Electrostatic Kinetic Barriers in the Threading/Dethreading Motion of a Rotaxane-like Complex

Anayeli Carrasco-Ruiz and Jorge Tiburcio*
Departamento de Química
Centro de Investigación y de Estudios Avanzados (Cinvestav)
Avenida IPN 2508, Colonia Zacatenco, 07360, México D.F., México.
Tel: +52 5557473721
E-mail:jtiburcio@cinvestav.mx

TABLE OF CONTENTS

1. General
2. Synthesis and characterization of thread and rotaxane-like complexes
3. Thread acid-base solution behavior and $\mathrm{p} K_{\mathrm{a}}$ determination
4. Crown ether acid-base solution behavior and $\mathrm{p} K_{\mathrm{a}}$ determination
5. Model compound with pH -insensitive end groups
6. Reversibility of threading/dethreading process
7. Comparative table of chemical shifts at pH 1 and 7
8. Determination of equilibrium constants by UV/Vis dilution method
9. Van't Hoff plots
10. Determination of the rate constants by concentration-jump kinetic experiments
11. Eyring plots
12. Kinetic parameters for dethreading process

1. General

All chemicals were purchased from Aldrich and used without further purification. NMR spectra were recorded on a Jeol ECA 500 MHz , locked to the deuterated solvent. Mass spectra were obtained on an Agilent G1969A electrospray-ionization time-of-flight spectrometer. Single-crystal X-ray diffraction experiments were performed in an Enraf-Nonius Kappa diffractometer fitted with a CCD based detector using Mo_{α} radiation $(0.71073 \AA)$. Diffraction data and unit-cell parameters were consistent with the assigned space groups. The structures were solved by direct methods, completed by subsequent Fourier syntheses and refined with full-matrix least-squares methods against $\left|F^{2}\right|$ data. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were treated as idealized contributions. Scattering factors and anomalous dispersion coefficients are contained in the SHELXTL 5.03 program library. Ball-and-stick diagrams were prepared using DIAMOND 3.3. Stopped-flow experiments were performed in SX-20 from Applied Photophysics. Kinetic traces were fitted by using software Pro-Data SX by Applied Photophysics. Acid-base titration experiments and pH-measurements were followed on a Thermo Orion DualStar potentiometer using a micro pH electrode.

