1	Supporting Information							
2	for							
3	Immobilization of Selenite via Two Parallel Pathways during In-situ Bioremediation							
4								
5	Youneng Tang ^{*, §, **} , Charles J. Werth ^{*, †} , Robert A. Sanford [‡] , Rajveer Singh [*] , Kyle Michelson [*] ,							
6	Masaru Nobu [*] , Wen-Tso Liu [*] , Albert J. Valocchi [*]							
7								
8	* Department of Civil and Environmental Engineering, University of Illinois at							
9	Urbana-Champaign							
10	† Department of Civil, Architectural, and Environmental Engineering, University of Texas at							
11	Austin							
12	‡ Department of Geology, University of Illinois at Urbana-Champaign							
13	§ Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering,							
14	Florida State University							
15	** Corresponding author: 2525 Pottsdamer Street, Building A, Suite A130 Tallahassee, FL							
16	32310; (850)4106119; ytang2@fsu.edu							
17								
18								
19								

The supporting information contains 1 table (Table S1. Reaction rates in the model), 4 figures (Figure S1. Biomass distribution in the micro-fluid flow cell after inoculation; Figure S2. Representative EDS spectra of the two solid chemical species; Figure S3. Simulated concentration of dissolved chemical species on the 40th day; Figure S4. Distribution of reaction products at the end of the mixing zone on the 40th day of flow cell operation), and a section for the mathematical model (Initial conditions, boundary conditions, and numerical solutions).

	Coefficient of species <i>i</i> , <i>n</i> , and <i>m</i> in reaction $j(\eta_{i,j}, \eta_{n,j}, \eta_{m,j})$									
Reaction (j)	Biomass species <i>n</i>		Solid chemical species <i>m</i>		Dis	solved ch	Reaction rate (r_j)			
	SRB	SeRB $(n = 2)$	$\operatorname{Se_nS_{8-n}}$	Se^0	$CH_3CH_2COO^-$	SeO_3^{2-}			CH_3COO^-	-
	(<i>n</i> = 1)	(<i>n</i> = 2)	(m=1)	(m = 2)	(i = 1)	(<i>i</i> = 2)	(<i>i</i> = 3)	(l - 4)	(i = 5)	~ ~ ~ ~
<i>j</i> = 1	Y_{I}				-1		-0.75	0.75	1	$k_{\max,1,1} \varepsilon_1 X \frac{C_1}{K_1 + C_1} \frac{C_3}{K_3 + C_3}$
<i>j</i> = 2	<i>Y</i> ₂						-1	1	-1	$k_{\max,5,2}\varepsilon_1 X \frac{C_5}{K_5 + C_5} \frac{C_3}{K_3 + C_3}$
<i>j</i> = 3		<i>Y</i> ₃		1.5	-1	-1.5			1	$k_{\max,1,3}\varepsilon_2 X \frac{C_1}{K_1 + C_1} \frac{C_2}{K_2 + C_2}$
<i>j</i> = 4		Y_4		2		-2			-1	$k_{\max,5,4} \varepsilon_2 X \frac{C_5}{K_5 + C_5} \frac{C_2}{K_2 + C_2}$
<i>j</i> = 5			3/8			-1		-2		$k_{SeS}C_2C_4$
summed rate	$R_{X,n} = \sum_{j} \eta_{n,j}$	= ,j× r j	$R_{S,m} = \sum_{j} \eta_{m,j}$	∍ j×rj		$R_{D,i}$ $\sum_{j} r_{j}$	$q = q_{i,j} \times r_j$			

Table S1.	Reaction rates in the model

Note: Parameters used in this table are defined in Tables 1 and 2.

