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Background
Somatic copy-number alterations (SCNAs) and chromosomal instability (CIN) are hall-
marks of many tumors and drive genome plasticity and intratumor heterogeneity (ITH) 
[1, 2]. SCNAs are subject to continuous evolution and selection across cancer types [3], 
and haplotype-resolved SCNA analyses have revealed parallel and potentially convergent 
evolution, including mirrored subclonal allelic imbalance (MSAI) events [4]. Besides 
their clinical relevance [5], SCNAs are a rich source of genetic variation that can be lev-
eraged to reconstruct tumor evolution [6, 7]. However, for evolutionary reconstructions, 
SCNAs pose particular challenges, including statistical dependencies between genomic 
loci, overlapping of individual gain/loss events causing backmutations and physical con-
straints, e.g., that fully deleted genetic material cannot be regained at a later time point 
[6, 8, 9]. These characteristics of SCNA events necessitate an explicit evolutionary model 
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of individual haplotype-specific copy-number changes to allow for accurate phyloge-
netic reconstructions.

Such an evolutionary model should also include whole-genome doubling (WGD) 
events [10–13], which have long been known to be linked to tumorigenesis [14–19], 
and which have been identified as key contributors to CIN [3, 11, 20, 21] and as poten-
tial therapeutic targets [22–24]. WGD involves tetraploidization of genomes frequently 
followed by immediate loss of individual chromosomes [12, 20], thus buffering cancer 
genomes against the accumulation of deleterious mutations [21] and forming a substrate 
for further genomic diversification [3, 21]. Statistical indicators of WGD include a high 
average ploidy [12] in relation to the frequency of loss-of-heterozygosity (LOH) events 
in a cohort [25], or evidence from the clone structure of multiple samples [18]. From 
an evolutionary perspective, reliably detecting WGD events requires weighing a com-
plete doubling of the genome followed by chromosomal losses against successive gains 
of individual chromosomes.

While several SCNA-based evolutionary inference methods have been proposed in the 
past [26–29], they do not model WGD events, frequently make use of the infinite sites 
assumption [30] and thus cannot infer parallel evolution, and do not deal with statisti-
cal dependencies between genomic loci. They are further often restricted to solving the 
much simpler problem of tree inference with fully sampled data, i.e., where the ancestral 
(internal) nodes of the tree are accessible through sequencing, an unrealistic assumption 
in most cases. Alternatively, other studies [31, 32] use hierarchical clustering based on, 
e.g., Euclidean or Hamming distances, which are not based on evolutionary principles, 
to infer trees from SCNAs and interpret them as phylogenies of cancer genomes.

To address this, we have developed MEDICC2 to infer phylogenies from SCNAs based 
on the minimum-event distance (MED) [6, 33], i.e., the minimum number of evolution-
ary events (including LOH, WGD, and segmental gains and losses of arbitrary size) 
needed to transform one genome into another. MEDICC2 computes the MED including 
WGD events in linear time, reconstructs phylogenetic trees in the presence of homo-
plasy, infers ancestral genomes, and times SCNA events including WGD relative to each 
other. We apply MEDICC2 to 2778 tumors from the Pan-Cancer Analysis of Whole 
Genomes (PCAWG), where it accurately identifies WGD against a “gold standard” set 
of WGD calls determined using consensus copy-number profiles from six copy-number 
callers [25, 34]. Using multi-sample prostate cancer cases, we demonstrate MEDICC2’s 
ability to detect subclonal WGD events and to correctly place parallel evolution and 
MSAI events revealed by multi-sample phasing [3, 4]. We use orthogonally derived 
structural variant (SV) data from the same cohorts to validate the evolutionary events 
inferred by MEDICC2 and ultimately show how MEDICC2 infers phylogenies from 
allele-specific copy-number profiles for thousands of single cells without prior clustering 
or data aggregation.

Results
Inferring phylogenies from SCNAs with MEDICC2

MEDICC2 infers phylogenies and ancestral genomes from SCNAs (Fig. 1a) by solving 
the MED problem, originally formulated by us [6] and recently studied by Zeira et  al. 
[33], using a weighted finite-state transducer (FST) framework [35]. Briefly, the MED 

https://paperpile.com/c/5lWfNf/n5FQV
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between a pair of copy-number profiles is defined as the minimum number of gains and 
losses of arbitrary length needed to transform one copy-number profile into another 
(“Methods”). MEDICC2 thereby enforces physical constraints where gains of zero-copy 
segments are not permitted and zero-copy segments are “ignored” by subsequent opera-
tions, mimicking the absence of that segment of genomic DNA (Fig. 1b, Additional file 1: 
Fig. S1). This MED is thus asymmetric, and the symmetric distance between a pair of 
copy-number profiles is computed by minimizing the MED between two copy-number 
profiles and their evolutionary ancestor [6] (Fig. 1c). For this, the FST implementing the 

Fig. 1  MEDICC2 algorithm. a MEDICC2 infers cancer phylogenies from SCNA data from single cells or 
bulk sequencing using a minimum-event distance (MED) and infers the ancestral genomes. It allows for 
backmutations, obeys biological constraints, and solves the phylogeny problem where ancestral genomes 
are not sampled. b Computing distances with WGD. Copy-number profiles are represented as vectors of 
positive integer copy numbers across chromosomes (here: two chromosomes with four segments each). To 
infer the correct MED, LOH events are considered first as lost segments cannot be re-gained by later events. 
WGD events span the full copy-number profile, whereas gain and loss events can affect an arbitrary number 
of segments within a chromosome. c Symmetric distance calculation. The MED from an ancestral state to 
a sample is asymmetric due to biological constraints. The final symmetric distance between two samples 
is computed as the sum of distances from an ancestral genome to both samples, while minimizing over 
all possible ancestors. d Schematic overview of the MEDICC2 workflow. Haplotype-specific copy-number 
profiles are either pre-phased or undergo evolutionary phasing (see e). Pairwise MEDs are computed 
between all genomes, followed by tree inference and ancestral reconstruction which determines the final 
branch lengths of the tree. Results are reported to the user as a patient summary and plot. e Evolutionary 
phasing. Copy-number profiles for both alleles are jointly encoded as an unweighted phasing FST P 
where both possible allele configurations are encoded at each position in the sequence. Evolutionary 
phasing then determines the optimal configuration (bold arrows) and extracts final haplotypes (orange 
and blue) by computing the MED between the phasing FST and two reference haplotypes. An example of 
major/minor copy number, phased copy number, and the MED from the diploid is shown at the bottom. 
Abbreviations: FST: Finite-state transducer, MED: Minimum-event distance, LOH: Loss-of-heterozygosity, WGD: 
Whole-genome doubling
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MED has to be composed with its inverse, a complex operation. To avoid constructing 
this explicitly, we here employ a new lazy composition strategy, which only expands the 
FST along the path required for shortest-path computation (“Methods”).

To model WGD events (MED-WGD), MEDICC2 processes whole-genome copy-
number profiles including both haplotypes at once, while keeping track of chromo-
some boundaries. Standard gain and loss events terminate when they reach the end of 
a chromosome. WGD events are gains applied to all non-zero segments in the genome 
(thereby doubling both haplotypes) irrespective of chromosome boundaries. Tetra-
ploidization followed by rapid chromosomal loss to reach a near-triploid state [12, 20] 
has been described in many tumor types and is naturally contained in our model in the 
form of a WGD event followed by multiple losses of individual chromosomes.

Before calculating distances, copy-number profiles are typically phased (Fig.  1d,e), 
either through the use of multi-sample reference phasing using Refphase [3], or through 
an internal evolutionary phasing routine (“Methods”), which chooses a haplotype con-
figuration that minimizes the total MED between the genome and a reference genome, 
typically a diploid normal (Fig. 1e). MEDICC2 then infers the tree topology from pair-
wise MEDs between all genomes using neighbor joining [36] and calculates summary 
statistics as previously described [6]. Finally, ancestral copy-number profiles are recon-
structed such that the total number of events along the tree is minimal, which deter-
mines the final branch lengths of the tree. The result is reported to the user as a patient 
summary and plot which includes the tree and inferred ancestral and terminal copy-
number profiles, and change events, either globally for the whole genome or at user-
defined positions of interest, e.g., at oncogenes and tumor suppressor genes.

