Lindberg, S.; Meyers, T.; Taylor, G.; Turner, R.; Schroeder, W. Journal of Geophysical Research Atmospheres 1992, 97, 2519.
- (86) Schroeder, W.; Anlauf, K.; Barrie, L.; Lu, J.; Steffen, A.; Schneeberger, D.; Berg, T. *Nature* 1998, *394*, 331.
- (87) Turchi, C. S. "Novel Process for Removal and Recovery of Vapor-Phase Mercury," ADA Technologies, Inc.(US), 2000.
- (88) Hsi, H.-C.; Chen, C.-T. Fuel **2012**, *98*, 229.
- (89) Morris, E. A.; Kirk, D. W.; Jia, C. Q.; Morita, K. Environ. Sci. Technol. 2012, 46, 7905.

- (90) Karatza, D.; Lancia, A.; Prisciandaro, M.; Musmarra, D.; Mazziotti di Celso, G. *Fuel* 2013, *111*, 485.
- (91) Tan, Z.; Xiang, J.; Su, S.; Zeng, H.; Zhou, C.; Sun, L.; Hu, S.; Qiu, J. J. Hazard. Mater. 2012, 239, 160.
- (92) Habibi, M.; Habibian, G.; Haghighipoor, M. Fresenius Environ. Bull. 2003, 12, 808.
- (93) Lee, T. G.; Biswas, P.; Hedrick, E. Ind. Eng. Chem. Res. 2004, 43, 1411.
- (94) Rodriguez, S.; Almquist, C.; Lee, T. G.; Furuuchi, M.; Hedrick, E.; Biswas, P. Journal of the Air Waste Management Association 2004, 54, 149.
- (95) Li, Y.; Wu, C.-Y. Environmental Engineering Science 2007, 24, 3.
- (96) Hegyi, J.; Horvath, O. In From Colloids to Nanotechnology; Springer, 2004.
- (97) Skubal, L.; Meshkov, N. J. Photochem. Photobiol., A 2002, 148, 211.
- (98) Prairie, M. R.; Evans, L. R.; Stange, B. M.; Martinez, S. L. *Environ. Sci. Technol.* 1993, 27, 1776.
- (99) Lahoutifard, N.; Poissant, L.; Scott, S. L. Sci. Total Environ. 2006, 355, 118.
- (100) Lindberg, S. E.; Brooks, S.; Lin, C.-J.; Scott, K. J.; Landis, M. S.; Stevens, R. K.; Goodsite, M.;
 Richter, A. *Environ. Sci. Technol.* 2002, *36*, 1245.
- (101) Ferrari, C. P.; Dommergue, A.; Boutron, C. F.; Jitaru, P.; Adams, F. C. *Geophys. Res. Lett.* **2004**, *31*.
- (102) Ariya, P. A.; Dastoor, A. P.; Amyot, M.; Schroeder, W. H.; Barrie, L.; Anlauf, K.; Raofie, F.;
 Ryzhkov, A.; Davignon, D.; Lalonde, J. *Tellus B* 2004, *56*, 397.
- (103) Lalonde, J. D.; Amyot, M.; Doyon, M. R.; Auclair, J. C. Journal of Geophysical Research -Atmospheres 2003, 108.

- (104) Faïn, X.; Grangeon, S.; Bahlmann, E.; Fritsche, J.; Obrist, D.; Dommergue, A.; Ferrari, C. P.;
 Cairns, W.; Ebinghaus, R.; Barbante, C. *Journal of Geophysical Research Atmospheres* 2007, *112*.
- (105) Mann, E.; Mallory, M.; Ziegler, S.; Tordon, R.; O'Driscoll, N. Sci. Total Environ. 2014, in press.
- (106) Grigal, D. Environ. Rev. 2002, 10, 1.
- (107) Zhang, H. a.; Lindberg, S. Journal of Geophysical Research Atmospheres 1999, 104, 21889.
- (108) Tong, Y.; Eichhorst, T.; Olson, M. R.; Rutter, A. P.; Shafer, M. M.; Wang, X.; Schauer, J. J. *Atmospheric Research* **2014**, *138*, 324.
