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Background 

The aim of this investigation is to determine the relationship between the period of oscillation of an 

oscillating cantilever and the weight of the said cantilever. Experimentally, this will be accomplished by 

measuring the period of oscillation of a chosen cantilever as added masses are incremented. The 

frequency of the cantilever will then be determined through its period of oscillation.  

I first became interested in the prospect of the cantilever’s properties during the coronavirus pandemic 

lockdowns. Due to the extra free time that I had, I spent some more time on my hobbies, one of which 

was at the pool with my cousins. Since I enjoy thrill rides, I thought that trying out the diving board 

would be an interesting experience. While we were at the pool, I noticed and interesting phenomena: after 

each person leaped off the springboard, the time it took for the springboard to return to its non-oscillating 

resting state would occasionally vary. Perhaps it was the summer heat, but this is what first got me 

interested in the effects of different forces on the movements of cantilevers. From common sense, I 

inferred that the weight of the diver probably played the largest effect, but then I wondered: could there 

be a difference between different cantilevers, rather than just the applied force of the divers? As I thought 

about this, I found more relations to this topic and my life. When me and my teammates construct our 

robot for robotics club, we often tend to alter the robot’s arm (changing the type of metal from steel, a 

heavy metal, to aluminum, a lighter one) to make its movements under stress faster. I had never 

considered how the weight of the arm itself could affect how it oscillates. This then led me to think of 

industrial uses- what contributed to the usage of certain beam materials, which seem to not oscillate as 

much for load bearing walls? After these considerations, I have decided to investigate how the weight of 

the cantilever itself can affect the frequency of its oscillation. 

As an essential part of mechanical engineering, and thus almost all construction, cantilevers can be found 

almost anywhere. A cantilever is defined as “any rigid construction extending horizontally well beyond 

its vertical support,” usually formed as a beam1. Within that, cuboidal-shaped beams are by far the most 

commonly occurring, due to their practical uses, and as such, this investigation will be limited to them. A 

cantilever, nature, has two different sides: one where it is fixed (usually due to a clamp or other binding 

mechanism), and one where it is free, giving it range of movement2. 

As this investigation carries out the deflection, or a displacement of the cantilever’s free end from the 

initial position, of the cantilever, it is important to recognize what causes the deflection to occur. While 

there are many different weight distributions, or loads, that can cause an increase in weight at the 

cantilever’s end, thus causing it to deflect, for the purposes of this investigation, only the point load will 

be used to maintain consistency and stability. A point load is when the acting force, the load, is 

concentrated at a specific point on the beam- in this case, the cantilever’s end3. 

                                                             
1 “Cantilever Definition & Meaning.” Dictionary.com, Dictionary.com, https://www.dictionary.com/browse/cantilever. 
2 Hool, George A.; Johnson, Nathan Clarke (1920). "Elements of Structural Theory - Definitions". Handbook of Building 
Construction (Google Books). vol. 1 (1st ed.). New York: McGraw-Hill. p. 2. 
3 “ASCE/SEI 7-05 Minimum Design Loads for Buildings and Other Structures”. American Society of Civil Engineers. 2006. 
p. 1. ISBN 0-7844-0809-2. 



A cantilever’s deflection is caused when the beam has been depressed to a certain level below the original 

point, caused by the load weight of mg/Newtons 4. In accordance with Newton’s 3rd law, there is an equal 

and opposing reaction force present to act upwards, in the opposite direction of gravitational force. Once 

the load mass has been removed, the reaction force is released in order to stabilize the cantilever back to 

equilibrium, causing it to oscillate 5. 

When the load force is affecting the cantilever’s end, however, the cantilever itself remains in a state of 

precarious equilibrium. As the load force increases, so too does the reacting restoring force 6. Using the 

equation F = PA (F represent force, P represents Pressure, and A represents Area), and with the area being 

affected, in this case the body of the cantilever itself, remaining constant, there exists a direct correlation 

between the applied force and the resulting pressure in the cantilever itself 7. 