We first verified the technical accuracy and time complexity of the MED inference by 
simulating copy-number profiles with a known distance from a diploid normal under the 
MEDICC2 model. MEDICC2 correctly estimated the MED in linear time (Fig. 2a), and 
the inferred MED forms a lower bound to the true number of events (minimum event 
criterion) with and without WGD in contrast to Euclidean distance (r2=0.17, Additional 
file  1: Fig. S2). The new lazy composition strategy leads to a performance increase of 
about one order of magnitude, enabling distance calculations for a large number of sam-
ples or single cells.

We next assessed the tree reconstruction accuracy of MEDICC2 in comparison to 
alternative inference tools through simulations. To not bias the results, evolution was 
simulated at the level of the genome through chromosomal and segmental gains and 
losses but also copy-number neutral events including inversions and balanced translo-
cations and complex events such as breakage-fusion-bridges and WGDs (“Methods”). 
From these simulated genomes with varying mutation rates, copy-number profiles were 
generated by counting the number of copies of each segment. The profiles were then 
subjected to different tree reconstruction strategies, including Euclidean and Manhattan 
distances with the neighbor joining [36] and minimum evolution [37] algorithms, as well 
as the recently developed tools MEDALT [28] and Sitka [38]. MEDICC2 outperforms 
other methods for all ranges of mutation rates and tree sizes, especially in the presence 
of WGDs and independent of the tree metric used (Fig. 2b, Additional file 1: Fig. S3).

As MEDICC2 makes the assumption that segments are contiguous with respect to 
the reference genome, we wanted to test its performance in the face of violations of 
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this assumption. Therefore, we used our simulation routine to create datasets with 
increased numbers of translocations and inversions (which alter the order of seg-
ments with respect to the reference genome but do not change copy number). While 
the introduction of translocation and inversion events lead to a slight decrease in 
reconstruction accuracy, MEDICC2 proved largely robust to violations of the conti-
guity assumption and still outperformed all other methods (Additional file 1: Fig. S4).

We next assessed the computation time of MEDICC2 systematically and com-
pared runtimes to those of Sitka and MEDALT on simulated trees. While the MED 
computation between two samples in MEDICC2 is linear in the number of genomic 
segments, pairwise MED calculation between all samples makes the overall algorith-
mic complexity quadratic in the number of samples. Overall, we found MEDICC2 to 
be slower than Sitka and MEDALT, but due to a new efficient parallelization strat-
egy (“Methods” and [39]) together with the improved performance of the MED 

Fig. 2  Algorithm performance and validation. a Runtime of different composition strategies. Copy-number 
profiles were simulated with increasing lengths from 20 to 200 segments. Computation time of the MEDs 
is linear with respect to the length of the input sequences. While MED-WGD took significantly longer to 
compute than the MED without WGD, the new lazy composition strategy reduced runtime by orders 
of magnitude. Shaded areas correspond to standard errors. b Performance on simulated data: Using 
an independent simulation routine we benchmarked MEDICC2 against a range of other methods. The 
reconstructed trees were compared to the simulated trees using the generalized Robinson-Foulds distance. 
As expected, the GRF distance rises with increasing tree size. MEDICC2 outperforms all other methods for 
all tree sizes. c Validation of MEDICC2 events with SVs. Pairs of MEDICC2 events and SVs were chosen based 
on an overlap of the starting segment. We assume MEDICC2 events to be supported by the SV if the ends 
also overlap. Shown here are the results using only duplications and deletions with size larger than 10Mbp. 
d The MEDICC2 WGD score for 2778 cancer genomes. Individual cancers are plotted based on their average 
ploidy and fraction of genome with LOH. The original separating line between WGD and non-WGD tumors 
was estimated by Dentro et al. as y = 2.9 − 2x. Correct “WGD” and “no WGD” predictions from MEDICC2 were 
marked in orange and blue while false predictions were marked in black and gray (latter if the PCAWG WGD 
status was “uncertain”). Abbreviations: NJ: Neighbor joining, Min. Ev.: Minimum Evolution
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computation, runtime remained manageable even for up to 1000 samples (Additional 
file 1: Fig. S5 and Table S1).

MEDICC2 identifies individual genomic events that change copy number and accurately 

detects WGD in 2778 cancers

MEDICC2 models individual genomic events that change copy number and that can 
span multiple segments in the input copy-number profiles. To investigate whether 
predicted MEDICC2 events accurately describe genome evolution, we compared the 
detected event boundaries in 2778 tumors from the Pan-cancer Analysis of Whole 
Genomes (PCAWG) [34] to orthogonal SV data from the same cohort. In addition to 
high-fidelity copy-number profiles and SV data, PCAWG provides reliable annota-
tion of each tumor’s WGD status, which serves us as a “gold standard” for evaluating 
MEDICC2’s WGD detection performance.

We first extracted all copy-number events between a diploid normal and each of the 
2778 PCAWG genomes. To compare the extracted copy-number events to SVs, we 
selected all MEDICC2 events where one of its event boundaries (start or end) overlaps 
with an SV breakpoint (“Methods,” Additional file  1: Fig. S6). We then counted how 
often the second SV breakpoint overlaps with (i) the second MEDICC2 event boundary, 
(ii) the next copy-number segment boundary (with respect to the first breakpoint), or 
(iii) a random copy-number segment boundary on the same chromosome (“Methods,” 
Additional file 1: Fig. S6). MEDICC2 events more frequently agree with SV breakpoints 
than the copy-number segments or random segment boundaries (Fig.  2c) irrespective 
of the size or type of SV considered (Additional file 1: Fig. S7). We find that the mis-
matched MEDICC2 breakpoints are close to the corresponding SV breakpoints and vice 
versa (Additional file 1: Fig. S8, S9). These findings confirm that MEDICC2 events more 
accurately describe genome evolution than measures based on copy-number segments 
alone.

Next, we tested MEDICC2’s ability to detect WGDs by comparing our results to the 
WGD status in PCAWG, which was inferred from the relationship between tumor 
ploidy and the percentage of the genome affected by LOH across the cohort [25] (“Meth-
ods”) with 818 samples labelled as WGD positive and 1960 as WGD negative. MEDICC2 
correctly predicted the WGD status of 2668 out of the 2778 cases (96.0%), 12 of which 
were predicted to have undergone two consecutive WGD events. All of the 110 incor-
rect predictions were false negatives, i.e., they were labelled as WGD in PCAWG but 
not called by MEDICC2. Since PCAWG WGD annotations are also based on biologi-
cal data with inherent noise and may contain errors, we investigated whether the 110 
missed cases of WGD were marked as “WGD uncertain” by the PCAWG heterogeneity 
and evolution working group. Indeed, tumors with status “WGD uncertain” were signifi-
cantly overrepresented among these tumors (17 out of the 110 incorrect MEDDIC2 pre-
dictions, P = 1.2 · 10−8, chi-square test). To increase sensitivity and in order to mitigate 
the effect of noisy data, we created 100 bootstrap replicates for each sample (“Methods”) 
and calculated the WGD evidence scores for each replicate. Marking samples as WGD if 
at least 5% of their bootstrap runs exhibited at least one WGD event increased the detec-
tion accuracy of WGDs to 98.8% (33 incorrect predictions: 6 false positives and 27 false 
negatives) (Fig. 2d, Additional file 1: Fig. S10) while maintaining an over-representation 
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of false predictions among tumors with status “WGD uncertain” (7 out of the 33 incor-
rect MEDDIC2 predictions, P = 9.6 · 10−6, chi-square test). Bootstrap sampling identified 
an additional 15 samples (total of 27) that underwent two successive WGDs (Fig. 2d). 
We found the WGD detection accuracy to be largely independent of the bootstrap per-
centage threshold chosen (area under the precision-recall curve AUC=0.99, Additional 
file 1: Fig. S11).

These results demonstrate that MEDICC2 accurately reconstructs individual evo-
lutionary events and infers the presence of WGD events even in single-sample stud-
ies, without the need for additional parameter estimation or cohort-level statistics. If 
required, bootstrap resampling can be used to increase sensitivity and resilience against 
noise.

MEDICC2 reveals subclonal WGD events and parallel evolution in prostate cancer

We next reconstructed phylogenies and inferred ancestral genomes for a multi-sample, 
whole-genome sequencing (WGS) cohort with 10 metastatic prostate cancer patients 
introduced in Gundem et al. [40]. MEDICC2 inference took less than 2 min each on a 
desktop computer (Additional file 1: Table S2).

