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Figure S1 XRD patterns of GdF; with (a) different Er** dose and (b) different Yb** dose. (c)

Magnification of (111) diffraction peak of samples with different Yb*" dose.

The structure of all samples are typical orthorhombic phase with Pnma space group. From Fig.
1(a), the structures of the samples doped with different Er*" concentration are almost unchanged,
due to the small radii difference of Gd** (0.935 A) ion and Er** (0.89 A) ion and small amount of
doping. However, the structures of samples with different Yb®* (0.868 A) dose change obviously,

as revealed in Fig. 1 (c), where all diffraction peaks move to higher angle as Yb*" concentration

kA
fcoso

increase. Moreover, according to Scherrer formula, D = , full width at half maximum of

all diffraction peaks are practically unchanged, revealing the particle sizes are nearly same for all

samples.
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Figure S2 EDX spectra of GdFs:2%Er** with different nominal Yb** dose: (a) 10 mol%, (b) 20

mol%, (c) 40 mol% and (d) 60 mol%.

To testify whether all the Yb** ions are doped into the crystal structure, the energy disperse X-ray

spectra of all samples with different Yb®* concentration are performed. The molar ratio of Yb**

ions with respect to all lanthanide ions (Molyy : Mol,) are calculated as at[Yb]/(at[Gd] + at[Yb])

(Er** ions are ignored for its low doping concentration.): (a) 15.09%, (b) 23.51%, (c) 39.88%, (d)

58.90%. These results match quite well with nominal Yb** concentration, respectively, indicating

that all Yb*" ions can be considered to be completely doped into the crystal structure.
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Table S1 Rate equations of five ET processes.

Mechanisms

Rate Equation (General Theory for High Yb**)

Steady State RGR (N3/N4)*
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 Neglecting ETU from N; in ET1 and ET2 and radiation from N; and Naony in ET1-4.
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Ni, Na, N, N3, N Nyyo and Nyp; are the populations of the Er¥* “lisn, “lia, *lon, *Fon,
2Hy10/*Sa0, YD 2F7;, and 2Fs;, manifolds, respectively. wo, w: and w, are ET parameters between
Yb** 2F7, — 2Fsp and ErX** *lus, — *lia, *lig — *Fer and *lyy, — *Foa, respectively. w,; and was
are MPR rates from Er** *l11, — *l1a and Er** 2Hyo/*Ss, — “Fopp, respectively. wc is the CR rate
for ETL(*Fai2 + i — “Fo + *Fa) ET2(*Fo2 + iz — “Fop + L) ET3(lisjo + *Szip — *ligin +
4|9/2). wy IS the EBT rate to the Yb** ions. A1, Ay, Ay, Az and A, are radiative rates of Ert 4I13,2,
laz, “lor, *For and 2Hyyol*Ss, manifolds, respectively. The above ET1-ET4 rate equations are
proposed based on high Yb*" concentrations. Hence, many radiative and nonradiative processes,
such as Ni/N, radiative emissions, MPR processes and back-energy-transfer from Er* 4I11/2
—*145, transition to Yb** ?F;, — 2Fg, transition and so on, can be neglected. As to ET5, N,
emission is considered as major depletion of population. And MPR is considered due to the high
phonon-energy groups attached to the surface of nanoparticles.

Of all rate equations, the population density of Yb** ions excited state can be generally

described as following

dN
thb—l =PNyo = D AN Ny = ANy, @

where ¢ is the absorption cross-section of Yb*" ?Fs, manifold. p is pump rate of the NIR laser. The
incoming rate of Yb** ?Fs, manifold is mainly considered to be the NIR laser pumping rate. Then

Nypz can be expressed as follows under steady-state condition

N 0PNy

Ybl:A(bl+Za)iNi o p 2

From the luminescence spectra results, we contribute the ET mechanism to ET4 or ET5, both of
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which EBT process is the main mechanism to depopulate Er** green-emitting manifolds and
populate Er** red-emitting manifold. To compare the two mechanisms (ET4 and ET5), the
corresponding rate equations are solved and the values of N;, N3 and N4 are obtained. In ET4,
upconversion (UC) rate is considered as dominant depletion for %143/, manifold. In low Yb** dose
samples, linear decay (LD) rate is considered as primary depletion for *l1,, manifold. By solving

the equations, we have
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In high Yb** dose samples, UC is considered as primary depletion for *I,1, manifold. Under this

situation, we have
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In ET5, LD is considered as dominant depletion for 4I13,2 manifold. In low Yb*" dose samples,

LD is considered as primary depletion for 4I11,2 manifold. Hence,
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In high Yb** dose samples, UC is considered as primary depletion for *I1;,, manifold. Hence
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All the above results are summarized in Table 1, showing the difference between ET4 and ET5.
From the above results, the more saturation part of N; (ap® in Eq. (9) or ap° in Eq. (12)) and N
(ap? in Eq. (10) or ap* in Eq. (13)) in ET5 are due to the MPR rates, i.e., wy and was, indicating

that MPR process also contributes to the ET mechanism.
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Figure S3 Excitation power density dependence of RGR for different Yb** concentration doped

GdF3:2%Er** NPs.

RGR increases faster in power dependence along with increasing Yb** concentration,
demonstrating the RGR is related to two factors: Yb** concentration and pump power. This result

also strengthens the point view that ET mechanism of our samples mainly conforms to ET5.
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Figure S4 Normalized DS emission spectra of GdFs:20%Yb** codoped with different Er®*
concentration. Inset shows the magnification of Ertt 4I13,2 NIR emission with different Er®*

concentration.

NIR emission relative to red emission increases along with increasing Er** concentration, which
plainly demonstrates that CR process exists in our samples. Generally, CR is considered to be
predominant when the average distance between activators is small enough,® which means the
activator concentration should be adequately large. In our case, 5 mol% is large enough as the
concentration quenching effect occurs when doping concentration is more than 2 mol%.”
According to the results, the CR process may occur as Er** *Hyyp/*Sg + Er** *lis, — Er* Ylgpp +
Er¥ ‘1135, which simultaneously depopulate the green-emitting manifolds and populate

NIR-emitting manifold.
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Figure S5 Excitation spectra monitored at 1 um and emission spectra of GdF3:20%Y b**/2%Er®*

NPs under 670 nm excitation. Inset shows the DC energy transfer process between Yb**-Er®*.

The above spectra show that ET occur between Er** and Yb*" with Yb®" “Fs,, emission, only with
Er** *Fg;, and Er** *lg), radiation. However, there is no excitation band of Er** *G,y, manifold,

suggesting that there is no Yb** NIR emission under Er** *G,y/, excitation.
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Figure S6 DS ET processes in Yb**-Er** ion pair in low dopant concentration. Solid lines, dashed
lines and dotted lines represent radiative transition, cross-relaxation and multiphonon relaxation

processes, respectively.

For samples with low dopant concentration, ET mechanism for DS process should not involve
Yb**, which can be summarized in the above ET scheme. Er** green and red emissions are mainly
due to MPR process from 4611,2 manifold. Er®* 4I13,2 emission is majorly due to a CR process.

Hence, the corresponding rate equations can be established as follows

dN
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By solving the equations, population of N; can be obtained
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Thus one can find that red emission Nj is also linear proportional to pump power, which is in good
agreement with results from Figure 8.
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