The Young’s Modulus is a measure of the elasticity of any beam or cantilever, measured in pressure units 

(as the Young’s Modulus increases, so does the pressure in any beam) 8. This value is heavily dependent 

on the material of the cantilever. The equation below produces a rough approximation of the Young’s 

Modulus value 9.  

𝑌 =  
 σ

ε
≈

16𝜋2𝑀𝐿

𝑏𝑑3𝑇2
  

σ = force per unit surface (pressure units), ε = proportional deformation (change in length divided by 

original length) (dimensionless), M = mass (kg), L = exposed length of cantilever (m), b = width of 

cantilever (m), d = thickness of cantilever (m), T = period of oscillation (s) 

As the load force on the cantilever increases (seen in this investigation as an increase in the cantilever 

weight), so too should the pressure in the cantilever itself 10. Thus, by artificially increasing the pressure 

in the beam through additional weights, we should be able to measure a change in the effective Young’s 

Modulus value.    

In order to determine the predicted relationship between the results and the manipulated variable, first the 

relationship of a cantilever’s oscillation must be related with the oscillation behavior of another tool. In 

this case, the investigation of an oscillating cantilever bears significant similarity with one of an 

oscillating spring system. A spring system is one where the end of a spring, usually positioned towards 

the ground, is displaced a certain length and then released. Both contain a restoring force that aims to 

bring the end of the oscillator back to the initial positions. Hence, while they initially seem dissimilar, we 

can utilize the equation used for the period of a spring system in this investigation11. 

                                                             
4 Cantilever Bridge Facts, Design and History. (n.d.). Retrieved August 26, 2017, from 
http://www.historyofbridges.com/facts-about-bridges/cantilever-bridge 
5 Newton, Isaac, 1642-1727. Newton's Principia: the Mathematical Principles of Natural Philosophy. New-York: Daniel Adee, 

1846. 
6 Giordano, Nicholas (2009–2013). "Chapter 11, Harmonic Motion and Elasticity". College Physics: Reasoning and 
Relationships. Volumes 1 and 2 (1st, 2nd ed.). Independence, KY: Cengage Learning. p. 360. 
7 Beltrami, Edward J. (1998) [1988]. "Chapter 1, Simple Dynamic Models". Mathematics for Dynamic Modeling (2nd ed.). San 
Diego, CA: Academic Press. pp. 3–7. 
8 Jastrzebski, D. (1959). Nature and Properties of Engineering Materials (Wiley International). John Wiley & Sons, Inc. 
9 “Physics - Young's Modulus.” University of Birmingham, University of Birmingham, 

https://www.birmingham.ac.uk/teachers/study-resources/stem/Physics/youngs-modulus.aspx.  
10 Boyd, Euan J.; Uttamchandani, Deepak (2012). "Measurement of the Anisotropy of Young's Modulus in Single-Crystal 
Silicon". Journal of Microelectromechanical Systems. Institute of Electrical and Electronics Engineers. 21 (1): 243–249. 
11 "13.1: The motion of a spring-mass system". Physics LibreTexts. 17 September 2019. 



𝑇𝑠 = 2𝜋√
𝑚

𝑘
  

The equation modeling the period of oscillation of a spring can be seen above. In this equation, Ts stands 

for the period of oscillation (s), m stands for the mass loaded to the spring (kg), and k represents the 

spring constant (N/m).  

From this equation, we can extrapolate a similar, but not identical equation, used for the cantilever 

testing12. 