- (109) Tong, Y.; Eichhorst, T.; Olson, M. R.; McGinnis, J. E.; Turner, I.; Rutter, A. P.; Shafer, M. M.;
 Wang, X.; Schauer, J. J. *Environmental Science: Processes and Impacts* 2013, *15*, 1883.
- (110) Dommergue, A.; Bahlmann, E.; Ebinghaus, R.; Ferrari, C.; Boutron, C. Anal. Bioanal. Chem.2007, 388, 319.
- (111) Mann, E.; Ziegler, S.; Mallory, M.; O'Driscoll, N. J. Environ. Rev. 2014, 22, in press.
- (112) Schlüter, K. Environ. Geol. 2000, 39, 249.
- (113) Peretyazhko, T.; Charlet, L.; Grimaldi, M. Eur. J. Soil Sci. 2006, 57, 190.
- (114) Kuss, J.; Zülicke, C.; Pohl, C.; Schneider, B. Global Biogeochem. Cycles 2011, 25.
- (115) Andersson, M. E.; Sommar, J.; Gårdfeldt, K.; Jutterström, S. Mar. Chem. 2011, 125, 1.
- (116) Soerensen, A. L.; Mason, R. P.; Balcom, P. H.; Sunderland, E. M. *Environ. Sci. Technol.* 2013, 47, 7757.
- (117) Fain, X.; Ferrari, C. P.; Gauchard, P. A.; Magand, O.; Boutron, C. *Geophys. Res. Lett.* 2006, *33*, 4.
- (118) Medhekar, A. K.; Rokni, M.; Trainor, D. W.; Jacob, J. Chem. Phys. Lett. 1979, 65, 600.
- (119) Skare, I.; Johansson, R. Chemosphere 1992, 24, 1633.
- (120) Roy, S.; Rochelle, G. T. Chem. Eng. Sci. 2004, 59, 1309.

- (121) Zhao, Y.; Mann, M. D.; Pavlish, J. H.; Mibeck, B. A.; Dunham, G. E.; Olson, E. S. *Environ. Sci. Technol.* 2006, 40, 1603.
- (122) Zhao, L. L.; Rochelle, G. T. Chem. Eng. Sci. 1999, 54, 655.
- (123) Qu, Z.; Yan, N.; Liu, P.; Jia, J.; Yang, S. J. Hazard. Mater. 2010, 183, 132.
- (124) Schofield, K. Chem. Phys. Lett. 2004, 386, 65.
- (125) Presto, A. A.; Granite, E. J. Environ. Sci. Technol. 2006, 40, 5601.
- (126) Li, H.; Wu, C.-Y.; Li, Y.; Zhang, J. Appl. Catal., B 2012, 111, 381.
- (127) Li, H.; Wu, C.-Y.; Li, L.; Li, Y.; Zhao, Y.; Zhang, J. Fuel 2013, 113, 726.
- (128) Blythe, G. M. "Field Testing of a Wet FGD Additive for Enhanced Mercury Control-Pilot-Scale Test Results," United States Department of Energy, 2006.
- (129) Norton, G. A.; Yang, H.; Brown, R. C.; Laudal, D. L.; Dunham, G. E.; Erjavec, J. *Fuel* 2003, 82, 107.
- (130) Sheu, G.-R.; Mason, R. P. Journal of Atmospheric Chemistry 2004, 48, 107.
- (131) Wang, R. G.; Dillon, M.; Spence, D. J. Chem. Phys. 1983, 79, 1100.
- (132) Abu-Daabes, M. A.; Pinto, N. G. Chem. Eng. Sci. 2005, 60, 1901.
- (133) Ie, I.-R.; Chen, W.-C.; Yuan, C.-S.; Hung, C.-H.; Lin, Y.-C.; Tsai, H.-H.; Jen, Y.-S. J. Hazard.
 Mater. 2012, 217, 43.
- (134) Li, X.; Pérez-Hernández, J.; Haque, S. A.; Durrant, J. R.; Palomares, E. J. Mater. Chem. 2007, 17, 2028.