2. Synthesis and characterization of thread and rotaxane-like complexes

Synthesis of $\left[\mathbf{1} \cdot \mathbf{H}_{2}\right][\mathrm{Br}]_{4}$

$\left[\mathbf{1} \cdot \mathrm{H}_{2}\right][\mathrm{Br}]_{4}$
Compound $\left[1 \cdot \mathrm{H}_{2}\right][\mathrm{Br}]_{4}$ was synthesized by reacting $0.5 \mathrm{~g}(1 \mathrm{mmol})$ of $1,2-\mathrm{bis}\left(4,4^{\prime}-\right.$ bipyridinium $)$ ethane dibromide with $1.5 \mathrm{~g}(10 \mathrm{mmol})$ of 3-bromopropionic acid in 1 mL of water. The solution was brought to reflux for 24 h . The reaction mixture was cooled to room temperature. 15 mL of acetonitrile were added and a beige powder precipitated from the solution. The product was isolated via filtration and washed with acetonitrile to remove any unreacted 3-bromopropionic acid. Pure product was obtained after dried under vacuum. Yield: $0.73 \mathrm{~g}, 90 \%$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 298 \mathrm{~K}$): $\delta(\mathrm{ppm})=9.27\left(\mathrm{~d},{ }^{3} J_{b-c}=6.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 9.23\left(\mathrm{~d},{ }^{3} J_{e-d}=7.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{e}}\right), 8.70\left(\mathrm{~d},{ }^{3} J_{c-b}=7.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{c}}\right)$, $8.60\left(\mathrm{~d}, 4 \mathrm{H},{ }^{3} J_{d-e}=6.8 \mathrm{~Hz}, \mathrm{Hd}_{\mathrm{d}}\right), 5.55\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right), 5.02\left(\mathrm{t},{ }^{3} J_{f-g}=6.1 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Hf}^{2}\right)$, and $3.23\left(\mathrm{t},{ }^{3} J_{g-f}=6.1 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}_{g}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}(500 \mathrm{MHz}$, $\left.\left.\mathrm{D}_{2} \mathrm{O}\right), 278 \mathrm{~K}\right): \delta(\mathrm{ppm})=8.94\left(\mathrm{~d},{ }^{3} J_{b-c}=6.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Hb}_{\mathrm{b}}\right), 8.91\left(\mathrm{~d},{ }^{3} J_{e-d}=7.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{e}}\right), 8.36\left(d,{ }^{3} J_{c-b}=7.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{d}}\right), 8.26\left(\mathrm{~d},{ }^{3} J_{d-e}=6.8\right.$ $\left.\mathrm{Hz}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{c}}\right), 5.22\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right), 4.79\left(\mathrm{H}_{f}\right.$-overlapping with $\left.H D O\right)$, and $2.95\left(\mathrm{t},{ }^{3} J_{g-f}=6.1 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}_{g}\right)$. A $2.5 \times 10^{-3} \mathrm{M}$ solution of $\left[\mathbf{1} \cdot \mathrm{H}_{2}\right][\mathrm{Br}]_{4}$ in $\mathrm{D}_{2} \mathrm{O}$ renders a $\mathrm{pH}=3 .{ }^{13} \mathrm{C}$ NMR $\left(125.8 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 293 \mathrm{~K}\right): \delta(\mathrm{ppm})=173.80\left(\mathrm{C}_{\text {carbonyl}}\right), 151.73\left(\mathrm{C}_{\text {ipso }}\right), 149.90\left(\mathrm{C}_{\text {ipso }}\right), 146.27\left(\mathrm{C}_{\mathrm{b}}, \mathrm{C}_{\mathrm{e}}\right)$, $128.01\left(\mathrm{C}_{\mathrm{d}}\right), 127.05\left(\mathrm{C}_{\mathrm{c}}\right), 59.86\left(\mathrm{C}_{\mathrm{a}}\right), 57.47\left(\mathrm{C}_{\mathrm{f}}\right), 34.62\left(\mathrm{C}_{\mathrm{g}}\right)$. HR-ESI-MS: $m / z\left[\left(1 \cdot \mathrm{H}_{2}\right)(\mathrm{Br})_{2}\right]^{2+}$ calc.: 322.0311 , found: 322.0309 (error: 0.75 ppm). Anal. Calc. for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{Br}_{4} \mathrm{~N}_{4} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{N}, 6.80 ; \mathrm{C}, 40.80 ; \mathrm{H}, 3.91$. Found: N, 6.59; C, 40.55; H, 3.86. M.P. Decomposes at $190{ }^{\circ} \mathrm{C}$.

Figure S1: ${ }^{1} \mathrm{H}$ NMR 500 MHz spectrum in $\mathrm{D}_{2} \mathrm{O}$ at 298 K and $\mathrm{pH}=3$ of $\left[\mathbf{1} \cdot \mathrm{H}_{2}\right][\mathrm{Br}]_{4}$; *solvent peak.
Page S3

Figure S2: ${ }^{13} \mathrm{C}$ NMR spectrum acquired at 125.76 MHz and 293 K of $\left[\mathbf{1} \cdot \mathrm{H}_{2}\right][\mathrm{Br}]_{4}$.
Page S4

Figure S3: NMR 2D COSY 500 MHz spectrum in $\mathrm{D}_{2} \mathrm{O}$ at 293 K of $\left[\mathbf{1} \cdot \mathrm{H}_{2}\right][\mathrm{Br}]_{4}$.

Page S5

Figure S4: NMR 2D NOESY 500 MHz spectrum in $\mathrm{D}_{2} \mathrm{O}$ at 293 K of $\left[\mathbf{1} \cdot \mathrm{H}_{2}\right][\mathrm{Br}]_{4}$.

Page S6

Figure S5: NMR 2D HETCOR spectrum in $\mathrm{D}_{2} \mathrm{O}$ at 293 K of $\left[1 \cdot \mathrm{H}_{2}\right][\mathrm{Br}]_{4}$.
Page S7

Figure S6: ESI-MS spectrum of $\left[1 \cdot \mathrm{H}_{2}\right][\mathrm{Br}]_{4}$. Experimental molecular ion (continous line) and calculated isotopic profile (broken line).

Figure S7: Thermogravimetric register for $\left[\mathbf{1} \cdot \mathrm{H}_{2}\right][\mathrm{Br}]_{4}$.