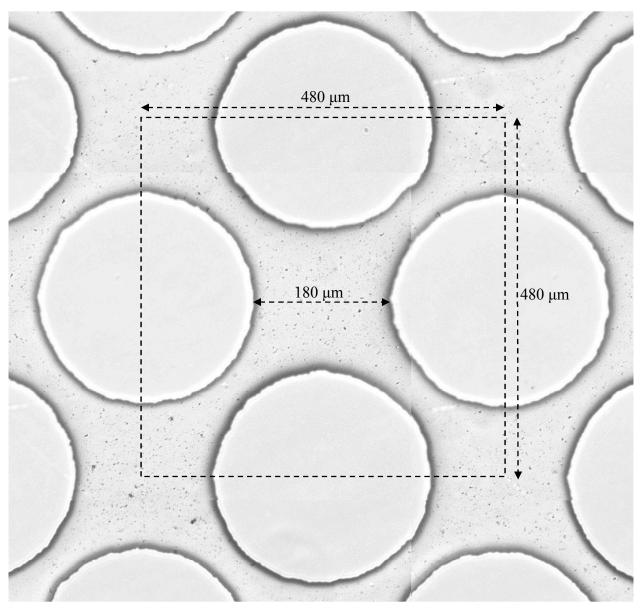
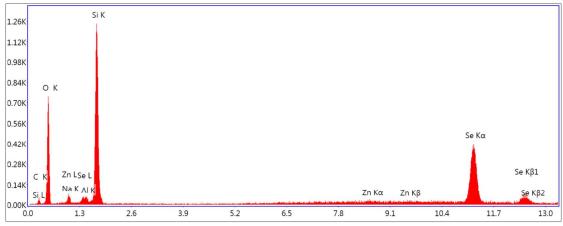
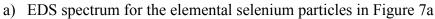
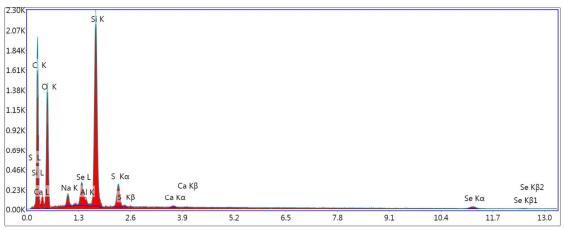





Figure S1. Biomass distribution in the micro-fluid flow cell after inoculation. The square represents a unit grid cell grid for numerical solution.

Lsec: 10.0 0 Cnts 0.000 keV Det: Octane Plus Det

Lsec: 10.0 0 Cnts 0.000 keV Det: Octane Plus Det

b) EDS spectrum for the crystal of selenium sulfides in Figure 7b. Atomic ratio: Se:S = 0.55.

Figure S2. Representative EDS spectra of the two solid chemical species. The C and O peaks correspond to biomass; the Si peak corresponds to the bottom of the flow cell; and the Na, Al, and Ca peaks correspond to the Pyrex cover of the flow cell.

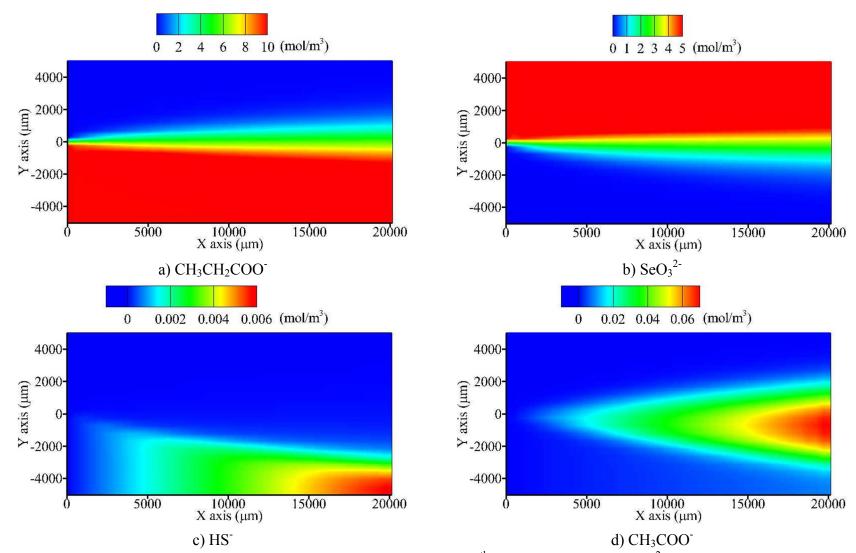


Figure S3. Simulated concentration of dissolved chemical species on the 40^{th} day. The simulated SO₄²⁻ concentration is ~0.1 mol/L everywhere in the flow cell.