𝑇𝑐 = 2𝜋√
𝑚

𝑘
 

In this equation, Tc stands for the period of oscillation (s), m stands for the mass loaded to the cantilever 

(kg), and k represents the stiffness, or effective spring constant of the cantilever (N/m). As the 

investigation calls for a manipulation of the cantilever’s mass, in this case m, by rearranging the equation 

to remove the radical we can get the equation: 

𝑇𝑐
2 = 4𝜋2 ∗

𝑚

𝑘
 

𝑇𝑐
2 =

4𝜋2

𝑘
∗ 𝑚 

𝑇𝑐
2

𝑚
=

4𝜋2

𝑘
 

Hypothesis 

Thus, we can determine that through testing the relationship between a cantilever’s mass and period of 

oscillation, the slope of the linearized line of the period of oscillation vs cantilever mass will be 

equivalent to 4π2 divided by the effective spring constant of the cantilever, caused due to a decrease in the 

elasticity in the cantilever, modeled by an increase in the cantilever’s effective Young’s Modulus. 

Independent Variable 

During this investigation, I will be using the mass of the cantilever as the independent variable. 

Considering the cantilever’s mass as negligible, I will be adding weights in increments of 100g, with a 

maximum of 700 grams. I will then repeat this process in 7 trials for the most accurate results.  

Dependent Variable 

The resulting variable that will be used in data analysis will be the period of oscillation of the cantilever, 

measured in seconds. In order to maintain experimental accuracy, I will be measuring the period of 10 

oscillations through frame-by-frame video analysis, then dividing by 10 to calculate each oscillation’s 

period to ensure that sources of error in any one oscillation do not become prevalent. 

 

 

                                                             
12 "Simple harmonic motion | Formula, Examples, & Facts". Encyclopedia Britannica 



 

 

Controlled Variables 

Variable 

Controlled 

Why it’s important to control How this experiment  

controls/monitors the  

variable 
Maximum 

Amplitude of 
Oscillation 

(Initial point) 

If the cantilever was released from varying initial points throughout the 

experiment, it would lead to major inconsistencies, as the total distance 
covered during the oscillation would be non-consistent, thereby 

affecting the total time of oscillation as well. 

The cantilever will be 

released 35 cm ± 0.05 
cm lower than the initial 

resting point; this is the 
maximum amplitude of 

the cantilever as well. 

Length of 
Cantilever used 

By keeping the length of the cantilever used consistent, any 
inconsistencies caused by the altered tension in the cantilever (due to a 

longer or shorter length) will be mitigated. Additionally, by keeping 
the length of the cantilever consistent using a G-clamp, errors caused 

by increased mass of the cantilever itself leading to a greater 
gravitational/applied force will not occur. 

70% of full meter stick 
hanging off table, or 70 

cm ± 0.05 cm 

Force Applied As the force applied contributes to the overall oscillation of the 
cantilever, keeping it consistent will allow for consistency in the 

overall distance traveled, the tension in the cantilever itself and also the 
reacting restoring force ultimately causing the cantilever to oscillate. 

0.5 kg applied, or ≈ 4.91 
N to 5 N of force will be 

utilized. 

Cantilever By keeping the cantilever that is used for the investigation consistent, 
the length, width, thickness, material and much more will be kept 

consistent; all physical characteristics of the cantilever will be the 
same. This means that external variables such as the force applied will 

stay consistent along with the initial amplitude and so on. 

Meterstick, commonly 
found hard wood 

 
width: 2.5 cm or 0.025 m 

depth: 0.65 cm or 0.0065 

m 

 

Materials 

1. A cantilever (meter stick) 
2. Tool for marking 

3. 100-gram weights 

4. Tape 

5. Table (surface for cantilever to oscillate off of) 
6. Clamp 

7. Stopwatch 

8. Ruler 

 

Procedure 

1. First, fasten the bare cantilever flat to the table using the clamp with of it 7/10ths length 

hanging off of the table. 

2. Using the second ruler, measure a fixed distance down of 35 cm. This will be the distance that 

the ruler is pulled down to for each trial to ensure equal force is applied. 