Self-assembly of [2]rotaxane-like complex at $\mathbf{p H}=\mathbf{1 ;} \mathbf{[1 \cdot \mathbf { H } _ { 2 } \subset D S D B 2 4 C 8] [B r]}$

[2]Rotaxane-like complex $\left[\mathbf{1} \cdot \mathrm{H}_{2} \subset \text { DSDB24C8 }\right]^{2+}$ was obtained by combining 2.5 ml of an aqueous solution $(50 \mathrm{mM})$ of $\left[\mathbf{1} \cdot \mathrm{H}_{2}\right][\mathrm{Br}]_{4}$ with 2.5 ml of an aqueous solution $(50 \mathrm{mM})$ of $\left[\mathrm{NMe}_{4}\right]_{2}[$ DSDB24C8] . The solution was stirred and left to cool for several days until rotaxane-like complex $\left[1 \cdot \mathrm{H}_{2} \subset\right.$ DSDB24C8 $][\mathrm{Br}]_{2}$ precipitated as a yellow crystalline solid. The product was isolated via filtration, washed with methanol and dried under vacuum. Yield $0.13 \mathrm{~g}, 84 \% .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 278 \mathrm{~K}$): $\delta(\mathrm{ppm}) 9.21$ (broad, $4 \mathrm{H}, \mathrm{Hb}$), 8.90 (broad, $4 \mathrm{H}, \mathrm{H}_{\mathrm{e}}$), 8.20 (broad, $4 \mathrm{H}, \mathrm{H}_{\mathrm{c}}$), 8.03 (broad, $4 \mathrm{H}, \mathrm{H}_{\mathrm{d}}$), 6.72 and $6.66\left(\right.$ broad, $\left.6 \mathrm{H}, \mathrm{H}_{\mathrm{h}}, \mathrm{H}_{\mathrm{i}}, \mathrm{H}_{\mathrm{j}}\right) 5.42$ (broad, $4 \mathrm{H}, \mathrm{H}_{\mathrm{a}}$), $4.79\left(\mathrm{H}_{f}\right.$ overlapping with HDO), 4.10-3.55 (m, $24 \mathrm{H}, \mathrm{H}_{\mathrm{k}}, \mathrm{H}_{\mathrm{l}}, \mathrm{H}_{\mathrm{m}}$ broad set of signals) and $2.94\left(\mathrm{broad}, 4 \mathrm{H}, \mathrm{Hg}_{\mathrm{g}}\right)$. The pH of the solution was adjusted to 1 by the addition of a $48 \% \mathrm{DBr}$ in $\mathrm{D}_{2} \mathrm{O}$ solution. HR-ESI-MS: $m / z\left[1 \cdot \mathrm{H}_{2} \subset \mathrm{DSDB} 24 \mathrm{C} 8\right]^{2+}$ calc.: 546.1666 , found: 546.1674 (error: 1.37 ppm).

Page S8

Figure S8: ${ }^{1} \mathrm{H}$ NMR 500 MHz spectrum in $\mathrm{D}_{2} \mathrm{O}$ of $\left[\mathbf{1} \cdot \mathrm{H}_{2} \subset \mathbf{D S D B 2 4 C 8}\right][\mathrm{Br}]_{2}$ at $278 \mathrm{~K}, \mathrm{pH}=1$. Labels without $\left({ }^{\prime}\right)=$ complexed components of the [2]rotaxane-like complex $\left[\mathbf{1} \cdot \mathrm{H}_{2} \subset \mathbf{D S D B 2 4 C 8}\right][\mathrm{Br}]_{2}$, labels with $\left({ }^{\prime}\right)=$ uncomplexed thread $\left[\mathbf{1} \cdot \mathrm{H}_{2}\right]^{4+}$ and wheel $[\text { DSDB24C8 }]^{2-}$.

Figure S9: ${ }^{1} \mathrm{H}$ NMR 500 MHz spectrum in $\mathrm{D}_{2} \mathrm{O}$ of $\left[\mathbf{1} \cdot \mathrm{H}_{2} \subset\right.$ DSDB24C8 $][\mathrm{Br}]_{2}$ at 298 K and $\mathrm{pH}=1$.
Page S10

Figure S10: ESI-MS spectrum of $\left[\mathbf{1} \cdot \mathrm{H}_{2} \subset\right.$ DSDB24C8 $][\mathrm{Br}]_{2}$. Experimental molecular ion $\left[\mathbf{1} \cdot \mathrm{H}_{2} \subset \mathbf{D S D B 2 4 C 8}\right]^{2+}$ (continous line) and calculated isotopic profile (broken line).