- (135) Sheela, T.; Nayaka, Y. A.; Viswanatha, R.; Basavanna, S.; Venkatesha, T. *Powder Technol.* **2012**, *217*, 163.
- (136) Sen, A. K.; De, A. K. Water Res. 1987, 21, 885.
- (137) Wade, C. B.; Thurman, C.; Freas, W.; Student, J.; Matty, D.; Mohanty, D. K. Fuel Process. Technol. 2012, 97, 107.

- (138) Mohan, D.; Gupta, V.; Srivastava, S.; Chander, S. Colloids Surface, A 2000, 177, 169.
- (139) Javadian, H.; Ghaemy, M.; Taghavi, M. Journal of Material Science 2014, 49, 232.
- (140) Barrosse-Antle, L. E.; Xiao, L.; Wildgoose, G. G.; Baron, R.; Salter, C. J.; Crossley, A.;
 Compton, R. G. New J. Chem. 2007, 31, 2071.
- (141) Wu, S.; Uddin, A.; Sasaoka, E. Fuel 2006, 85, 213.
- (142) Wu, S.; Ozaki, M.; Uddin, M. A.; Sasaoka, E. Fuel 2008, 87, 467.
- (143) Li, Y.; Murphy, P.; Wu, C.-Y. Fuel Process. Technol. 2008, 89, 567.
- (144) Granite, E. J.; Pennline, H. W.; Hargis, R. A. Ind. Eng. Chem. Res. 2000, 39, 1020.
- (145) Jain, A.; Beg, M. Polyhedron 1995, 14, 2293.
- (146) Skodras, G.; Diamantopoulou, I.; Sakellaropoulos, G. Desalination 2007, 210, 281.
- (147) Rutter, A.; Shakya, K.; Lehr, R.; Schauer, J.; Griffin, R. Atmos. Environ. 2012, 59, 86.
- (148) Wiatrowski, H. A.; Das, S.; Kukkadapu, R.; Ilton, E. S.; Barkay, T.; Yee, N. Environ. Sci. Technol. 2009, 43, 5307.
- (149) Si, L.; Ariya, P. A. Chemosphere 2015, 119, 467.
- (150) Deonarine, A.; Hsu-Kim, H. Environ. Sci. Technol. 2009, 43, 2368.
- (151) Slowey, A. J. Geochim. Cosmochim. Acta 2010, 74, 4693.
- (152) Gerbig, C. A.; Kim, C. S.; Stegemeier, J. P.; Ryan, J. N.; Aiken, G. R. *Environ. Sci. Technol.* **2011**, 45, 9180.
- (153) Anaf, W.; Janssens, K.; De Wael, K. Angew. Chem. 2013, 125, 12800.
- (154) Bentley, M.; Fan, M.; Dutcher, B.; Tang, M.; Argyle, M. D.; Russell, A. G.; Zhang, Y.; Sharma, M.; Swapp, S. M. J. Hazard. Mater. 2013, 262, 642.
- (155) Ariya, P. A.; Peterson, K.; Snider, G.; Amyot, M. In *Mercury fate and transport in the global atmosphere*; Springer, 2009.

- (156) Lindberg, S.; Bullock, R.; Ebinghaus, R.; Engstrom, D.; Feng, X.; Fitzgerald, W.; Pirrone, N.;
 Prestbo, E.; Seigneur, C. Ambio 2007, 36, 19.
- (157) Sander, R. "Compilation of Henry's law constants for inorganic and organic species of potential importance in environmental chemistry," Max-Planck Institute of Chemistry, Air Chemistry Department Mainz, Germany, 1999.
- (158) Yan, N.; Chen, W.; Chen, J.; Qu, Z.; Guo, Y.; Yang, S.; Jia, J. Environ. Sci. Technol. 2011, 45, 5725.
- (159) Xu, W.; Wang, H.; Zhou, X.; Zhu, T. Chem. Eng. J. 2014, 243, 380.
- (160) He, F.; Wang, W.; Moon, J.-W.; Howe, J.; Pierce, E. M.; Liang, L. ACS Applied Material Interfaces 2012, 4, 4373.