3. Pull the ruler down to the marked length. 

4. Release the ruler and measure the period of oscillation using the stopwatch. 

5. Repeat steps 3 and 4, 7 additional times to ensure the data’s veracity. 

6. Increment the ruler’s mass by adding 100g weights evenly. 



7. Fasten the weights to the ruler using a minimal amount of tape. 

8. Repeat steps 3-6 until the ruler’s mass reaches 600 grams. 

 

Diagram 

 

 

Safety/Ethical/Environmental Issues 

After carefully considering all known variables and assessing the investigation’s methodology, there were 

no major risks posed to anyone involved. The oscillating cantilever with the masses added could pose a 

threat due to its fast-moving speed combined with weight, however, written instructions along with 

physical safety barriers to ensure bystander safety have been implemented. In addition, weights have been 

safely secure to the oscillating cantilever using adhesives. Cushions (seen in diagram) have been placed 

around the experiment zone to ensure safety as well. This is an overall safe experiment with little to no 

safety, ethical and environmental concerns to be raised. 

 



Data/Calculations/Graphs 

Table 1; Raw data showing period of oscillation for 10 period of oscillations (s) vs mass loaded on the cantilever (g) 

 
Average Time Taken for 10 periods of oscillation (s) 

± 0.01s  

Mass 

Loaded on 

Cantilever 
(g) Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 

Average 

Trial 
Time (s) 

Average 

Uncertainty 
(±)  

0 1.71 1.75 1.68 1.72 1.72 1.69 1.73 1.714 0.070 

100 5.21 5.26 5.22 5.19 5.26 5.25 5.23 5.231 0.062 

200 7.38 7.45 7.40 7.42 7.44 7.39 7.43 7.416 0.072 

300 8.99 9.03 9.01 8.97 9.05 8.99 9.00 9.005 0.060 

400 10.51 10.45 10.49 10.46 10.44 10.50 10.47 10.474 0.066 

500 11.77 11.71 11.75 11.74 11.72 11.79 11.76 11.749 0.078 

600 12.82 12.84 12.87 12.86 12.88 12.79 12.83 12.841 0.076 

 

Sample Data Calculation (0 g): 

The average period of oscillation in column 9 was calculated using the following formula: 

𝑎𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
𝑎1 +  𝑎2 + 𝑎3 + 𝑎4 + 𝑎5 + 𝑎6 + 𝑎7

7
 

=
1.71 + 1.75 + 1.68 + 1.72 + 1.72 + 1.69 + 1.73

7
 

= 1.714286 

= 1.71 (2 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 𝑓𝑖𝑔𝑢𝑟𝑒𝑠)  

The average uncertainty in column 10 was calculated using the following formula: 

𝑢𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = (
0.01

𝑎1

+
0.01

𝑎2

+
0.01

𝑎3

+
0.01

𝑎4

+
0.01

𝑎5

+
0.01

𝑎6

+
0.01

𝑎7

) ∗ 𝑎𝑎𝑣𝑒𝑟𝑎𝑔𝑒  

= (
0.01

1.71
+

0.01

1.75
+

0.01

1.68
+

0.01

1.72
+

0.01

1.72
+

0.01

1.69
+

0.01

1.73
) ∗ 1.71 

=  0.070 (2 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 𝑓𝑖𝑔𝑢𝑟𝑒𝑠)  

In order to properly qualify the data, two main changes must be made to process it. First, each of the data 

values must be divided by 10, as the current values reflect the period of oscillation for 10 whole 

oscillations (in order to reduce possibilities of error). Second, the masses must be converted to kilograms 

from grams in order to be properly used in the final equation for data analysis. 