Self-assembly of [2]rotaxane-like complex at $\mathbf{p H}=7 ;[1 \cdot \subset$ DSDB24C8]

$0.13 \mathrm{~g}(0.39 \mathrm{mmol})$ of pyridine was mixed with $0.05 \mathrm{~g}(0.63 \mathrm{mmol})\left[\mathbf{1} \cdot \mathrm{H}_{2} \subset \mathbf{D S D B 2 4 C 8}\right][\mathrm{Br}]_{2}$ in 5 mL of water. The solution was stirred and left to cool for several days until pseudo-rotaxane $[\mathbf{1} \subset \mathbf{D S D B 2 4 C 8}]$ precipitated as a yellow crystalline solid. The product was isolated via filtration and washed with acetonitrile in order to remove any unreacted pyridine. Pure [2]rotaxane-like complex was obtained after drying under vacuum. Yield $0.03 \mathrm{~g}, 68 \%$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz} \mathrm{D}_{2} \mathrm{O}, 278 \mathrm{~K}$): $\delta(\mathrm{ppm}) 9.26$ (broad, $4 \mathrm{H}, \mathrm{Hb}$), 8.90 (broad, $4 \mathrm{H}, \mathrm{H}_{\mathrm{e}}$), 8.23 (broad, 4 H , H_{c}), 8.04 (broad, $4 \mathrm{H}, \mathrm{H}_{\mathrm{d}}$), 7.09 (broad, $2 \mathrm{H}, \mathrm{H}_{\mathrm{h}}$), $7.06\left(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{i}}\right), 6.78\left(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{j}}\right) 5.48\left(\right.$ broad, $\left.4 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right), 4.79\left(\mathrm{H}_{\mathrm{f}}-\right.$ overlapping with HDO), 4.02-3.60 ($\mathrm{m}, 24 \mathrm{H}, \mathrm{H}_{\mathrm{k}}, \mathrm{H}_{\mathrm{l}}, \mathrm{H}_{\mathrm{m}}$, broad set of signals) and 2.80 (broad, $4 \mathrm{H}, \mathrm{H}_{\mathrm{g}}$). The pH of the solution was adjusted to 7 by the addition of $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$. HR-ESI-MS: $m / z\left[1 \cdot \mathrm{H}_{2} \subset \text { DSDB } 24 \mathrm{C} 8\right]^{2+}$ calc.: 546.1666 , found: 546.1672 (error: 0.1 ppm).

 $[1]^{2+}$ and wheel [DSDB24C8 $]^{2}$.

Figure S12: ${ }^{1} \mathrm{H}$ NMR 500 MHz spectrum in $\mathrm{D}_{2} \mathrm{O}$ of $[\mathbf{1} \subset \mathbf{D S D B 2 4 C 8}]$ at 298 K and $\mathrm{pH}=7$.
Page S13

Figure S13: ${ }^{1} \mathrm{H}$ NMR 500 MHz spectrum in $\mathrm{D}_{2} \mathrm{O}$ of $[\mathbf{1} \subset$ DSDB24C8] at 318 K and $\mathrm{pH}=7$.
Page S14

Figure S14: ESI-MS spectrum of $\left[1 \subset\right.$ DSDB24C8]. Experimental molecular ion $[1 \subset \text { DSDB24C8 }]^{2+}$ (continous line) and calculated isotopic profile (broken line).
3. Thread acid-base solution behavior and $\mathrm{p} K_{a}$ determination

Figure S15. ${ }^{1} \mathrm{H}$ NMR 500 MHz spectra of $\left[1 \cdot \mathrm{H}_{2}\right][\mathrm{Br}]_{4}$ in $\mathrm{D}_{2} \mathrm{O}$ at $298 \mathrm{~K} \mathrm{pH}=7$ (top) and $\mathrm{pH}=1$ (bottom).
Page S16

Figure S16: pH titration of an aqueous solution $\left(2 \mathrm{~mL}, 2 \times 10^{-3} \mathrm{M}\right)$ of $\left[\mathbf{1} \cdot \mathrm{H}_{2}\right][\mathrm{Br}]_{2}$ with a normalized $2 \times 10^{-2} \mathrm{M}$ solution of NaOH . Data fitting renders an average $\mathrm{p} K_{\mathrm{a}}$ value of 3.7 for both carboxylic acid groups.

Determination of ratio $\left[A^{-}\right] /[\mathrm{HA}]$

For an specific equilibrium between the acid, HA and its conjugate base A^{-}, in water,

$$
\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{~A}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

Assuming that the concentration of water, $\left[\mathrm{H}_{2} \mathrm{O}\right]$, is constant and writing $\left[\mathrm{H}^{+}\right]$for the concentration of the hydronium ion the expression of equilibrium is

$$
\begin{equation*}
K_{a}=\frac{\left[A^{-}\right]\left[H^{+}\right]}{[H A]} . . . \tag{1}
\end{equation*}
$$

$\mathrm{p} K_{\mathrm{a}}$ is defined as $-\log _{10} K_{\mathrm{a}}$. After rearranging the expression defining K_{a}, and putting $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$, one obtains

$$
\begin{equation*}
p H=p K a+\log \left(\frac{\left[A^{-}\right]}{[H A]}\right) \ldots \tag{2}
\end{equation*}
$$