We first compared the MEDICC2 phylogenies based on copy-number profiles of the 
dominant subclone (derived with the Battenberg algorithm, “Methods”) in each sample 
to the SNV-based clone phylogenies produced by Gundem et  al. Despite the differing 
resolution of the two approaches, we observed exact concordance, defined as Robinson-
Foulds distance of zero, between the SCNA-based MEDICC2 phylogenies and the SNV-
based clone phylogenies in 6 out of 10 tumors (A10, A12, A21, A29, A31, and A34) and 
partial concordance in the remaining 4 tumors (Robinson-Foulds distances: A17:3, A22:7, 
A24:2, and A32:2) (“Methods,” Additional file 1: Fig. S12-S20). Notably, using SNV can-
cer cell fraction information, metastatic samples from A22, A24, and A32 were classified 
as demonstrating polyclonal seeding with multiple subclones present within individual 
samples while A17 was classified as showing inconclusive evidence of such polyclonal 
seeding [40]. The copy-number profiles of these multiple subclones within a single sample 
will not be captured by querying only the dominant subclone within that sample (“Meth-
ods”) and therefore this may contribute to the partial concordance observed between the 
MEDICC2 and SNV-based phylogenies in these tumors.

An illustrative example of a comparison between MEDICC2 and the original SNV-
based phylogenetic reconstructions is that of A31 (Fig. 3), which consists of sample 
C from the primary tumor and four samples (A, D, E, and F) from distinct metastatic 
sites. A31 was later analyzed as part of the PCAWG cohort [25] and found to dem-
onstrate a subclonal WGD event affecting all metastatic samples but not the primary 
sample C. In addition to faithfully recovering the original phylogeny, MEDICC2’s 
ancestral reconstruction correctly detected and placed the WGD event at the ancestor 
of the metastatic samples (WGD evidence score sA31 = 22, Fig. 3b). In the 10 patients, 
four WGD events were identified, two of which were clonal and two were subclonal 
with both subclonal WGD events occurring in metastatic samples (Fig. 4a). In A31, 
this subclonal WGD was followed by a gain on chromosome 8p and multiple chro-
mosome-wide losses. The most recent common ancestor (MRCA) of all A31’s samples 
however revealed only moderate SCNA burden with clonal LOH on chromosomes 

https://paperpile.com/c/5lWfNf/6OH9g
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2, 6, 12, and 17, indicative of the substantial divergence between the primary tumor 
and the metastases. Finally, the ancestor of the three metastatic samples A, D, and F 
revealed an MSAI loss on chromosome 5 different from metastasis sample E.

For validation, we repeated the comparison of MEDICC2 events with SV data for 
all Gundem trees. Events that were assigned to ancestral nodes were compared to 
SVs present in all child samples. Despite the smaller size of the dataset (50 samples) 

Fig. 3  Evolutionary history of tumor subclones from patient A31. a SNV-based phylogeny. Reproduction 
of the SNV-based phylogeny as described in Gundem et al. [40] for the multi-sample prostate cancer tumor 
case with one sample (C) from the primary tumor and four samples (A, D, E, and F) from distinct metastatic 
sites. Original reconstruction was performed using an n-dimensional Bayesian Dirichlet process to cluster 
estimated cancer cell fractions of the single-nucleotide variants (SNV) identified in the WGS across samples. 
Only the major subclone of each sample is shown (“Methods”). b MEDICC2 phylogeny. Using multi-sample 
phased copy-number profiles, MEDICC2 detected the presence of WGD in the metastatic samples and its 
absence in the primary sample from A31. The MEDICC2 analysis identifies multiple MSAI events as well as 
parallel LOH on 6 and 13 (purple arrows). Individual events are marked in the copy-number track where they 
occur: gains (red) and losses (blue). The gray number in each branch corresponds to its bootstrap-confidence 
score while the WGD events from the MEDICC2 event detection are marked in green

Fig. 4  Event detection for the Gundem et al. [40] cohort. a WGD detection. In the 10 patients, a total of 4 
WGDs were detected, two of which were clonal, one subclonal and one in a terminal branch. b Distribution 
of arm-level events. Using the MEDICC2 event detection routine, we detected the number of times a whole 
chromosome arm was either gained or lost in a single branch. The gains and losses were aggregated 
over all patients and samples into a single score. This score was compared against the oncogene - tumor 
suppressor gene (OG-TSG) score derived by Davoli et al. [41]. A clear correlation between the gains/losses 
and the OG-TSG score (which is not based on copy numbers) is visible. c Distribution of gene-level events. 
The analysis was repeated on the basis of all 1729 individual genes present in the Davoli et al. dataset. On 
the x-axis, we plotted the base-10 logarithm of the genes’ p-values and flipped the sign for the oncogenes 
to create a single, continuous x-axis for both genesets. A small correlation is visible which becomes more 
pronounced when only considering the top 100 genes. Names are given for genes with p < 10−20
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compared to the single-sample PCAWG cohort, MEDICC2 events agree with the SV 
data (Additional file 1: Fig. S21).

We next compared the branch lengths of the SNV-based trees and the SCNA-based 
MEDICC2 trees, where branch lengths correspond to the number of SNVs and to the 
number of SCNA events larger than 1 Mb respectively. We first investigated the rela-
tionship between the roof-to-leaf distances in the SNV and SCNA trees globally across 
the cohort and observed a significant correlation between SNV and SCNA root-to-leaf 
lengths (ρ = 0.57, P = 1.6 × 10−5, Spearman correlation, Additional file 1: Fig. S22).

However, the SNV-based and SCNA-based trees demonstrated distinctly different 
lengths from the root (diploid normal) to the MRCA, relative to the maximal root-to-
leaf distance of the tree. For example, in A31, this “trunk” was found to be shorter in 
the SCNA-based MEDICC2 tree with 11/54 SCNA events (11 SCNA events relative to 
54 SCNA events on the longest root-to-leaf distance in the MEDICC2 tree) when com-
pared to 2056/3700 SNVs (2056 SNVs relative to 3700 SNVs on the longest root-to-leaf 
distance in the SNV tree). This suggests that there have been relatively few founder 
SCNAs compared to a large number of founder SNVs, potentially due to a larger number 
of SNVs present in the tissue before malignant transformation. This finding was repli-
cated in 9/10 of the prostate tumors with A34 being the exception (Additional file 1: Fig. 
S12-S20).

In A31, the root-to-leaf distances of the SNV-based and MEDICC2 trees were rela-
tively similar to one another for samples A (SNV: 2981/3700 vs MEDICC2: 41/54), F 
(SNV: 2886/3700 vs MEDICC2: 35/54), and D (SNV: 2961/3700 vs MEDICC2: 34/54). 
However, the root-to-leaf distances of the two methods were more different for branches 
E and C. The branch terminating at the dominant clone of metastatic sample E was 
relatively long in the MEDICC2 tree compared to the SNV tree (SNV: 2682/3700 vs 
MEDICC2: 54/54) (Fig.  3b). This is due to multiple SCNAs affecting chromosome 12 
in sample E which may suggest the presence of a complex event resulting in the co-
occurrence of these SCNAs. In contrast, the root-to-leaf distance of sample C from 
the primary tumor in the SNV-based tree is relatively long compared to the MEDICC2 
tree (SNV: 3700/3700 vs MEDICC2: 31/54). This branch is the only one to demonstrate 
additional substitution-based driver mutations affecting TP53 and KMT2C beyond the 
drivers present clonally in the trunk. In this tumor, the metastatic samples are derived 
from a minor subclone in the primary that underwent WGD and developed additional 
structural variant driver mutations, potentially reflecting the previously reported links 
between increased ploidy and structural variation with metastasis [42, 43].

Recently, we developed a multi-sample reference phasing algorithm that maintains 
consistent phased haplotypes across samples from a single patient’s disease to reveal 
additional SCNA heterogeneity across human cancers [3, 4]. This additional heteroge-
neity results from the detection of MSAI as well as SCNA-mediated parallel evolution 
where the same SCNA event (e.g., an LOH event) occurs independently affecting dis-
tinct haplotypes within an individual patient’s disease [3, 4, 44, 45]. Since MEDICC2 
models both haplotypes individually and does not employ the infinite site assumption, 
it can infer both MSAI-mediated homoplasy and homoplasy affecting the same allele 
by assigning these parallel events to separate branches of the tree. Multi-sample refer-
ence phasing analysis of the samples from A31 identified multiple MSAI events as well 
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as parallel LOH on chromosomes 6 and 13 (Fig. 3b). MEDICC2 assigned the independ-
ent origins of these parallel events to the branch corresponding to the emergence of the 
dominant clone in the primary sample and to the branch corresponding to emergence 
of the common ancestor of all the metastatic samples (Fig.  3b). MEDICC2’s ability to 
correctly identify and locate these parallel evolutionary events revealed by multi-sample 
phasing provides additional evidence for a diverging evolutionary trajectory between 
primary and metastatic samples, absent from its original analysis [40].

