Supporting Information ## Magnetoresistance and Charge Transport in Graphene Governed by Nitrogen Dopants Markus Rein,^{†,§} Nils Richter,^{†,§} Khaled Parvez,[‡] Xinliang Feng,[¶] Herman Sachdev,[‡] Mathias Kläui,^{*,†} and Klaus Müllen[‡] Institut für Physik, Johannes Gutenberg-Univsersity, 55128 Mainz, Germany, Max Planck Institute for Polymer Research, 55128 Mainz, Germany, and Dresden University of Technology, Molecular Functional Materials, 01069 Dresden, Germany E-mail: klaeui@uni-mainz.de ^{*}To whom correspondence should be addressed [†]Johannes Gutenberg-Univsersity Mainz ^{*}Max Planck Institute for Polymer Research Mainz [¶]University of Dresden [§]These authors contributed equally to this work. Figure S 1: Plot of the sheet resistance as function of temperature over the entire temperature range. While at high temperatures a clear exponential behavior is observed, a deviation can be seen at lower temperatures. Below ~8 K the resistance becomes logarithmic as expected for weak localization. From the exponential increase a transport gap of 9.1 meV can be estimated as described in the main manuscript.