This is a form of the Henderson-Hasselbalch equation. If we solve $\left(\frac{\left[A^{-}\right]}{[H A]}\right)$

$$
\begin{gather*}
\log \left(\frac{\left[A^{-}\right]}{[H A]}\right)=p H-p K a . \tag{3}\\
\left(\frac{\left[A^{-}\right]}{[H A]}\right)=10^{p H-p K a} \ldots \tag{4}
\end{gather*}
$$

Page S17

In order to obtain $\left[\mathrm{A}^{-}\right]$and $[\mathrm{HA}]$ values, the next expression can be used

$$
\mathrm{C}_{0}=\left[A^{-}\right]+[H A] \ldots(5)
$$

Where C_{0} is the initial concentration. If we solve $\left[A^{-}\right]$

$$
A^{-}=\mathrm{C}_{0}-[H A] \ldots \text { (6) }
$$

When we substitute (6) in (4) we obtain

$$
\left(\frac{\mathrm{C}_{0}-[H A]}{[H A]}\right)=10^{p H-p K a} \ldots(7)
$$

If we solve [HA]

$$
\begin{align*}
& \frac{C_{0}}{[H A]}-1=10^{p H-p K a} \ldots \tag{8}\\
& \frac{C_{0}}{[H A]}=10^{p H-p K a}+1 \ldots \tag{9}\\
& {[H A]=\frac{C_{0}}{10^{p H-p K a}+1} \ldots}
\end{align*}
$$

With equation (10) and considering an obtained $\mathrm{p} K_{\mathrm{a}}$ of 3.7 for $\left[\mathbf{1} \cdot \mathrm{H}_{2}\right][\mathrm{Br}]_{4}$, several $[\mathrm{HA}]$ values were calculated at distinct pH values (Table S1).

Table S1: Calculated mole fraction of $\left[\mathbf{1} \cdot \mathrm{H}_{2}\right][\mathrm{Br}]_{4}$.

$\mathbf{C}_{\mathbf{0}}(\mathbf{m M})$	$\mathbf{p H}$	$[\mathbf{H A}](\mathbf{m M})$	$\left[\mathbf{A}^{-}\right](\mathbf{m M})$	$\boldsymbol{\%}[\mathbf{H A}]$
	1	0.9983	0.0017	99.83
	2	0.9836	0.0164	98.36
	3	0.8532	0.1468	85.32
	4	0.3416	0.6584	34.16
	5	0.0462	0.9538	4.62
	6	0.0048	0.9952	0.48
	7	0.0005	0.9995	0.05

4. Crown ether acid-base solution behavior and $\mathrm{p} K_{a}$ determination

Figure S17: ${ }^{1} \mathrm{H}$ NMR 500 MHz spectra in $\mathrm{D}_{2} \mathrm{O}$ of $\left[\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}\right]_{2}[$ DSDB24C8 $]$ at $293 \mathrm{~K} \mathrm{pH}=7$ (top) and $\mathrm{pH}=1$ (bottom).
Page S19

$$
\mathrm{p} K_{\mathrm{a}}=-0.72(\pm 0.20) \text { at } 25^{\circ} \mathrm{C}
$$

Calculated using Advanced Chemistry Development (ACD/Labs) Software V11.02 (© 1994-2014 ACD/Labs). This calculation provides the same $\mathrm{p} K_{a}$ value for both sulfonate groups.

Table S2: Calculated mole fraction of H_{2} DSDB24C8.

		$\left[\mathbf{H}_{2} \mathbf{D S D B 2 4 C 8}\right]$		
$\mathbf{C o}(\mathbf{m M})$	$\mathbf{p H}$	$(\mathbf{m M})$	$[D S D B 24 C 8]^{2-}$ $(\mathbf{m M})$	$\boldsymbol{\%}^{2}[\mathbf{D S D B 2 4 C 8}]^{2-}$
1.0	1	0.0187	0.9813	98.13
	7	1.9×10^{-8}	0.9999	99.99

5. Model compound with $\mathbf{p H}$-insensitive end groups

Figure S18: ${ }^{1} \mathrm{H}$ NMR 500 MHz spectra in $\mathrm{D}_{2} \mathrm{O}$ of $[2 \cdot \operatorname{Pr} \subset \mathrm{DSDB} 24 \mathrm{C} 8]$ at $298 \mathrm{~K} \mathrm{pH}=7$ and (top) and $\mathrm{pH}=1$ (bottom).
6. Reversibility of threading/dethreading process