We were further interested in whether the inferred tree topologies and SCNAs can 
be used to detect preferentially gained and lost regions, potential indicators of posi-
tive selection [3]. To this end, we used the oncogene (OG) and tumor suppressor gene 
(TSG) scores derived by Davoli et al. [41] for individual genes as well as on the level of 
chromosome arms. MEDICC2’s event detection algorithm (“Methods”) allows calculat-
ing the net number of gains and losses along the phylogenetic tree in regions of interest 
and counts events only once at the node in the tree where they occur. Across the 10 
patients in this cohort, a clear correlation is visible (Pearson r=0.59, p<.0001) between 
the MEDICC2 event score and the OG-TSG score on the level of chromosome arms 
reported by Davoli et al. [41] (Fig. 4b). Additionally, on the level of all 1729 individual 
genes from Davoli et al., we observed a global correlation of r=0.09 (p<.0001) (Fig. 4c) 
which rises to r=0.25 (p=0.01) when considering only the top 100 genes. Despite the 
low sample size of 10 patients and the fact that the OG-TSG score was calculated on a 
pan-cancer dataset, the results show the ability of MEDICC2 to infer regions of interest 
by detecting distinct gain and loss events in the individual copy-number trees.

MEDICC2 infers SCNA phylogenies from single‑cell data

Recent advances in single-cell technology have enabled the collection of copy-number 
profiles of thousands of cells. While large single-cell experiments constitute a major 
opportunity to study tumor evolution with higher precision and on a larger scale, they 
also bring unique challenges. The lower coverage of single-cell studies lead to a lower 
signal-to-noise ratio than conventional methods and therefore to less reliable and more 
noisy copy-number profiles. The large number of copy-number profiles representing 
cells increases the computational burden, in particular for pairwise distance calculations 
and ancestral reconstruction. Due to the new fast composition algorithm (Fig. 1e) and an 
efficient parallelization strategy (“Methods” and [39]), MEDICC2 processes thousands of 
cells efficiently, running on 32 cores for less than 1 h (Additional file 1: Table S3).

Here, we apply MEDICC2 to a previously published single-cell study of triple-negative 
breast cancer by Minussi et al. [46] looking at the two patients highlighted in the paper, 
TN1 and TN2, with 1100 and 1023 cells, respectively. In the original study, the authors 
defined “superclones” and “subclones” by two separate clustering methods in the two-
dimensional UMAP space created from pairwise Manhattan distances. Consensus copy-
number profiles were created from these clusters and a minimum evolution tree was 
created from the Manhattan distances between these consensus profiles. This indirect 
way of determining the phylogeny of these cells involved a number of data abstractions 
that involved manual selection of hyperparameters (e.g., for the clustering algorithms).

We instead derived allele-specific copy numbers from the original raw data 
(“Methods”) and ran MEDICC2 directly on the allele-specific copy-number profiles 
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to reconstruct phylogenies for all cells without intermediate clustering steps or con-
sensus profiles (Fig. 5 and Additional file 1: Fig. S23a). We then mapped superclones 
and subclones from the original publication to the MEDICC2 tree and found a high 
degree of concordance between the clonal architecture revealed by MEDICC2 and 
the original results [46], in contrast to a simple tree based on Manhattan distance 
between all cells (Additional file  1: Fig. S23b-c). For TN2, MEDICC2 recreates all 
superclones and most subclones from the original publication, while for TN1 it con-
solidates two superclones into one, but otherwise detects them as in the original 
publication. In addition, MEDICC2 correctly detected truncal WGDs from the single 
cells in both patients as described [46], without the need for additional whole-exome 
sequencing. While the original study reports truncal branch lengths similar to the 
maximal MRCA to leaf distance, suggesting that roughly half of the SCNA events 
happened before emergence of the MRCA, we find truncal branch lengths substan-
tially shorter in the MEDICC2 phylogenies (42/164 for patient TN1 and 71/238 for 
patient TN2). These findings are in concordance with our results for the metastatic 
prostate cancer patients described above and provide further evidence for substan-
tial clonal diversification after emergence of the MRCA.

Our analyses demonstrate that MEDICC2 infers tree topologies that provide 
substantial biological insight, while previous approaches using general measures 
such as the Manhattan distance were not able to recover the clonal architecture of 
the tumor (Additional file 1: Fig. S23). In contrast to clustering of consensus pro-
files, MEDICC2 retains single-cell information when inferring tree topologies and 
ancestral genomes. To the best of our knowledge, MEDICC2 is the only available 

Fig. 5  Inferred phylogeny for single-cell data with 1023 cells. Inferred phylogeny and allele-specific 
copy-number profiles for patient TN2 from Minussi et al. [46]. The diploid and most recent common ancestor 
to all cells are marked with green and blue circles, respectively. We manually selected clades from the 
phylogeny to match the superclones and subclones of the original publication. These are marked next to the 
tree in the colors of the original publication and with horizontal lines. The structure of the tree corresponds 
very clearly with distinct features of the copy-number profiles and matches the clonal structure derived in the 
original publication. Selected synapomorphies of the clone structure are highlighted with a yellow border 
and annotated on the figure
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algorithm that can reliably create accurate copy-number phylogenies from thou-
sands of single cells.

Discussion
Methods for the computationally challenging task of phylogenetic tree inference have 
proliferated in studies of cancer genomics. In order to make such inference tractable 
using SNVs, SCNAs, or combinations thereof, a number of simplifications are often 
employed. The infinite site assumption, in which every genomic position can mutate at 
most once, is almost universally applied despite its frequent violation by both SNVs and 
SCNAs in cancer [3, 47, 48]. Another common simplification that is violated by SCNAs 
is to assume independence of adjacent genomic loci. Existing methods variously attempt 
to overcome this issue by utilizing pseudo single-site mutations [49] or by considering 
breakpoints only [38]. Finally, many methods do not solve the NP-complete Steiner tree 
problem of phylogenetic inference [50], but instead solve the much simpler minimum 
spanning tree problem, identifying a tree that optimally connects only the sampled 
clones, ignoring ancestral or potentially unsampled populations, allowing inference in 
polynomial time [28].

MEDICC2 reconstructs the evolutionary history of cancer from haplotype-specific 
SCNA profiles without these assumptions. It employs a new explicit evolutionary model 
of copy-number change which includes WGD events and computes the MED [6] in 
time linear in the number of genomic segments and at a fraction of its original runtime. 
Unlike MEDALT [28], MEDICC2 addresses the Steiner tree problem [50], finding not 
only an approximately optimal tree topology but, importantly, the ancestral states con-
necting the taxa under an evolutionarily consistent model. As an additional difference, 
MEDICC2 computes distances between any pair of haplotype-specific copy-number 
profiles via a common ancestor, incorporating irreversible changes such as LOH affect-
ing either haplotype or homozygous deletions, states that are frequently observed in 
tumor evolution [25, 51]. While the algorithm is overall quadratic in the number of sam-
ples, our efficient parallelization allows its application to single-cell datasets consisting 
of thousands of cells. MEDICC2 additionally extracts individual SCNA events, including 
clonal and subclonal WGD and provides statistical robustness assessment of the inferred 
trees.

One limitation of our work is that we only consider genomic alterations that change 
copy number and assume that all alterations are contiguous with the reference genome. 
Additionally, the MEDICC2 model does not explicitly represent complex genomic rear-
rangements, such as breakage-fusion-bridge cycles or chromothripsis, but instead relies 
on basic elementary operations to recreate such complex events. Despite this, our sim-
ulations have shown that MEDICC2 accurately infers phylogenies in the presence of 
complex events, outcompeting alternative methods, and that it is substantially robust 
to violations of the contiguity assumption by for instance translocations and inver-
sions. By comparing the MEDICC2 events with SV data, we furthermore confirmed that 
MEDICC2 events are rooted in actual biological processes and more accurately reflect 
genome evolution than measures based on copy-number segments alone. In the future, 
complex events might be integrated explicitly into the MEDICC2 model, depending on 
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the additional computational complexity required, to further improve reconstruction 
accuracy.