 

 

 

 



Table 2; Processed data for period of oscillation for 1 period of oscillation (s) vs mass loaded on the cantilever (kg) 

 

Average Time Taken for 1 period of oscillation (s) 

± 0.0001s  

Mass 

Loaded on 

Cantilever 
(kg) 

Trial 
1 

Trial 
2 

Trial 
3 

Trial 
4 

Trial 
5 

Trial 
6 

Trial 
7 

Average Trial 
Time (s) 

Average 

Uncertainty 
(± s)  

0.00 0.17 0.18 0.17 0.17 0.17 0.17 0.17 0.171 0.070 

0.10 0.52 0.53 0.52 0.52 0.53 0.53 0.52 0.524 0.062 

0.20 0.74 0.75 0.74 0.74 0.74 0.74 0.74 0.741 0.072 

0.30 0.90 0.90 0.90 0.90 0.91 0.90 0.90 0.901 0.060 

0.40 1.05 1.05 1.05 1.05 1.04 1.05 1.05 1.049 0.066 

0.50 1.18 1.17 1.18 1.17 1.17 1.18 1.18 1.176 0.078 

0.60 1.28 1.28 1.29 1.29 1.29 1.28 1.28 1.284 0.076 

In order to properly display the data spread, the average period of oscillation, the dependent variable, will 

be graphed along with the independent variable, the mass. 

Graph 1; Shows a quadratic relationship between average period of oscillation (s) and mass of cantilever (kg). The 

R2 value is very high, implying that the data is veritable. 

 

In order to determine whether the data increases by the predicted amount, we must recall the hypothesis. 

T2 / m must be equal to 4π2 divided by the effective spring constant of the cantilever. In order to linearize 

the equation according to the equation then, the average period of oscillation must be squared by the 

mass. 

 

 



 

Table 3; Shows a linearized values of average period of oscillation squared (s2) and mass of cantilever (kg). 

Mass Loaded on the 

Cantilever (kg) 

Average Trial Time squared 

(s2) 

Average Uncertainty (± s) 

0.00 0.029 0.024 

0.10 0.274 0.028 

0.20 0.550 0.038 

0.30 0.813 0.036 

0.40 1.010 0.044 

0.50 1.382 0.056 

0.60 1.649 0.059 
 

Graph 2; Shows a linear relationship between average period of oscillation squared (s2) and mass of cantilever (kg). 

 

Based on the prediction, the slope above of 2.7212, representing T2 / m, must be equal to 4π2 divided by 

k, the stiffness or effective spring constant of the cantilever. In order to calculate k, we must look at the 

units that would typically be used, N/m (as this equation is extrapolated from the period of an oscillating 

spring, k would originally be the spring constant and thus keeps the same units.  

Thus, we can determine the stiffness of the cantilever by using an application of Hooke’s Law, F = k*x, 

As Newtons are units of force and meters are units of length, k can thus be determined by dividing the 

total force applied over the maximum amplitude of oscillation. As the applied force was 5 Newtons, and 

the maximum amplitude of oscillation was 0.35 m, the effective spring constant of the cantilever equals 

5N/0.35m, or 14.28 N/m.  



Using this in the previously derived equation, plugging in 14.28 N/m for k, we get the following result of 

2.7635, which is the same as the slope of the equation, 2.7212, with a percent error of approximately ≈

1.5%. Thus, this result is statistically significant, shows that the period of oscillation of a cantilever 

increases with the mass just as the original equation predicts, and establishes the relationship between the 

two variables and qualifying the original hypothesis 13. 

The main factor causing this relationship is caused due to the pressure in the beam, namely measure by 

the Young’s Modulus of the beam. By examining trends in this value, we can further explain why mass 

and period of oscillation are related in such a way. 