Figure S19: ${ }^{1} \mathrm{H}$ NMR spectra $(400 \mathrm{MHz})$ of A$\left.\left.) \quad\left[\mathbf{1} \cdot \mathrm{H}_{2} \subset \mathbf{D S D B 2 4 C 8}\right][\mathrm{Br}]_{2} ; \quad \mathrm{B}\right) \quad\left[\mathbf{1} \cdot \mathrm{H}_{2} \subset \mathbf{D S D B 2 4 C 8}\right][\mathrm{Br}]_{2}+2 \mathrm{eq} . \mathrm{C} 5 \mathrm{D} \mathrm{D}_{5} \mathrm{~N} ; \mathrm{C}\right)$ $\left[1 \cdot \mathrm{H}_{2} \subset\right.$ DSDB24C8 $][\mathrm{Br}]_{2}+2$ eq. $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}+2$ eq. $\mathrm{DBr}\left(48 \% \mathrm{D}_{2} \mathrm{O}\right)$. All spectra were recorded at 298 K.
7. Comparative table of chemical shifts at $\mathbf{p H} 1$ and 7

Table S3: Chemical shifts of the [2]rotaxane-like complex $\left[\mathbf{1} \cdot \mathrm{H}_{2} \subset \mathbf{D S D B 2 4 C 8}\right][\mathrm{Br}]_{2}$ at $\mathrm{pH}=1$ and $\mathrm{pH}=7$.

Protons	Chemical shift (ppm)	
	$\mathrm{pH}=1$	$\mathrm{pH}=7$
b	9.21	9.26
e	8.90	8.90
c	8.20	8.23
d	8.03	8.03
h	7.01	7.09
I	7.01	7.06
J	6.66	6.68
A	5.43	5.48
F	$*$	$*$
G	3.10	2.80

8. Determination of equilibrium constants by UV/Vis

The equation used for determination of association constants is based on the Lambert-Beer and mass action laws using equimolar solutions of host (H) and guest (G). For a 1:1 complex:

Absorption of the complexes were monitored by UV/vis spectroscopy at 298 K . Stock solutions $(2.5 \mathrm{mM})$ for rotaxane-like complex at $\mathrm{pH}=$ 1 and $\mathrm{pH}=7$ were prepared in 2 mL volumetric flasks using deionized water as solvent. In order to ensure that the terminal group - COOH units are totally protonated and deprotonated pH values of the solution were adjusted at pH 1 and pH 7 . After each measurement of the absorption spectrum, the solutions were diluted accurately by removing $250 \mu \mathrm{~L}$ of the solution with a micropipette and replacing the same volume with fresh water. Dilutions were made from $2.5 \times 10^{-3} \mathrm{M}$ to $0.2 \times 10^{-3} \mathrm{M}$.

All measurements were recorded against deionized water as a reference. The values of $\mathrm{C}_{0} / \mathrm{A}$ were plotted against $\mathrm{A}^{-1 / 2}$. The linear regression parameters were calculated and the association constants were determined.

Figure S20: UV/vis spectra of pseudo-rotaxane complex recorded at $298 \mathrm{~K}, \mathrm{pH}=1$ with $\lambda_{\max }=390 \mathrm{~nm}$ (left) and $\mathrm{pH}=7$ (right); $\lambda_{\max }=384$ nm in deionized water.

Figure S21: Linear plots of $\mathrm{C}_{0} / \mathrm{A}$ versus $\mathrm{A}^{-1 / 2}$ at $\mathrm{pH}=1$ (left); and $\mathrm{C}_{0} / \mathrm{A}_{\text {versus }} \mathrm{A}^{-1 / 2}$ at $\mathrm{pH}=7$ (right).
References: A. Ray, J. Am. Chem. Soc., 1971, 93, 7146; R. Cervantes, R. I. Sanchez, J. Tiburcio, Chem. Eur. J., 2013, 19, 4051.
9. Van't Hoff plots

Figure S22: van't Hoff plots of [2]pseudo-rotaxane complex at $\mathrm{pH}=1$ (left) and $\mathrm{pH}=7$ (right).