Similarly, WGD in cancer has been proposed to result from endoreduplication [52], 
mitotic dysfunction [53], or cytokinesis failure [54]. Nearly all of these mechanisms 
suggest a diploid to tetraploid transition (tetraploidization) [55], frequently followed 
by return to a near-triploid state through subsequent chromosome losses [20], possi-
bly with preceding LOH events [56]. MEDICC2 can replicate this behavior naturally 
through the combination of LOH events, a WGD event and multiple independent 
chromosome-wide losses. As every chromosome loss is counted as a separate event, the 
MED might overestimate the true number of events. However, our model seems to fit 
real-world copy-number profiles extremely well as verified on 2778 WGS tumors from 
the PCAWG cohort.

Our recent work [3, 4] and that of others [44] has highlighted the importance of using 
multi-sample phasing to reveal additional SCNA heterogeneity taking the form of MSAI 
or parallel evolution of similar SCNAs from distinct haplotypes [3, 4]. Since MEDICC2 
does not employ the infinite site assumption, it can reveal homoplasy on alternating 
haplotypes (MSAI) as well as on the same haplotype where an independent origin of 
two events leads to a more parsimonious phylogeny than a shared ancestry. In the Gun-
dem et al. cohort [40], MEDICC2 provided additional support for the divergence of the 
primary and metastatic samples through the detection of a subclonal WGD event and 
parallel evolution in A31. Analysis of the net gains and losses of chromosome arms and 
individual genes along the inferred trees for all patients showed a clear correlation with 
the OG-TSG score [41]. This demonstrates the ability of MEDICC2 to find genomic 
events potentially under positive selection for clinical interpretation of tumor evolution. 
In the future, analysis of a larger cohort could yield further insights into preferentially 
gained and lost regions of the genome in a cancer-type-specific way.

Since MEDICC2 does not itself infer SCNAs from either bulk or single-cell raw data 
and is agnostic of the sequencing modality used to generate its input, its results are 
dependent upon accurate cell, bulk sample, or subclone-level copy-number profiles, and 
the resolution of the original data. Future advances, for example in single-cell sequenc-
ing [57] for total [58] and allele-specific copy-number calling [59], or through co-infer-
ence of copy-number and tree topology [60], that increase resolution and decrease noise 
levels will be usable by MEDICC2 without modification. As we have shown, MEDICC2 
can process thousands of single cells and thereby infer inter- and intra-region evolution. 
It outperforms pairwise Manhattan distances from the original study, creating a tree 
topology that matches the previously identified super- and subclones with high accuracy 
directly from single-cell data without additional parameter fitting or the creation of con-
sensus profiles.

Conclusions
In summary, systematically determining the number and order of WGD, arm-level 
SCNAs, and focal events that have occurred in the evolutionary history of a tumor has 
not yet been performed on a large scale and has previously been the preserve of theo-
retical mathematical modelling [61, 62]. MEDICC2 enables the reconstruction and tim-
ing of the individual SCNA events present in the evolutionary history of a tumor that 
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may overlap and build upon one another. This will allow much more detailed dissection 
of WGD, aneuploidy, and CIN across the genome utilizing single-sample, multi-sample, 
and single-cell approaches, than the measures of the proportion of the genome affected 
by SCNA that much of the field has previously relied on.

Methods
The MEDICC2 model

To solve the MED problem, we employ a finite-state transducer (FST) framework as 
previously described [6], following the notation of Mohri [63] (Additional file 1: Fig. 
S1a). Copy-number profiles are represented as vectors of positive integer copy num-
bers (k)1. . n  , with 0 ≤ k ≤ 8  , where each integer copy number represents a genomic 
segment i. Chromosome boundaries are marked by a chromosome separator char-
acter “X” and both haplotypes are concatenated and separated by “X.” We represent 
these allele-specific copy-number profiles as unweighted finite-state acceptors (FSA) 
A = (Σ, Q, E, i, F) (Additional file 1: Fig. S1c) and evolutionary events as weighted FSTs 
T = (Σ, Q, E, i, F, λ, ρ) with (input and output) copy-number alphabet Σ = {0, .., 8, X} (per 
allele), a finite set of states Q, a finite set of transitions E, an initial state i ∈ Q, a set of 
final states F ⊆ Q, an initial weight λ, and a final weight ρ (Additional file 1: Fig. S1d-f ). 
Transitions between states are equipped with an input symbol li ∈ Σ (input copy num-
ber) and an output symbol lo ∈ Σ (output copy number) and a weight w. All weights λ, 
ρ, w are taken from the positive integers including zero and calculations are carried 
out over the tropical semiring, i.e., weights are summed along the path of a FST and 
the final weight between a pair of sequences is the minimum over all possible paths

(see [35]), where P is the set of all possible paths transforming x to y.
FSTs and FSAs can be subjected to a variety of operations, of which composition 

(“∘”) is of particular importance. During composition, a new FST is constructed in 
which the set of states is the cartesian product of the set of states of the two input 
FSTs. The composition S of two FSTs T1 and T2 then assigns a weight to any pair of 
input and output sequences by chaining their transduction

via intermediary sequence z [63]. Composition is also used to effectively compute the 
score or total weight T[x, y] that a FST T assigns to a pair of sequences x and y (Eq. 1) by 
representing x and y as two unweighted acceptors and running a single-source shortest 
distance algorithm (SD) over the composition x ∘ T ∘ y [63].

Composition enables us to combine multiple evolutionary event FSTs into a final 
FST in which the individual events are carried out successively in order of composi-
tion, and to transform the asymmetric MED into a symmetric MED for calculation of 
the pairwise distance matrix [6] (Additional file 1: Fig. S1g).

(1)T [x, y] = min
π∈P i

w[π ]i

(2)S[x, y] = (T1 ◦ T2)[x, y] = min
z

(

T1[x, z]+ T2[z, y]
)

(3)T [x, y] = min
π

∑

i
w[π ]i = SD

(

x ◦ T ◦ y
)

.
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Calculating the minimum‑event distance

It has been shown previously that the standard MED can be solved by considering 
losses separately before any gains [33]. Indeed, only loss-of-heterozygosity (LOH) 
events, i.e., losses which reduce haplotype-specific copy numbers to zero, must be 
considered first, as subsequent gain and loss events must ignore the positions with 
copy-number zero. The MED however is oblivious to the ordering of any subsequent 
gains and losses. When including WGD events (MED-WGD), LOH events must again 
be dealt with before any other event. In addition, WGD events must come before any 
segmental losses and gains, for example to allow for the deletion of segments previ-
ously gained during a WGD event (Fig.  1b, Additional file  1: Fig. S1b,g). The inclu-
sion of WGD events further introduces non-determinism into the problem as locally 
WGD events cannot be distinguished from segmental gains before taking the full 
sequence into consideration (Additional file 1: Fig. S1b,h).

We thus define four one-step FSTs which model one of four different evolutionary 
events considered: (i) LOH events (T1

LOH), (ii) segmental (+1) gains (T1
G), (iii) seg-

mental (-1) losses (T1
L) without LOH, and (iv) WGD (+1 for all non-zero segments) 

events (T1
WGD). LOH events, gains, and losses must terminate when they reach sepa-

rator character “X” (Additional file  1: Fig. S1d,f ). WGD events do not terminate at 
“X” and leave it unchanged (Additional file  1: Fig. S1e). In the one-step FSTs, each 
sequence position can only be affected by a single event. For example, the one-step 
FST for segmental gains T1

G only allows copy-number changes of arbitrary length 
from 1 to 2, 2 to 3, and so on, but not, for example, from 1 to 3. To span the full 
range of possible events, the one-step FSTs are each composed n times with them-
selves and the maximum copy-number dictates the number of compositions neces-
sary: n =  ∣ Σ ∣  − 1 for LOH events and n =  ∣ Σ ∣  − 2 for segmental losses and gains and 
WGD events [6]. The resulting event FSTs TLOH, TG, TL, and TWGD are then chained 
(composed) into the asymmetric MED-WGD FST.