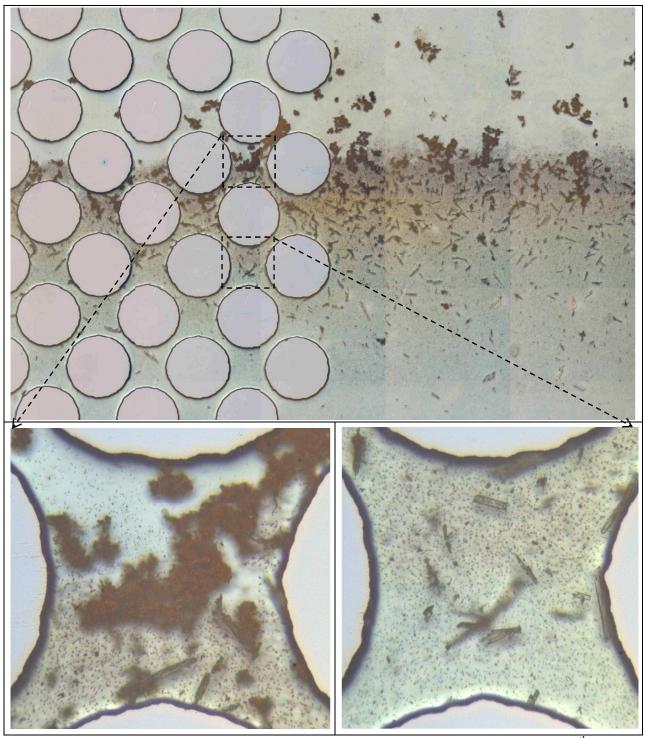


Figure S4. Distribution of reaction products at the end of the mixing zone on the 40th day of flow cell operation. a) Color image of the pore area; b) Representative reaction products on the selenite-rich side of the mixing zone, dominated by red particles; c) Representative reaction products on the propionate-rich side of the mixing zone, dominated by long crystals.

3

4 Initial conditions, boundary conditions, and numerical solutions

5 Initial conditions

The initial concentrations for all dissolved and solid chemical species are zero, and the initial 6 concentrations of biomass species (after inoculation and enrichment) are estimated by observing 7 that there are approximately 500 biofilms in each unit grid cell (480 μ m × 480 μ m × 20 μ m (flow 8 cell thickness) in Figure S1), each biofilm has dimensions of 3 μ m × 3 μ m × 3 μ m. We assume 9 that the initial volume fraction of either biomass species is 50%. Therefore, the initial biomass 10 concentration for both species is: porosity \times (3.0 μ m \times 3.0 μ m \times 3.0 μ m) \times 500 \times (42 \times 21)/(20.0 11 μ m × (1.0 × 10⁴) μ m × (2.0 × 10⁴) μ m) × X × 50%, in which, (42 × 21) is the number of unit grid 12 cells in the porous media of the flow cell and (20.0 μ m × (1.0 × 10⁴) μ m × (2.0 × 10⁴) μ m) are 13 the dimensions of the porous media. 14

15

16 *Boundary conditions*

The concentrations of dissolved chemical species at inlets A and B are constant: $C_{D,1} = 0$, $C_{D,2} = C_{in,2}$, $C_{D,3} = C_{in,3}$, $C_{D,4} = 0$, $C_{D,5} = 0$ for inlet A and $C_{D,1} = C_{in,1}$, $C_{D,2} = 0$, $C_{D,3} = C_{in,3}$, $C_{D,4} = 0$, $C_{D,5} = 0$ for inlet B. The concentration gradient of dissolved chemical species at the outlet boundary and the two side walls is zero: $\frac{\partial C_{D,i}}{\partial n} = 0$, where n is the unit normal direction of the boundary.

22

23 *Numerical solutions*

This problem includes two dynamic processes, which occur at very different time scales: 24 biofilm development on the order of hours or days; chemical species transport and reaction on 25 the order of seconds or minutes.¹ Therefore, equations for these two processes can be 26 decoupled and solved sequentially. We used two time steps: 0.25 day for biofilm development 27 (Equation 7) and 5.0×10^{-8} day for chemical species transport and reaction (Equation 6 and 8). 28 When we solved Equations 6 and 8 using a simple explicit-in-time finite difference method 29 during a 0.25-day period, we assumed that the biofilm was "frozen", meaning its concentration 30 and composition was fixed. We updated the biofilm information after each 0.25-day period by 31 solving Equation 7 using the finite difference method. The grid size is 480 μ m × 480 μ m, 32 which are the dimensions of a unit grid cell for the porous media. These numerical strategies 33 were widely used in previous similar work,^{1, 2} and were confirmed by numerical tests such as 34 grid and time-step refinement exercises. 35

36

37 REFERENCES

- 38 (1) Picioreanu, C.; van Loosdrecht, M. C. M.; Heijnen, J. J. Effect of diffusive and convective
- substrate transport on biofilm structure formation: A two-dimensional modeling study. *Biotechnol. Bioeng.*, 2000, 69(5), 504-515.
- 41 (2) Tang, Y.; Valocchi, A.; Werth, C. A hybrid pore-scale and continuum-scale model for solute
- 42 diffusion, reaction and biofilm development in porous media. Water Resour. Res., 2014,
- 43 submitted.