10. Determination of the rate constants by concentration-jump kinetic experiments

Dilution method by stopped flow for determination of rate constants in $\left[\mathbf{1} \mathrm{H}_{2} \subset \mathbf{D S D B 2 4 C 8}\right][\mathrm{Br}]_{2}$ complex $\left(\mathrm{HG}^{2+}\right)$ with equal concentrations of host $\left(\mathrm{H}^{2-}\right)$ and guest $\left(\mathrm{G}^{4+}\right)$. Assuming a 1:1 complex, the dissociation process could be defined as equation (1)

$$
\begin{equation*}
H G^{2+} \underset{k_{2}}{\stackrel{k_{1}}{\rightleftarrows}} H^{2-}+G^{4+} \tag{1}
\end{equation*}
$$

Dissociation of the complex assures an equimolar concentration between host and guest

$$
\left[H^{2-}\right]=\left[G^{4+}\right]
$$

The equilibrium constant is defined as

$$
\begin{equation*}
K_{e q}=\frac{\left[H^{2-}\right]_{e q}^{2}}{\left[H G^{2+}\right]_{e q}} \ldots \tag{2}
\end{equation*}
$$

The rate equations are defined as

$$
\begin{align*}
& -\frac{d\left[H G^{2+}\right]}{d t}=k_{1}\left[H G^{2+}\right]-k_{2}\left[H^{2-}\right]^{2} . \tag{3}\\
& -\frac{d\left[H^{2-}\right]}{d t}=k_{2}\left[H^{2-}\right]^{2}-k_{1}\left[H G^{2+}\right] . . \tag{4}
\end{align*}
$$

If HG^{2+} and H^{2-} are related by the equilibrium in eq. (1), and the perturbation $\delta(t)$ in the concentration of complex HG^{2+} and host H^{2-} is defined according to eqs. (5) and (6),

$$
\begin{gathered}
{\left[H G^{2+}\right]_{t}=\left[H G^{2+}\right]_{e q}+\delta(\mathrm{t}) \ldots(5)} \\
{\left[H^{2-}\right]_{t}=\left[H^{2-}\right]_{e q}-2 \delta(\mathrm{t}) \ldots(6)}
\end{gathered}
$$

When we substitute (5) and (6) in (4) the decay of $-\frac{d[\delta(\mathrm{t})]}{d t}$ is given by equation (7)

$$
\begin{gathered}
-\frac{d[\delta(\mathrm{t})]}{d t}=-\frac{d\left[H^{2-}\right]}{d t}=k_{2}\left\{\left[H^{2-}\right]_{e q}-2 \delta(\mathrm{t})\right\}^{2}-k_{1}\left\{\left[H G^{2+}\right]_{e q}+\delta(\mathrm{t})\right\} \\
-\frac{d[\delta(\mathrm{t})]}{d t}=-\frac{d\left[H^{2-}\right]}{d t}=k_{2}\left\{\left[H^{2-}\right]_{e q}{ }^{2}-4\left[H^{2-}\right]_{e q} \delta(\mathrm{t})+4 \delta(\mathrm{t})^{2}\right\}-k_{1}\left\{\left[H G^{2+}\right]_{e q}+\delta(\mathrm{t})\right\} \\
-\frac{d[\delta(\mathrm{t})]}{d t}=-\frac{d\left[H^{2-}\right]}{d t}=k_{2}\left[H^{2-}\right]_{e q}{ }^{2}-4 k_{2}\left[H^{2-}\right]_{e q} \delta(\mathrm{t})+4 k_{2} \delta(\mathrm{t})^{2}-k_{1}\left[H G^{2+}\right]_{e q}-k_{1} \delta(\mathrm{t})
\end{gathered}
$$

If we consider that at equilibrium the rate of occurrence of H^{2-} is equal to the rate of disappearance of $H G^{2+}$ we obtain

$$
\begin{array}{r}
-\frac{d[\delta(\mathrm{t})]}{d t}=-\frac{d\left[H^{2-}\right]}{d t}=-4 k_{2}\left[H^{2-}\right]_{e q} \delta(\mathrm{t})+4 k_{2} \delta(\mathrm{t})^{2}-k_{1} \delta(\mathrm{t}) \\
-\frac{\boldsymbol{d}[\boldsymbol{\delta}(\mathrm{t})]}{\boldsymbol{d} \boldsymbol{t}}=-\frac{\boldsymbol{d}\left[\boldsymbol{H}^{2-}\right]}{\boldsymbol{d} \boldsymbol{t}}=-\left\{\boldsymbol{k}_{\mathbf{1}}+\mathbf{4} \boldsymbol{k}_{\mathbf{2}}\left[\boldsymbol{H}^{2-}\right]_{e \boldsymbol{q}}\right\} \boldsymbol{\delta}(\mathbf{t})+\mathbf{4} \boldsymbol{k}_{\mathbf{2}} \boldsymbol{\delta}(\mathbf{t})^{2} \ldots \tag{7}
\end{array}
$$