The final MED-WGD between copy-number profiles x and y is then computed follow-
ing Eq. 3 (Additional file 1: Fig. S1g):

Analogously, the simple MED is built via composition as in

and distance calculation is carried out as in Eq. 5.
As noted previously the MED and MED-WGD are asymmetric. To compute symmet-

ric distances S[x, y] between pairs of copy-number profiles connected in a phylogenetic 
tree, we compute the score between x and y via its common ancestor using the kernel 
composition of T with its inverse T−1[64, 65] (Fig. 1c):

(4)T = TLOH ◦ TWGD ◦ TL ◦ TG

(5)T [x, y] = SD
(

x ◦ T ◦ y
)

= SD
(

x ◦ TLOH ◦ TWGD ◦ TL ◦ TG ◦ y
)

(6)T = TLOH ◦ TL ◦ TG

(7)S[x, y] = SD
(

x ◦ T−1 ◦ T ◦ y
)
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As the number of states in a composed FST is the product of the states of the input 
FSTs, explicit computation of the composition in Eq. 7 is computationally expensive. We 
therefore employ a new computation strategy based on lazy (on-demand) composition 
followed by shortest-path computation using a shortest-first queue [66]. Lazy composi-
tion prevents full expansion of the composed FST before determining the shortest path 
and instead expands the FST only along the path visited [66].

MED speed and accuracy evaluation

To assess the performance of the new lazy composition strategy and the accuracy of the 
MED calculation, we simulated copy-number profiles following the MEDICC2 evolu-
tionary model. A random number of evolutionary events was generated using a Pois-
son process with rate parameter μ = 10 (reconstruction accuracy test) and μ = 20 (speed 
test). In the reconstruction accuracy test, each event had a 5% probability to be a WGD 
event, and a 47.5% probability of being a gain or loss respectively. In the speed test, to 
prevent too many deletions, the gain probability was set to 80%. The start of an event was 
selected uniformly at random from the set of remaining available positions (positions 
with copy number ≠0) and event lengths were drawn from a geometric distribution 
with success probability parameter p = 0.2. Events were applied to the sequence obey-
ing biological constraints, i.e., no gain of segments with copy-number zero and forced 
ending of events at chromosome boundaries, the latter with the exception of WGD. For 
the reconstruction accuracy test, sequences were fixed at length 50 (five chromosomes 
of length 10 each). For the MED speed test, sequence lengths were varied from 20 to 200 
segments (Fig. 2a).

Linear time evolutionary phasing

Traditionally, allele-specific SCNAs are reported in major and minor copy number, as 
the relative phasing of copy-number segments to each other is unknown. We introduced 
the multi-sample reference phasing implementation Refphase (version 0.3.0) [3, 67] to 
leverage relative phasing information in a multi-sample sequencing scenario and used 
it to identify MSAI events across human cancers [3, 4, 45]. In situations where multi-
sample reference phasing is not feasible, e.g., in single-sample scenarios, we developed 
evolutionary phasing [6], where the assignment of major and minor copy numbers to 
parental haplotypes is chosen to minimize the sum of MEDs over both parental hap-
lotypes (minimum evolution criterion). In its original form, evolutionary phasing was 
achieved through the use of a weighted context-free grammar in concert with our origi-
nal MED [6], a computationally costly solution. To enable phasing for a large number of 
segments and genomes, we here provide a novel phasing strategy which solves the evo-
lutionary phasing problem exactly, but at a fraction of the original runtime, by staying 
within the realm of regular grammars and FSAs.

To do so, we first encode copy-number profiles for both alleles jointly as an unweighted 
phasing FST P as follows: the FST follows a linear structure with a number of states 
equal to the number of segments +1. Two transitions occur between each neighboring 
pair of states and the two transitions have as input symbols major copy numbers and 
as output symbols minor copy numbers and vice versa (Fig. 1e). Due to these mirrored 
input and output symbols every valid path through the phasing FST P thus determines 
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an assignment of copy-number alleles to haplotype 1 and haplotype 2. The set of of all 
2npossible paths for a sequence of length n through this FST corresponds to the set of 
possible phasing choices. To choose the most parsimonious haplotype assignment, this 
phasing FST is then composed from the left and from the right side with a composed 
FSA u = (d ∘ T)↓of the diploid FSA d (encoding all-1s) with the MED-WGD FST T, pro-
jected to its output (↓). Shortest-path (SP) computation over this composite yields the 
optimal phase with a total score equal to the sum of MEDs over both parental haplo-
types. Separate haplotypes ha and hb can be extracted by projection to input and output 
followed by weight removal:

Simulating genome evolution

To evaluate the performance of MEDICC2’s tree reconstruction algorithm, first a tree 
topology for a given number of leaves was created by randomly joining sample labels and 
rooting the tree at the diploid. The branch lengths and therefore the number of events 
per branch were determined using a Poisson distribution with λ = Δt · S · μ, where Δt was 
set to 1, S represents the length of the genome (440 segments, see below), and μ repre-
sents a variable rate parameter. To avoid biases, somatic evolution was modelled on the 
level of the genome, not the copy-number level, along the tree starting at the diploid. We 
chose 2 × 22 chromosomes (two sets of haplotypes) with 10 segments of uniform size 
each which resemble the makeup of many actual bulk copy-number profiles. At every 
branch, the genome was mutated with a number of genomic events based on the cor-
responding branch length. These events encompass gains and losses of whole chromo-
somes, focal losses, insertions, breakage-fusion-bridges (BFB), whole-genome doublings 
(WGD), and copy-number neutral events such as balanced and unbalanced transloca-
tions and inversions. For example, if a segment from chromosome 1 is moved to chro-
mosome 2 through an unbalanced translocation and chromosome 2 is subsequently 
gained, the segment of chromosome 1 is also gained. In order to prevent the occur-
rence of homozygous deletions, we prevented deletions of haplotype 2 which in turn 
also lowered the effective loss to gain ratio. By choosing this approach, we ensure that 
the simulation is not biased towards the approach of MEDICC2 (which rather models 
the evolution of copy-number profiles and not individual segments) and mirrors actual 
tumor evolution. In the absence of actual event probabilities, we kept all events to be 
equally likely with the exception of BFBs and WGDs. The probability of BFBs was set to 
10% of the other events and for the WGD we chose four different probabilities: 0.000125 
for the simulation of large trees reminiscent of single-cell experiments (Fig.  2b), and 
three levels for the simulation of medium-sized trees (0 for “No WGD”, 0.0125 for “Low 
WGD” and 0.065 for “High WGD” (Additional file 1: Fig. S3a).

For the large tree scenario, we simulated 25 trees each for all combinations of the 
mutation rate μ ∈ [0.01, 0.025, 0.05] and the number of leaves N ∈ [5, 10, 15, 20, 50, 100, 25
0, 500]. For the medium tree scenario, we simulated 25 trees each for all combinations of 
the mutation rate μ ∈ [0.01, 0.025, 0.05] and the number of leaves N ∈ [5,10,15,20] and the 
three levels of WGD as described above.

(8)
ha =↑ SP (u ◦ P ◦ u)
hb = SP (u ◦ P ◦ u) ↓
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In order to check the effect of the assumption that segments are contiguous with 
respect to the reference genome, we simulated trees with rate μ = 0.05 for N = 20 leaves. 
Here we restrict the simulation to only create gains/losses (both focal as well as chro-
mosomal) as well as translocations and inversions. In the absence of translocations and 
inversions, we expect a total number of 400 gain and loss events. We now increase the 
number of translocations and inversions up to a ratio of 25 (ratio between number of 
translocations/inversions and gains/losses) (Additional file 1: Fig. S4).

Reconstructed trees were evaluated using the generalized Robinson-Foulds (GRF) dis-
tance as implemented in the R package TreeDist [68]. The GRF is based on the widely 
used Robinson-Foulds distance which measures the number of splits that occur in both 
trees. The GRF improves this metric by taking the similarity of splits that are not perfect 
matches into account. We furthermore used the regular Robinson-Foulds distance (as 
implemented in the R package ape [69]) and the Quartet distance (as implemented in 
the R package Quartet) to prevent any potential biases from the tree metric used (Addi-
tional file 1: Fig. S3c).

Comparison to other methods

We compared MEDICC2 to a range of widely used methods which encompassed Euclid-
ean- and Hamming-distance-based trees created both through neighbor joining and 
minimum evolution. For neighbor joining, we used the implementation of MEDICC2 
and for the minimum evolution tree we used the function fastme.bal from the R package 
ape [69].