- (161) Gibson, B. D.; Ptacek, C. J.; Lindsay, M. B.; Blowes, D. W. Environ. Sci. Technol. 2011, 45, 10415.
- (162) Faulconer, E. K.; von Reitzenstein, N. V. H.; Mazyck, D. W. J. Hazard. Mater. 2012, 199, 9.
- (163) Alijani, H.; Beyki, M. H.; Mirzababaei, S. N. Desalination 2014, 1.
- (164) Gabriel, M. C.; Williamson, D. G. Environmental and Geochemical Health 2004, 26, 421.
- (165) Durnford, D.; Dastoor, A. Journal of Geophysical Research Atmospheres 2011, 116, 30.
- (166) Castro, L.; Dommergue, A.; Ferrari, C.; Maron, L. Atmos. Environ. 2009, 43, 5708.
- (167) Douglas, T. A.; Loseto, L. L.; Macdonald, R. W.; Outridge, P.; Dommergue, A.; Poulain, A.; Amyot, M.; Barkay, T.; Berg, T.; Chetelat, J.; Constant, P.; Evans, M.; Ferrari, C.; Gantner, N.; Johnson, M. S.; Kirk, J.; Kroer, N.; Larose, C.; Lean, D.; Nielsen, T. G.; Poissant, L.; Rognerud, S.; Skov, H.; Sorensen, S.; Wang, F. Y.; Wilson, S.; Zdanowicz, C. M. *Environmental Chemistry* 2012, *9*, 321.
- (168) Sun, L.; Zhang, A.; Su, S.; Wang, H.; Liu, J.; Xiang, J. Chem. Phys. Lett. 2011, 517, 227.
- (169) Lim, D.-H.; Wilcox, J. Environ. Sci. Technol. 2013, 47, 8515.

- (170) (a) Suarez Negreira, A.; Wilcox, J. Journal of Physical Chemistry C 2013, 117, 24397(b)
 Suarez Negreira, A.; Wilcox, J. Journal of Physical Chemistry C 2013, 117, 1761.
- (171) (a) Brandenstein, M.; Janda, I.; Schroll, E. Tschermaks mineralogische und petrographische Mitteilungen 1960, 7, 260(b) Fleischer, M. "Mercury in the Environment," 1970(c) Joensuu, O. I. Science 1971, 172, 1027(d) O'Gorman, J.; Suhr, N.; Walker, P. Appl. Spectrosc. 1972, 26, 44(e) Rook, H. L.; Lafleur, P. D.; Gills, T. E. Environ. Lett. 1972, 2, 195(f) Schultz, H.; Hattman, I.; Bocher, W. Proceedings of 18 Annual Meeting of Division of Fuel Chemistry of the American Chemical Society, 1973; p 108(g) Heinrichs, H. Fresenius' Zeitschrift für analytische Chemie 1975, 273, 197(h) Klein, D. H.: Andren, A. W.: Carter, J. A.: Emery, J. F.: Feldman, C.; Fulkerson, W.; Lvon, W. S.; Ogle, J. C.; Talmi, Y. Environ. Sci. Technol. 1975, 9. 973(i) Ondov, J. M.; Ragaini, R. C.; Biermann, A. H. Environ. Sci. Technol. 1979, 13, 946(j) Lindberg, S. E. Atmospheric Environment (1967) 1980, 14, 227(k) Heinrichs, H. Environ. Technol. 1982, 3, 127(1) Klusek, C.; Miller, K.; Heit, M. Environ. Int. 1983, 9, 139(m) Bullock, O. R.; Atkinson, D.; Braverman, T.; Civerolo, K.; Dastoor, A.; Davignon, D.; Ku, J. Y.; Lohman, K.: Myers, T. C.: Park, R. J. Journal of Geophysical Research: Atmospheres (1984– 2012) 2008, 113(n) Häsänen, E.; Pohjola, V.; Hahkala, M.; Zilliacus, R.; Wickstroem, K. Sci. Total Environ. 1986, 54, 29(o) Community, E. C. a. S. "Trace Element Emissions from Fluidised Bed Combustion Units "Coal Research Establishment, 1987-1989(p) Finkelman, R.; Palmer, C.; Krasnow, M.; Aruscavage, P.; Sellers, G.; Dulong, F. Energy & Fuels 1990, 4, 755(q) Meij, R. Water, Air & Soil Pollution 1991, 56, 21(r) Katrinak, K. A.; Benson, S. A.; Henke, K. R.; Hassett, D. J. Fuel Process. Technol. 1994, 39, 35(s) Bool, L. E. I.; Helble, J. J. Energy & Fuels 1995, 9, 880(t) Chu, P.; Porcella, D. Water, Air & Soil Pollution 1995, 80, 135(u) Jr, J. L.; DeVito, M. S.; Bilonick, R. A. J. Air Waste Manage. Assoc. 1996, 46, 317(v) Aunela-Tapola, L.; Hatanpää, E.; Hoffren, H.; Laitinen, T.; Larjava, K.; Rasila, P.; Tolvanen, M.