If the perturbation $\delta(\mathrm{t})$ is sufficiently small that the term $\delta(\mathrm{t})^{2}$ in eq. (7) can be neglected, we can obtain the integrated equation (8)

$$
\begin{gathered}
-\frac{1}{\delta(\mathrm{t})} d \delta(\mathrm{t})=-\left\{k_{1}+4 k_{2}\left[H^{2-}\right]_{e q}\right\} \delta(\mathrm{t}) \mathrm{dt} \\
-\ln \delta(\mathrm{t})=-\left\{k_{1}+4 k_{2}\left[H^{2-}\right]_{e q}\right\} \mathrm{t} \ldots(8)
\end{gathered}
$$

Where $-\left\{k_{1}+4 k_{2}\left[H^{2-}\right]_{e q}\right\}$ is equal to $-k_{\text {obs }}$ so we can obtain a linear equation (9)

$$
-\boldsymbol{k}_{o b s}=-\left\{\boldsymbol{k}_{1}+4 \boldsymbol{k}_{2}\left[\mathrm{H}^{2-}\right]_{e q}\right\} \ldots(9)
$$

For determining $\left[\mathrm{H}^{2-}\right]_{e q}$ we use the equation (2) if we solve $\left[\mathrm{H}^{2-}\right]^{2}$

$$
\left[H^{2-}\right]_{e q}^{2}=K_{e q} *\left[H G^{2+}\right]_{e q} \ldots(10)
$$

The initial concentration C_{0} is given by

$$
\begin{gather*}
\mathrm{C}_{0}=\left[H G^{2+}\right]_{e q}+\left[H^{2-}\right]_{e q} \cdots \tag{11}\\
\text { If we solve }\left[H G^{2+}\right]_{e q} \\
{\left[H G^{2+}\right]_{e q}=\mathrm{C}_{0}-\left[H^{2-}\right]_{e q} \cdots} \tag{12}
\end{gather*}
$$

When we substitute (12) in (10) we obtain

$$
\begin{align*}
& {\left[H^{2-}\right]_{e q}^{2}=K_{e q} *\left\{\mathrm{C}_{0}-\left[H^{2-}\right]_{e q}\right\} \ldots} \tag{13}\\
& {\left[H^{2-}\right]_{e q}^{2}=K_{e q} \mathrm{C}_{0}-K_{e q}\left[H^{2-}\right]_{e q} \ldots} \tag{14}
\end{align*}
$$

If we solve the second order equation we can calculate $\left[\mathrm{H}^{2-}\right]_{e q}$ by the equation (15)

$$
\begin{array}{r}
{\left[H^{2-}\right]_{e q}^{2}+K_{e q}\left[H^{2-}\right]_{e q}-K_{e q} \mathrm{C}_{0}=0} \\
{\left[\mathrm{H}^{2-}\right]_{e q}=\frac{-K_{e q} \pm \sqrt[2]{{K_{e q}}^{2}+4 K_{e q}\left[H G^{2+}\right]_{0}}}{2} \ldots} \tag{15}
\end{array}
$$

The stopped flow traces were treated by a conventional kinetic analysis with Pro-Data SX fitting program to afford the values of the rate constants.

Reference: S. S. Kristjánsdóttir, A. E. Moody and J. R. Norton, Int. J. Chem. Kinet., 1992, 24, 895.

11. Eyring plots

Activation parameters for threading and dethreading were obtained from the temperature-dependence Eyring plots of the rate constants values in the range of $278-328 \mathrm{~K}$. Plots of $\ln (k / \mathrm{T})$ versus $1 / \mathrm{T}$ and corresponding linear fit, according to the Eyring equation for threading and dethreading processes, are shown in figure S18.

Figure S23: Eyring plots obtained for threading and dethreading processes at $\mathrm{pH}=1$ and $\mathrm{pH}=7$ in the temperature range $278-328 \mathrm{~K}$.

12. Kinetic parameters for dethreading process

Kinetic parameters	$\mathbf{p H}=\mathbf{1}$	$\mathbf{p H}=\mathbf{7}$
$\Delta H_{\text {off }}^{\neq} / \mathrm{kJmol}^{-1}$	$63.5(\pm 0.4)$	$79.7(\pm 0.6)$
$\Delta S_{\text {off }}^{\neq} / \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$	$3.6(\pm 0.3)$	$19(\pm 1)$
$k_{\text {off }} / \mathrm{M}^{-1} \mathrm{~s}^{-1}$ at 298 K	$73(\pm 8)$	$0.8(\pm 0.1)$
$\Delta G_{\text {off }}^{\ddagger} / \mathrm{kJmol}^{-1}$ at 298 K	$62.5(\pm 0.6)$	$74(\pm 1)$.