As a representative of algorithms that create minimum spanning trees (MST), we 
compared against MEDALT[28] and as a representative of methods based on change-
points we compared against Sitka [38] (Additional file 1: Fig. S3b).

MEDALT was run with default parameters. After running MEDALT, we transformed 
the minimum spanning trees into phylogenies. To this end, we replaced all cells that are 
positioned on internal nodes of the tree with dummy nodes and added the samples back 
in with branch length zero as children leaves of the respective dummy nodes. Note, that 
the minimum spanning trees can create multifurcations which we cannot resolve and 
are left as multifurcating trees in the phylogeny.

Sitka was run as instructed by its GitHub Readme page (as of 01.06.2022) using the 
parameters that were used in the original publication for real datasets (taken from Sup-
plemental Table 2) [38]. We removed internal nodes that only had a single child node.

As Sitka is based on a perfect phylogeny assumption, it places breakpoints as the inter-
nal nodes of the phylogenetic tree. Some resulting trees wrongfully placed these break-
points as leaf nodes instead of internal nodes. We removed these leaf nodes in order to 
make the tree comparable to the simulations.

Validation dataset

In order to validate MEDICC2’s event detection algorithm, we applied MEDICC2 to 
2778 single-region tumor samples from the Pan-cancer Analysis of Whole Genomes 
(PCAWG) [34]. The copy-number profiles, SVs, and WGD status of the individual 
samples were downloaded from the ICGC Data Portal (https://​dcc.​icgc.​org/​relea​ses/​
PCAWG/). All samples were phased using MEDICC2’s evolutionary phasing algorithm.

https://dcc.icgc.org/releases/PCAWG/
https://dcc.icgc.org/releases/PCAWG/
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Overlap of MEDICC2 events with structural variants

To assess the accuracy of the reconstructed MEDICC2 events, we selected all MEDICC2 
events which overlap on at least one boundary with the boundary of a SV (100kbp 
proximity). Next we checked whether the other boundary of the MEDICC2 event also 
coincided with the other boundary of the same SV (“supported events”). The number 
of supported events was compared to two null models: firstly, using the next segment 
boundary and, secondly, using a random segment boundary on the same chromosome. 
The “next segment boundary” was defined as the closest segment boundary to the ini-
tial overlapping breakpoint in the direction of the other SV boundary. That means if the 
initial overlap matches the start of a SV, the next boundary will be chosen downstream. 
Similarly, the random segment boundary was chosen from all possible segment bounda-
ries between the initial overlap and the end of the chromosome in the direction of the 
second SV boundary.

As the dataset contains many subclonal SVs that are not present in the copy-number 
profiles of the samples, we removed all SVs that did not overlap with a copy-number 
change on both breakpoints. Events and SVs were filtered at different minimum sizes 
(100kbp, 1Mbp, and 10Mbp) and also filtered based on the type of SV (either all types 
or solely deletions and duplications, Additional file 1: Fig. S7). Only samples that had at 
least 10 MEDICC2 events and 10 SVs were selected for the analysis (1476 samples for 
100kbp, 1221 for 1Mbp, and 850 for 10Mbp).

WGD detection

To facilitate WGD detection, we calculate the MED with (MEDWGD) and without 
(MEDnoWGD) the possibility of WGD between each PCAWG tumor and a diploid normal 
sample and computed the WGD evidence score si as

where ti represents a PCAWG tumor profile and d represents a standard diploid nor-
mal sample. Because MEDnoWGD(x, y) >= MEDWGD(x, y) for any valid set of copy-number 
profiles x and y, the score si is always non-negative (si ≥ 0) and a score of si ≥ 1 indicates a 
preference for a WGD event to have occurred.

By replacing the multi-step WGD transducer TWGD in (Eq. 4) with n-step WGD trans-
ducers for variable n, we can test for multiple WGD events. For example, the scores 
MED1 WGD(x, y) > MED2 WGDs(x, y) = MED3 WGDs(x, y) indicate two WGDs to have taken 
place.

In order to increase the robustness of our predictions, we repeated the analysis with 
100 bootstrap runs (see below). Samples that exhibited WGDs (or multiple WGDs) in at 
least 5% of the bootstrap runs were classified as WGDs (or multiple WGDs, respectively).

The effect of the bootstrap percentage threshold on the final outcome is explored in 
Additional file 1: Fig. S11.

Event detection and correlation with OG‑TSG score

For comparisons between events detected in MEDICC2 and the OG-TSG score, we 
downloaded 1729 gene annotations from Davoli et  al. [41] and the aggregated chro-
mosome-arm-wise OG-TSG scores that measure the occurrences of OGs and TSGs 

si = MEDnoWGD(d, ti)−MEDWGD(d, ti),



Page 20 of 27Kaufmann et al. Genome Biology          (2022) 23:241 

on a given arm. To extract events, we leverage the ancestral reconstruction routine in 
MEDICC2. Trees are then traversed in postorder. Relative copy-number changes are 
determined for all segments and events are counted in the branch where the change 
occurs, thereby taking parallel evolution into account while preventing counting the 
same event multiple times in multiple samples from the same patient. Change events 
were then overlapped with regions of interest, i.e., the positions of OGs and TSGs as well 
as the chromosome arms. An event is detected if there is at least 90% overlap between 
the event and the region of interest. Gains and losses are summed across all branches 
and patients to arrive at the final “#gains - #losses” score for each gene / chromosome 
arm. The event detection routine is available to MEDICC2 users by providing BED files 
with regions of interest and MEDICC2 can calculate the number and exact location of 
gains/losses of these regions along the evolutionary trajectory.

Resampling for robustness estimation

The bootstrap [70, 71] is a classical approach in phylogenetics to assess the robustness 
of an inferred tree to perturbations of the data. During bootstrapping of a multiple 
sequence alignment, columns are drawn from the original data with replacement and 
a large number of resampled datasets (typically 100–1000) are created. The tree recon-
struction method of choice is then employed on all bootstrap datasets and the relative 
frequency with which a branch (or taxon split) of the original tree appears in the set of 
bootstrapped trees forms a support value for this branch. A necessary requirement for 
this approach is the independence of sites in the alignment. Since this assumption does 
not hold for copy-number profiles, we use the following alternative resampling strategies 
for copy-number profiles in MEDICC2:

(1)	 Chromosome-wise bootstrap: Here, whole chromosomes are drawn with replace-
ment from the original chromosomes to create a bootstrap sample. As losses and 
gains end at chromosome boundaries and as WGD events are ignorant to the order 
and number of chromosomes, this approach does not introduce false events while 
still providing a sufficiently large sample space, albeit at the cost of a coarse-grained 
resolution. Therefore, not all bootstrap samples will be equally representative of the 
underlying data.

(2)	 Segment-wise natural jackknife: Here, N segments are drawn with replacement 
from the original N segments, discarding all duplicates. On average, this is equiva-
lent to discarding 1e randomly selected segments [72]. The jackknife approaches the 
bootstrap distribution and due to the lower number of resulting segments has a 
speed advantage over the chromosome-wise bootstrap. However, the jackknife 
generally generates less accurate representations of the original data than the boot-
strap. Branch support values are indicated by their percentage value on the respec-
tive branches (see Fig. 3b).

Parallelization strategy

Single-cell experiments with thousands of cells demand high-performing methods 
as the pairwise distance calculations scale with O(N2) and are therefore exceptionally 
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computationally expensive. In addition to the performance improvements when calcu-
lating the MED, we implemented a parallelization routine to make MEDICC2 applicable 
to hundreds to thousands of cells. To this end, we utilized a recently proposed paralleli-
zation strategy [39] to split the N × N pairwise distance calculations into smaller chunks 
that can be run in parallel. In the method used, the N samples are split into p2 + p groups 
of size p (where p is the smallest prime such that p2 ≥ N) and the pairwise distances 
within the individual groups are calculated such that a given pair is never calculated 
twice. This allows for a theoretical speed-up by the factor p2 + p which for all practical 
concerns is only limited by the number of available cores [39].