Fuel Process, Technol. 1998, 55, 13(w) Vasiliev, O.; Obolenskiv, A.; Yagolnitser, M. Sci. Total Environ. 1998, 213, 73(x) Clemens, A.; Damiano, L.; Gong, D.; Matheson, T. Fuel 1999, 78, 1379(y) Feng, X.; Hong, Y. Fuel 1999, 78, 1181(z) Toole-O'Neil, B.; Tewalt, S.; Finkelman, R.; Akers, D. Fuel 1999, 78, 47(aa) Galbreath, K. C.; Zygarlicke, C. J. Fuel Process. Technol. 2000, 65, 289(ab) Laudal, D. L.; Pavlish, J. H.; Graves, J.; Stockdill, D. J. Air Waste Manage. 2000. 50. 1798(ac) Maxwell: U.S. Environmental Protection Assoc. Agency: http://www.epa.gov/ttn/atw/combust/utiltox/utoxpg.htmlN, 2000; Vol. 2014(ad) Pollock, S.; Goodarzi, F.; Riediger, C. International Journal of Coal Geology 2000, 43, 259(ae) Wang, Q.; Shen, W.: Ma, Z. Environ. Sci. Technol. 2000, 34, 2711(af) Demir. I. In Environmental Challenges and Greenhouse Gas Control for Fossil Fuel Utilization in the 21st Century; Springer, 2002(ag) Feng, X.; Sommar, J.; Lindqvist, O.; Hong, Y. Water, Air & Soil Pollution 2002, 139, 311(ah) Boylan, H. M.; Cain, R. D.; Kingston, H. S. J. Air Waste Manage. Assoc. 2003, 53, 1318(ai) Goodarzi, F. J. Environ. Monit. 2004, 6, 792(aj) Goodarzi, F.; Goodarzi, N. International Journal of Coal Geology 2004, 58, 251(ak) Sakulpitakphon, T.; Hower, J. C.; Schram, W. H.; Ward, C. R. International Journal of Coal Geology 2004, 57, 127(al) Hackley, P. C.; Warwick, P. D.; González, E. International Journal of Coal Geology 2005, 63, 68(am) Hower, J. C.; Mastalerz, M.; Drobniak, A.; Ouick, J. C.; Eble, C. F.; Zimmerer, M. J. International Journal of Coal Geology 2005, 63, 205(an) Goodarzi, F. International Journal of Coal Geology 2006, 65, 17(ao) Goodarzi, F.; Reves, J.; Schulz, J.; Hollman, D.; Rose, D. International Journal of Coal Geology 2006, 65, 26(ap) Park, J. Y.; Won, J. H.; Lee, T. G. Energy & Fuels 2006, 20, 2413(aq) Lei, C.; Yufeng, D.; Yugun, Z.; Liguo, Y.; Liang, Z.; Xianghua, Y.; Oiang, Y.; Yiman, J.; Xuchang, X. Fuel 2007, 86, 603(ar) Liu, G.; Zheng, L.; Zhang, Y.; Oi, C.; Chen, Y.; Peng, Z. International Journal of Coal Geology 2007, 71, 371(as) Tang, S.; Feng, X.; Qiu, J.; Yin, G.; Yang, Z. Environ. Res. 2007, 105, 175(at) Zheng, L.; Liu,