Using the equation Y = (16π^2 ML)/ (bd^3 T^2) and remembering L = 0.7m, b = 0.025m and, d = 

0.0065m, discounting the inherent mass of the cantilever and using an arbitrarily small number (such as 

0.01 kg) to prevent errors with zero, we can determine the relative Young’s Modulus during each mass 

interval used: 

Table 4; The relationship between avg period of oscillation (s), mass of cantilever (kg), and Young’s Modulus (Pa) 

Mass Loaded on the 

Cantilever (kg) 

Average Period of Oscillation 

(s) 

Young’s Modulus (Pa) 

0.00 (used 0.01) 0.17 5.57 * 109  

0.10 0.52 5.95 * 109 

0.20 0.74 5.88 * 109 

0.30 0.90 5.96 * 109 

0.40 1.05 5.84 * 109 

0.50 1.17 5.88 * 109 

0.60 1.28 5.90 * 109 

 

Sample Calculation of Young’s Modulus (0.4 kg):  

𝑌 =  
 σ

ε
=

16𝜋2𝑀𝐿

𝑏𝑑3𝑇2
 

𝑌 =  
16𝜋2 (0.4 𝑘𝑔)(0.7 𝑚)

(0.025 𝑚)(0.0065 𝑚)3(1.05 𝑚)2
 

𝑌 =  5.84 ∗  109 𝑃𝑎 

Graph 3; Shows Young’s Modulus (Pa, 10^9) vs Mass (kg). The graph appears to display a zero-correlation 

relationship between the two variables. 

From Graph 3 (see below), we can see that discounting the first test value, there seems to be no positive 

or negative correlation between the mass of the cantilever and the Young’s Modulus of the cantilever 

during that mass interval (likely zero correlation). Thus, we can conclude that the effective Young’s 

Modulus of a cantilever has little to no bearing on its period of oscillation.  

 

                                                             
13 Error Propagation in Arithmetic Calculations. https://terpconnect.umd.edu/toh/models/ErrorPropagation.pdf 



 

Evaluation and Concluding Statements 

This was an experiment to apply the cantilever theory on an actual cantilever and determine the relationship between 

mass (kg) and period of oscillation (s), and to determine the effects of Young’s Modulus (Pa) on the results. After 

collecting and processing the data from the experiment, it can be concluded that the results only partially 

support the hypothesis. When observing the effects of the mass of the cantilever (kg) on the period of oscillation 

(s), there is a positive relationship between the two variables that follows the theoretically derived equation from the 

period of an oscillation Tc = 2π *√(m/k) , which is  

𝑇𝑐
2

𝑚
=

4𝜋2

𝑘
 

However, the Young’s Modulus (Pa) of the cantilever during any mass interval seems to have no effect on the 

period of oscillation, due to zero correlation between the variables being present. 

First, the average period of oscillation (s) was measured, stated in Table 1, which was then processed in Table 2. 

Then, by linearizing the data (shown in Table 3 and Graph 2), calculating the effective spring constant of the 

cantilever, and analyzing the trendline the relationship between the mass (kg) and period of oscillation squared (s2) 

was established. The data was then used for calculations in Young’s Modulus (Pa), seen in Table 4 and Graph 3. 

After statistical analysis, it was found that Young’s Modulus had no bearing on the relationship between the other 

two variables. While this could be caused due to a genuine non-relationship between the two variables, it is possible 

that this could be caused due to issues in procedure (see Sources of Error and Improvements). 

This research is significant for a multitude of reasons. Analysis of cantilever theory such as this investigation could 

not only benefit diving board manufacturers as they determine to what extent that they must make their products 

more resilient to continued deterioration caused by oscillation, it could also benefit industrial manufacturers in the 

construction of buildings, and how the applied mass of the people in the building affects the oscillation, and 

therefore deterioration, of building internals and foundations, all interesting ways of applying Physics to real life that 

capture my interest. The findings of how oscillation relates with the mass of the cantilever is consistent with the 

building strategies of many industrial companies, which is why many buildings have beams of very heavy materials, 

(especially near the foundations)- they oscillate much less and provide a much more stable foundation in carrying 

the building’s total weight. As a result, this experiment is not only consistent with fundamental Newtonian physics 



and Hooke’s principles of elastic restoring force but is also reflected in real world structures and designs due to its 

extremely practical nature. Real world applications are endless, and the principles examined here can ensure that 

oscillation of parts of any complex tool is kept to a minimum, prioritizing safety and efficiency. Some avenues of 

further research could be measuring to exactly what extent cantilever oscillation affects the deterioration of the 

cantilever itself, in the form of variables such as the overall deformation of the cantilever.  