Bulk data processing and analysis

The bulk SCNA analysis was performed in two stages. First, as part of the PCAWG 
cohort [25], each tumor sample was analyzed individually with the Battenberg algorithm 
[73] to produce a sample-level inferred purity, ploidy, and copy-number segmentation 
with associated allele-specific copy-number states. Only copy-number segmentation 
from autosomes was included in the study. The Battenberg algorithm is able to detect 
subclonal SCNAs. However, in our analyses, we used only a single full genome-wide 
copy-number profile representing the dominant subclone per tumor sample comprising 
both clonal SCNAs and those subclonal SCNAs present in ≥50% of tumor cells within 
that sample.

Next, these Battenberg outputs, as well as the input data used for Battenberg includ-
ing heterozygous SNP B-allele frequencies, for all samples from a tumor, were jointly 
analyzed to produce haplotype-specific SCNAs through the application of Refphase, a 
multi-sample reference phasing algorithm [3]. We then defined a tumor consensus seg-
mentation profile by combining breakpoints from each SCNA segmentation profile from 
each individual tumor sample. This tumor-level analysis of haplotype-specific SCNAs 
may reveal instances of mirrored subclonal allelic imbalance (MSAI) [3, 4] in which 
SCNAs that affect the opposite haplotypes in different samples from the same tumor 
result in different haplotypes having a higher copy number in different samples. This 
causes the identity of the heterozygous SNPs belonging to the most prevalent haplotypes 
to differ between tumor samples.

A subset of these MSAI events may be considered parallel events. These parallel events 
involve the same class of SCNA, for example a gain on the “A” haplotype in one sample 
(e.g., from “AB” to “AAB”) and an independent gain on the “B” haplotype in another sam-
ple (e.g., from “AB” to “ABB”) may constitute evidence for convergent evolution and pos-
itive selection. In contrast, independent evolution involving differing classes of SCNA in 
different samples from the same tumor may result in MSAI but not constitute parallel 
evolution of the same class of SCNA. An example of this could include a gain of “A” in 
one sample resulting in an “AAB” copy-number state and a loss event in another sample 
resulting in a lone copy of the “B” allele.

Reference phasing, as described above, considers all genomic segments independently 
of each other, and while often segments span entire chromosomes, sometimes different 
reference samples may be chosen for different segments on the same chromosome. Since 
phasing is restricted to continuous regions of allelic imbalance, we estimate phasing 
along the genome across multiple segments within chromosomes (“horizontal phasing”) 
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by using an evolutionary criterion. Briefly, the assignment of heterozygous SNPs to “A” 
and “B” haplotypes for all bins within a single chromosome is chosen to minimize the 
number of copy-number events between a diploid normal sample and the tumor.

Bulk phylogeny comparison

The SNV-based phylogenetic reconstructions were reproduced from Gundem et al. “Fig-
ure 2: Subclonal structure within 10 metastatic lethal prostate cancers.” with additional 
information from “Supplementary Table - Subclones” (also from Gundem et  al.) using 
the following columns: “cluster” that details the clusters used to generate the original 
phylogenies, “cluster.colour” that is the cluster’s color in the original publication, “# subs 
from WGS data” that shows the number of SNVs present within each cluster, “samples 
containing” that shows which samples contain each cluster, and “CCF values” that show 
the cancer cell fraction values for each cluster in each sample that it is present in. The 
branch lengths of these phylogenies are determined by the number of SNVs present in 
each cluster that contributes to the branch.

We compared unnormalized root-to-leaf lengths between the SNV-based clone phy-
logenies and the MEDICC2 phylogenies at the cohort level, and when discussing indi-
vidual tumors, we normalized each root-to-leaf length by the maximum observed 
root-to-leaf length of the corresponding phylogeny for that tumor. To compare topolo-
gies, we used the regular Robinson-Foulds distance (as implemented in the R package 
ape 5.6.1) to evaluate similarity between the SNV-based clone phylogenies and the 
MEDICC2 trees. We took the leaves as annotated in “Fig. 2: Subclonal structure within 
10 metastatic lethal prostate cancers.” from Gundem et al. When multiple samples were 
listed as a single leaf, we introduced a bifurcation at this position, e.g., tumor A12 with 
leaf AC. In addition, when multiple samples were listed in multiple leaves, we chose the 
leaf with each sample’s largest CCF contribution to represent that sample. Finally, the 
Gundem et al. trees contain multifurcations, which support a variety of possible bifur-
cating trees. For comparison with a binary hypothesis tree as inferred by MEDICC2, we 
considered all possible bifurcations obtainable from any given multifurcation and used 
the minimum Robinson-Foulds distance across this set of bifurcations to determine a 
possible match.

Single‑cell data processing and analysis

Segmented log ratios of read counts within genomic bins and total copy-number pro-
files of single-cell triple-negative breast cancer data were obtained from ref [46]. Allele 
counts at 1000G SNP positions were obtained for each single cell using alleleCounter 
(v.4.0.0) as described in ref [46].

Fitting to integers

The log ratios were centered to zero by subtracting the mean to obtain the logR. logR 
values were fitted to integers by identifying the offset ψ that minimizes the sum of dis-
tances across segments of the ntot=logR-ψ to their values rounded to the closest inte-
gers round (ntot), weighted by the lengths of the segments w: argminψ∑i ∈ segmentswi × (ntot, 

i − round(ntot, i))2 ∣ ntot, i =  log (Ri) − ψ. In the original publication, the log ratios were fitted 
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to integers by using the same fluorescence-activated cell sorting (FACS) ploidy value 
as the offset for all cells. Since individual cells can harbor private SCNAs, their ploidy 
can indeed vary around their average FACS ploidy. Therefore, we derived the average 
number of copies along the genome calculated from the published total copy-number 
profiles (~ initial value of ψ according to FACS ploidy) and performed a search within 
{0.85ψ, 1.15ψ} by steps of 0.01 to further optimize the offset to minimize the distance to 
integers within each individual cell.

Getting haplotype‑specific copy‑number profiles and identifying heterozygous SNPs

Across all cells from the same patient, allele counts were summed to get a pseudo bulk 
profile. FACS sorting based on ploidy enriches for tumor cells, but still 10–15% of cells 
were normal contaminants [46]. Thus even in LOH regions, heterozygous SNPs can be 
identified. As described in ref [46], heterozygous SNPs with allele counts for genotype 
A and B, cA and cB, were defined as those with P(Bin(cA + cB, 0.99) ≤ cA) < 0.01 and 
P(Bin(cA + cB, 0.99) ≤ cB) < 0.01. At each heterozygous SNP position, the genotype with 
the highest read count in the pseudo bulk was assigned to the major allele.

Fitting within cells

After phasing all heterozygous SNPs, for each segment, the maximum likelihood esti-
mate of the BAF bmle is derived as follows: from each b belong to the possible values 
between 0 and 1 by steps of 0.001, bmle is the value of the BAF b that maximizes the 
likelihood of a Binomial distribution with probability b, number of successes is the total 
number of reads bearing the genotypes assigned to the major allele, and the number tri-
als is the total number of reads.

Fitting across cells

To account for the noise in ntot and BAF, copy-number states of each segment are 
assigned by fitting these data to integers across cells. Each cell’s segment is assigned to 
allele-specific copy-number states as follows: first, it is assigned to its closest integer 
allele-specific copy-number state, i.e., {round(ntot*BAF), round(ntot)-round(ntot*BAF)}; 
second, at each populated allele-specific copy-number state across cells, the noise 
parameter for a Gaussian distribution is estimated from the non-rounded integers, with 
the mean being the total integer corresponding to the integer state, and the parameters 
for a Beta distribution are estimated from the segments’ BAF values, keeping the mean 
of the Beta as the BAF of the corresponding integer state; then, each cell’s segment is re-
assigned to the allele-specific copy-number states that minimize the sum of its LogR and 
BAF likelihoods normalized across states; the weight given to the likelihood from the 
LogR can be modulated to best assign states from diploid cells ((1.9<ploidy<2.1) to {1,1} 
across segments (here, 50% more weight was given to the likelihood from the LogR); and 
the second and third steps are repeated a hundred times or until convergence.

Using the major minor configuration of the data as described above, MEDICC2 was 
run with standard settings on 32 cores for patient TN1 and TN2 of the cohort. By look-
ing at the final tree and the corresponding copy-number profiles, clades in the tree were 
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manually assigned to the corresponding super- and subclone of the original publication. 
In order to recreate the minimum evolution trees from the original publication [46], we 
created phylogenies using the function fastme.bal from the R package ape [69] based on 
the pairwise Manhattan distance.
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