G.; Chou, C.-L. Sci. Total Environ. 2007, 384, 374(au) Zheng, L.; Liu, G.; Oi, C.; Zhang, Y.; Wong, M. International Journal of Coal Geology 2008, 73, 139(av) Kim, J.-H.; Pudasainee, D.; Yoon, Y.-S.: Son, S.-U.: Seo, Y.-C. Ind. Eng. Chem. Res. 2009, 49, 5197(aw) Kolker, A.: Panov, B. S.; Panov, Y. B.; Landa, E. R.; Conko, K. M.; Korchemagin, V. A.; Shendrik, T.; McCord, J. D. International Journal of Coal Geology 2009, 79, 83(ax) Shah, P.; Strezov, V.; Nelson, P. F. Energy & Fuels 2009, 24, 205(av) Silva, L.: Oliveira, M.: Da Boit, K.: Finkelman, R. Environ. Geochem. Health 2009, 31, 475(az) Tao, Y.; Zhuo, Y.; Zhang, L.; Chen, C.; Xu, X. Asia - Pacific Journal of Chemical Engineering 2010, 5, 756(ba) Wang, S.; Zhang, L.; Li, G.; Wu, Y.; Hao, J.; Pirrone, N.; Sprovieri, F.; Ancora, M. Atmospheric Chemistry and Physics 2010, 10, 1183(bb) Wang, X. Energy, Exploration & Exploitation 2010, 28, 513(bc) Yuan, C.-G.; Li, Q.-P.; Feng, Y.-N.; Chang, A.-L. Environ. Monit. Assess. 2010, 167, 581(bd) Jongwana, L. T.; Crouch, A. M. Fuel 2012, 94, 234(be) Tang, Q.; Liu, G.; Yan, Z.; Sun, R. Fuel 2012, 95, 334(bf) Zhang, L.; Wang, S.; Meng, Y.; Hao, J. Environ. Sci. Technol. 2012, 46, 6385(bg) Wichliński, M.; Kobyłecki, R.; Bis, Z. Archives of Environmental Protection 2013, 39, 141(bh) Ohki, A.; Taira, M.; Hirakawa, S.; Haraguchi, K.; Kanechika, F.; Nakajima, T.; Takanashi, H. Microchem. J. 2014, 114, 119(bi) Yin, R.; Feng, X.; Chen, J. Environ. Sci. Technol. 2014, submited.

- (172) Yudovich, Y. E.; Ketris, M. International Journal of Coal Geology 2005, 62, 107.
- (173) (a) Finkelman, R. B. Fuel Process. Technol. 1994, 39, 21(b) Kolker, A.; FINKELMAN, R. B.
 Coal Perparation 1998, 19, 133.
- (174) Wu, D.; Liu, G.; Sun, R.; Chen, S. Environmental Earth Sciences 2014, 71, 4989.
- (175) Dai, S.; Zeng, R.; Sun, Y. International Journal of Coal Geology 2006, 66, 217.
- (176) (a) Biswas, A.; Blum, J. D.; Bergquist, B. A.; Keeler, G. J.; Xie, Z. *Environ. Sci. Technol.* 2008, 42, 8303(b) Lefticariu, L.; Blum, J. D.; Gleason, J. D. *Environ. Sci. Technol.* 2011, 45, 1724(c)

Sun, R.; Sonke, J.; Heimbürger, L.-E.; Belkin, H.; Liu, G.; Shome, D.; Cukrowska, E.; Liousse, C.; Pokrovski, O.; Streets, D. G. *Environ. Sci. Technol.* **2014**, *48*, 7660.