 

Sources of Error and Improvements 

While the experiment was carried out with the utmost care and consideration, there are still large areas of 

improvement in methodology an investigation in hindsight. Overall, the experiment seems to have been conducted 

to an acceptable standard of accuracy and precision for an investigation of this scale. 

Weakness/Source of  

Error   

Significance Suggested Procedural  

Improvement  
Cantilever Strain – After being 

repeatedly deflected by a 
consistently powerful force with 

masses straining the body of the 
cantilever itself, it is possible that 

the strain may have caused damage 

to the cantilever which could have 
carried onto future measurements 

and unavoidable alteration to the 
final data.  

Low significance, as the cantilever is the core to 

the investigation, any significant damage to it 
could have an effect on the future measurements 

of the period of oscillation, thereby altering the 
final conclusion. However, as there were no 

visual alterations to the cantilever itself, no 

sounds or alternate signs of physical damage, it 
is safe to say that the cantilever was not heavily 

affected by the experiment’s procedure. 

Use a cantilever that is made 

from a sturdier material that 
is also equally as long and 

thick, such as a layered 
aluminum meterstick. 

Carefully observe the 

cantilever for deformation 
after every trial and restore 

it back to its original state if 
damage is indeed found. 

Parallax Error – Although video 
analysis software was employed 

when measuring the period of 
oscillation, it is possible that 

mistakes could have occurred 
during the actual recording of the 

video itself, leading to inconsistent 
measurements for the period of 

oscillation being taken. 

High significance, as it cannot be quantified in 
any other form than the base uncertainty 

accompanying any measurements and is a large  
portion of error in many experiments. However, 

it is an unlikely cause of error in this experiment 
because the camera was aligned directly in front 

of the cantilever, giving a near-perfect 
perpendicular viewing angle. Regardless, the 

factor of human error involved (ex: accidentally 
moving the camera a bit, causing misalignment) 

is present, causing its significance to rise. 

The best way to reduce this 
error’s significance would 

be to take multiple 
recordings simultaneously 

from different angles and 
average the data collected 

from each, and also having a 
helper to assist during data 

processing to ensure that all 
of the correct data is noted 

down. 

Mass Placement – Due to issues 

relating to funding and availability, 
the masses that were used in the 

experiment were all in 100gram 
increments. Regardless of how the 

masses were spaced, those points 

would become the most heavily 
weighed and might’ve increased the 

period of oscillation. 

Low significance, as while mass placement 

could have a significant error in other 
investigations that focus on placement and 

position, the current investigation is primarily 
focused on the overall mass, which then affects 

the gravitational restoring force. The equation of 

Fg = mg does not consider mass placement, so in 
this case, its effects are likely minimal. 

Acquire masses of much 

smaller increments and 
when each mass interval is 

progressed, add as many 
masses needed to reach the 

interval spaced on the 

cantilever evenly.  

Mass Size – As the masses 

themselves occupied physical space 
that was then added onto the 

material, there was a change in the 
total amount of oscillating material 

as the number of masses was 
incremented, which could have 

affected the calculation for the 
effective Young’s Modulus. 

Medium significance – While the additional 

material could have added additional resistance 
to slow down the period of oscillation through 

aerodynamic resistance and similar factors the 
masses were all small and did not protrude from 

the cantilever, meaning that the additional 
material most likely did not affect the 

calculations for the effective spring constant, and 
thus Young’s Modulus very much. 

Use masses of much smaller 

size and scale and place in 
indentations within the 

cantilever itself so that that 
the average material of the 

oscillating system is the 
same and external factors 

are thus unable to affect the 
cantilever’s oscillation. 
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