- (177) (a) Billings, C. E.; Matson, W. R. Science 1972, 176, 1232(b) Billings, C. E.; Sacco, A. M.; Matson, W. R.; Griffin, R. M.; Coniglio, W. R.; Harley, R. A. J. Air Pollut. Control Assoc. 1973, 23, 773(c) Kaakinen, J. W.; Jorden, R. M.; Lawasani, M. H.; West, R. E. Environ. Sci. Technol. 1975, 9, 862(d) Fahlke, J.; Bursik, A. In Mercury as a Global Pollutant; Springer, 1995(e) Ito, S.; Yokoyama, T.; Asakura, K. Sci. Total Environ. 2006, 368, 397(f) Guo, X.; Zheng, C.-G.; Xu, M. Energy & Fuels 2007, 21, 898(g) Zhang, L.; Zhuo, Y.; Chen, L.; Xu, X.; Chen, C. Fuel Process. Technol. 2008, 89, 1033.
- (178) (a) Meij, R. *Fuel Process. Technol.* 1994, *39*, 199(b) Yokoyama, T.; Asakura, K.; Matsuda, H.;
 Ito, S.; Noda, N. *Sci. Total Environ.* 2000, *259*, 97.
- (179) (a) Cheng, C.-M.; Hack, P.; Chu, P.; Chang, Y.-N.; Lin, T.-Y.; Ko, C.-S.; Chiang, P.-H.; He, C.-C.; Lai, Y.-M.; Pan, W.-P. *Energy & Fuels* 2009, 23, 4805(b) Hsi, H.-C.; Lee, H.-H.; Hwang, J.-F.; Chen, W. J. Air Waste Manage. Assoc. 2010, 60, 514.
- (180) (a) Meij, R.; Vredenbregt, L. H.; Winkel, H. t. J. Air Waste Manage. Assoc. 2002, 52, 912(b)
 Lee, S. J.; Seo, Y.-C.; Jang, H.-N.; Park, K.-S.; Baek, J.-I.; An, H.-S.; Song, K.-C. Atmos.
 Environ. 2006, 40, 2215.
- (181) (a) Hower, J. C.; Trimble, A. S.; Eble, C. F.; Palmer, C. A.; Kolker, A. *Energy Sources* 1999, 21, 511(b) Gibb, W.; Clarke, F.; Mehta, A. *Fuel Process. Technol.* 2000, 65, 365(c) Hower, J. C.; Finkelman, R. B.; Rathbone, R. F.; Goodman, J. *Energy & Fuels* 2000, 14, 212(d) Senior, C. L.; Johnson, S. A. *Energy & Fuels* 2005, 19, 859(e) López-Antón, M. A.; Díaz-Somoano, M.; Martínez-Tarazona, M. R. *Ind. Eng. Chem. Res.* 2007, 46, 927.
- (182) Cao, Y.; Duan, Y.; Kellie, S.; Li, L.; Xu, W.; Riley, J. T.; Pan, W.-P.; Chu, P.; Mehta, A. K.;
 Carty, R. *Energy & Fuels* 2005, *19*, 842.

- (183) Senior, C. L.; Helble, J. J.; Sarofim, A. F. Fuel Process. Technol. 2000, 65, 263.
- (184) Wu, C.-l.; Cao, Y.; Dong, Z.-b.; Cheng, C.-m.; Li, H.-x.; Pan, W.-p. Journal of Coal Science and Engineering (China) 2010, 16, 82.
- (185) EPRI "An Assessment of Mercury Emissions from U.S. Coal-Fired Power Plants," EPRI, 2000.
- (186) Pacyna, E. G.; Pacyna, J. M.; Steenhuisen, F.; Wilson, S. Atmos. Environ. 2006, 40, 4048.
- (187) Edgerton, E. S.; Hartsell, B. E.; Jansen, J. J. Environ. Sci. Technol. 2006, 40, 4563.
- (188) Deeds, D. A.; Banic, C. M.; Lu, J.; Daggupaty, S. Journal of Geophysical Research: Atmospheres 2013, 118, 4919.
- (189) Kos, G.; Ryzhkov, A.; Dastoor, A.; Narayan, J.; Steffen, A.; Ariya, P.; Zhang, L. Atmospheric Chemistry and Physics 2013, 13, 4839.